

Modelos e Algoritmos de Optimização Combinatória no Controlo de Divulgação Estatística

Filipa Duarte de Carvalho

ISEG – Universidade Técnica de Lisboa

CIO – Faculdade de Ciências da Universidade de Lisboa

TÉCNICA DA SUPRESSÃO

Consiste em suprimir os valores das células que representam risco de divulgação de informação confidencial - células sensíveis.

TABELA DE MACRODADOS

	Reg. A	Reg. B	Reg. C	Total Act.
Act. I	11	47	58	116
Act. II	1	15	33	49
Act. III	2	31	20	53
Total Reg.	14	93	111	218

Willenborg, L & de Waal, T., 1996

Célula sensível

	Reg. A	Reg. B	Reg. C	Total Act.
Act. I	11	47	58	116
Act. II	1	16	33	49
Ac.t III	2	31	20	53
Total Reg.	14	93	111	218

Willenborg, L & de Waal, T., 1996

Célula sensível — Supressão primária X

	Reg. A	Reg. B	Reg. C	Total Act.
Act. I	11	47	58	116
Act. II	1	*	33	49
Act. III	2	31	20	53
Total Reg.	14	93	111	218

Willenborg, L & de Waal, T., 1996

$$X = 49 - (1 + 33) = 15$$

	Reg. A	Reg. B	Reg. C	Total Act.
Act. I	11	47	58	116
Act. II	X	%	33	49
Act. III	×	X	20	53
Total Reg.	14	93	111	218

Willenborg, L & de Waal, T., 1996

Supressões secundárias X

	Reg. A	Reg. B	Reg. C	Total Act.
Act. I	11	47	58	116
Act. II	X	36	33	49
Act. III	X	X	20	53
Total Reg.	14	93	111	218

Willenborg, L & de Waal, T., 1996

Número de supressões secundárias = 3

Valor da informação perdida = 34

PROBLEMA DA SUPRESSÃO

Dado um conjunto de supressões primárias, determinar um conjunto de supressões secundárias de forma a proteger as supressões primárias com perda mínima de informação não sensível.

PROBLEMA DA SUPRESSÃO

Dado um conjunto de supressões primárias, determinar um conjunto de supressões secundárias de forma a proteger as supressões primárias com perda mínima de informação não sensível.

O problema da supressão é NP-difícil! (Kelly et al., 1992)

ABORDAGENS DE OPTIMIZAÇÃO COMBINATÓRIA

ALGORITMOS EXACTOS

(não são eficientes para problemas NP-difíceis) fornecem soluções garantidamente óptimas

ABORDAGENS DE OPTIMIZAÇÃO COMBINATÓRIA

ALGORITMOS EXACTOS

(não são eficientes para problemas NP-difíceis) fornecem soluções garantidamente óptimas

ALGORITMOS HEURÍSTICOS fornecem boas soluções

ABORDAGENS DE OPTIMIZAÇÃO COMBINATÓRIA

ALGORITMOS EXACTOS

(não são eficientes para problemas NP-difíceis) fornecem soluções garantidamente óptimas

ALGORITMOS HEURÍSTICOS fornecem boas soluções

ALGORITMOS DE DETERMINAÇÃO DE MINORANTES permitem avaliar a qualidade das soluções obtidas com os algoritmos heurísticos

2. PROTECÇÃO DE TABELAS NÃO NEGATIVAS

2.1. PROTECÇÃO EXACTA

2.2. PROTECÇÃO INTERVALAR

	C1	C2	C3	Total linha
L1	X1	-1	X2	3
L2	2	1	1	4
L3	Х3	0	X4	2
Total coluna	2	0	7	9

	C1	C2	C3	Total linha
L1	1	-1	3	3
L2	2	1	1	4
L3	-1	0	3	2
Total coluna	2	0	7	9

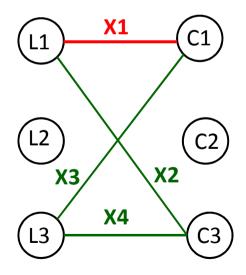
	C1	C2	C3	Total linha
L1	1001	-1	-997	3
L2	2	1	1	4
L3	-1001	0	1003	2
Total coluna	2	0	7	9

	C1	C2	C3	Total linha
L1	1+M	-1	3-M	3
L2	2	1	1	4
L3	-1-M	0	3+M	2
Total coluna	2	0	7	9

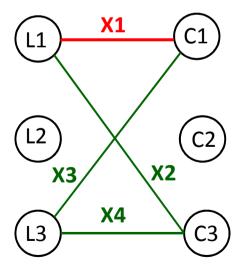
	C1	C2	C3	Total linha
L1	X1	-1	X2	3
L2	2	1	1	4
L3	Х3	0	X4	2
Total coluna	2	0	7	9

(L1)

(C1)


(L2)

(C2)


L3

(C3)

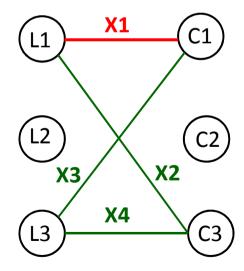
	C1	C2	C3	Total linha
L1	X1	-1	X2	3
L2	2	1	1	4
L3	Х3	0	X4	2
Total coluna	2	0	7	9

	C1	C2	C3	Total linha
L1	X1	-1	X2	3
L2	2	1	1	4
L3	Х3	0	X4	2
Total coluna	2	0	7	9

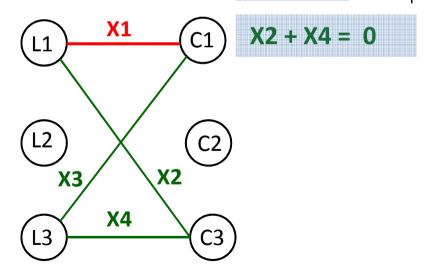
Uma supressão primária
está protegida
se e só se
pertence a um circuito de
supressões

$$\begin{aligned} & \text{minimizar} & \sum_{(r_i,c_j) \notin S_1} \beta_{r_ic_j} \, x_{r_ic_j} \\ & \text{para cada célula sensível } k \\ & y^k_{r_ic_j} + y^k_{c_jr_i} \leq x_{r_ic_j} \quad (r_i,c_j) \notin S_1 \\ & \sum_{r_i \in R} y^k_{c_{j_k}r_i} = 1 & \sum_{c_j \in C} y^k_{c_jr_{i_k}} = 1 \\ & \sum_{c_j \in C} y^k_{c_jr_i} - \sum_{c_j \in C} y^k_{r_ic_j} = 0 & r_i \neq r_{i_k} \\ & \sum_{r_i \in R} y^k_{r_ic_j} - \sum_{r_i \in R} y^k_{c_jr_i} = 0 & c_j \neq c_{j_k} \\ & \text{Variáveis} = 0 \text{ ou } 1 \end{aligned}$$

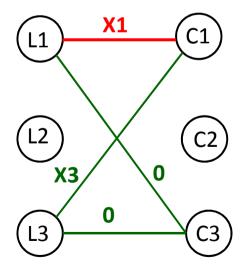
Algoritmo Lagrangeano combinado com uma heurística

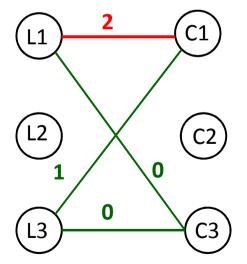

Algoritmo Lagrangeano combinado com uma heurística

210 tabelas com dimensões 20×10 até 200×200

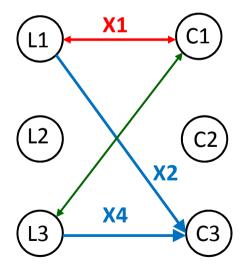

98% das tabelas protegidas com perda mínima de informação

Tempo computacional médio < 4 minutos

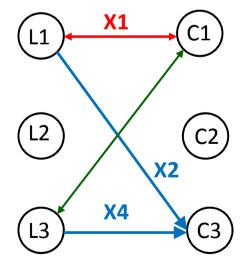

	C1	C2	C3	Total linha
L1	X1	3	X2	5
L2	1	4	1	6
L3	X3	5	X4	6
Total coluna	4	12	1	17


	C1	C2	C3	Total linha
L1	X1	3	X2	5
L2	1	4	1	6
L3	Х3	5	X4	6
Total coluna	4	12	1	17

	C1	C2	C3	Total linha
L1	X1	3	0	5
L2	1	4	1	6
L3	Х3	5	0	6
Total coluna	4	12	1	17



	C1	C2	C3	Total linha
L1	2	3	0	5
L2	1	4	1	6
L3	1	5	0	6
Total coluna	4	12	1	17



A supressão primária <u>não tem</u> protecção exacta

	C1	C2	C3	Total linha
L1	X1	3	X2	5
L2	1	4	1	6
L3	X3	5	X4	6
Total coluna	4	12	1	17

	C1	C2	C3	Total linha
L1	X1	3	X2	5
L2	1	4	1	6
L3	X3	5	X4	6
Total coluna	4	12	1	17

Uma supressão primária tem protecção exacta se e só se pertence a um circuito orientado de supressões

Algoritmo Lagrangeano combinado com uma heurística

170 tabelas com dimensões 50×10 até 100×100

95% das tabelas protegidas com perda mínima de informação

70% das tabelas protegidas com o número mínimo de supressões secundárias

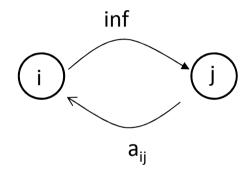
Tempo computacional médio < 4 minutos

Definição

Uma célula sensível de valor a_k está protegida se os valores publicados não permitem deduzir nenhum valor para a célula no intervalo $[a_k - l_k, a_k + u_k]$, $a_k - l_k \ge 0$.

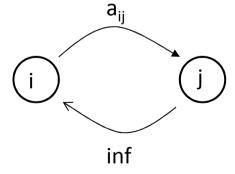
	C1	C2	C3	C4	Tot. L
L1	100	20	35	X	158
L2	15	10	40	10	75
L3	100	15	30	X	60
Tot. C	125	45	105	18	293

Intervalo de protecção: [85,115]


	C1	C2	C3	C4	Tot. L
L1	100	20	35	X	158
L2	15	10	40	10	75
L3	100	15	30	X	60
Tot. C	125	45	105	18	293

Intervalo de protecção : [85,115]

$$X \le 158 - (20 + 35) = 103 < 115$$


A supressão primária não está protegida!

Rede orientada bipartida com capacidades nos arcos

células internas e célula do total

Célula (i,j)

células dos subtotais

Algoritmo Exacto

Formalização de condições necessárias e suficientes de fluxo (Kelly *et al.*, 1992)

Formalização de condições necessárias de padrão

Formalização de condições necessárias de volume

Algoritmo Exacto

1410 tabelas com dimensões 10×10 até 500×500

95% das tabelas protegidas com perda mínima de informação

Tempo computacional médio < 4 minutos

REFERÊNCIAS PRINCIPAIS

FD Carvalho, MT Almeida. A Three-Phase Algorithm for the Cell Suppression Problem in Two-Dimensional Statistical Tables, *Journal of the Operational Research Society* 59: 556-562, **2008**.

MT Almeida, G Schütz, FD Carvalho. Cell suppression problem: A genetic-based approach. *Computers & Operations Research* 35: 1613-1623, **2008**.

MT Almeida, FD Carvalho. Exact Disclosure Prevention in two-dimensional Statistical Tables. *Computers & Operations Research* 32: 2919-2936, **2005**.

FD Carvalho, MT Almeida. Lower-bounding Procedures for the 2-Dimensional Cell Suppression Problem. *European Journal of Operational Research* 123(1):29-41, **2000**.

MT Almeida, FD Carvalho. Heuristic Methods for the Cell Suppression Problem in General Statistical Tables. Proceedings of the Conference Statistical Data Protection'98, Lisboa, Portugal, 1998.

FD Carvalho, NP Dellaert, MS Osório. Statistical Disclosure in Two- Dimensional Tables: general tables. *Journal of the American Statistical Association* 89: 1547-1557, **1994**.

J Kelly, BL Golden, A Assad. Cell suppression: Disclosure protection for sensitive tabular data. *Networks* 22: 397-417, **1992**.

FD Carvalho, NP Dellaert, MS Osório. *Statistical Disclosure in Two Dimensional Tables: Positive Tables.* Report 9441/A. Econometric Institute. Erasmus University, Rotterdam, **1992**.

FD Carvalho. *O Problema da Supressão na Protecção de Informação Confidencial: Formalizações e Algoritmos*, Universidade Técnica de Lisboa , Tese de Doutoramento, **2002**.

FD Carvalho. Optimização em Redes na Protecção de Informação em Tabelas Estatísticas Bidimensionais, Universidade Técnica de Lisboa , Tese de Mestrado, **1995**.

FD Carvalho. *Statistical Disclosure in two Dimensional Tables*, Erasmus University, Roterdão, Holanda, Trabalho de Estágio, **1992**.