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Abstract:

• In this paper, we review the score test procedure used for testing polynomial covariate

effects in a semi parametric additive mixed model. This test is based on the mixed

model representation of the smoothing spline estimator of the nonparametric function

and treating the inverse of the smoothing parameter as an extra variance component.

Zhang and Lin (2003) found that the score test of polynomial test for non Gaussian

responses follows a scaled chi-squared distribution. Simulation studies showed that

their approximation is less satisfactory for binary data. To overcome this deficiency,

we apply the technique of Monte Carlo in order to obtain provably exact procedures.

Derivation and performance of each testing procedure are discussed throughout the

simulations that we conducted.
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1. INTRODUCTION

Linear mixed models [Laird and Ware (1982)] and their extension, gener-

alized linear mixed models (GLMMs) [Breslow and Clayton (1993); Zeger and

Karim (1991)] are popular statistical models for analyzing correlated data. An

important feature of these models is that the conditional mean of the response

given covariates and random effects, after transformed by a link function, is lin-

early related to the fixed covariate effects and random effects. Since this para-

metric assumption in GLMMs is strong and may not be appropriate for data

with complex covariate effects, Lin and Zhang (1999) proposed generalized ad-

ditive mixed models (GAMMs) that allow for flexible modeling of the covariate

effects by replacing the linear predictor in GLMMs with an additive combination

of nonparametric functions of covariates and random effects. Therefore, it is of

practical importance to check the adequacy of the assumption for the parametric

linear covariate effects.

In order to evaluate the adequacy of a parametric covariate effect in a re-

gression model, one common approach is to cast the problem in the hypothesis

testing framework. In practice, the resulting estimates of a nonparametric func-

tion is used as the alternatives for testing the adequacy of the parametric covariate

effects. Brumback et al. (1999) showed that a nonparametric function estimated

via penalized splines or smoothing splines has a mixed effects representation. An

appealing feature of using the mixed effects representation is that one can cast

the hypothesis test of parametric against nonparametric covariate effects as a

variance component test. Zhang and Lin (2003) developed the variance compo-

nent score test to construct a goodness-of-fit test of polynomial regression in semi

parametric additive mixed models (SAMMs), a special case of GAMMs. Due to

the special structure of the smoothing matrix, the distribution of statistic score

is approximated by a scaled chi-squared distribution. Simulation studies showed

that the score test is conservative and not very powerful for binary response.

For checking the adequacy of parametric covariate effects, Huang and Zhang

(2008) have presented an overview on score test applied in the context of SAMMs.

Their simulations indicate that the score test shows less performance for binary

data. In this paper, we propose to use the technique of Monte Carlo (MC) tests in

order to improve the test score, for small size sample. Indeed, we adapte MC test

to solve the problem of control the power of score test. The MC approach allows

us to introduce a new test that differs in two respects from the tests existing in

the literature. First, the test is exact in the sense that the probability of rejecting

the null hypothesis when it is true is always less than or equal to the nominal

level of the test. Secondly, this approach allows to obtain exact randomized test

using very small numbers of MC replications of the original test statistic under

the null hypothesis. Finally, MC test is a reliable and easy instrument for testing



170 Abdeljelil Farhat and Sami Mestiri

polynomial degree of non parametric function. So, the aim of this paper is to

solve the problem of distortion of power of score test. By conducting simulations

studies, we show that the MC technique can improve the power of test.

The paper is organized as follows. Section 1 introduces the SAMMs model.

In Section 2, we describe the polynomial tests in SAMMs and we describe how

exact MC tests can be implemented. In Section 3, we present the results from a

small simulation study to compare the performance of the asymptotic score test

and the MC test. The paper is concluded in Section 4 with some discussion.

2. THE MODEL SPECIFICATION

In this section, we briefly present SAMMs for clustered data, and this es-

timation procedure. These models are special cases of GAMMs considered by

Lin and Zhang (1999). Let the data consist of a response variable yij for the j th

observation (j = 1, .., n) of the i th cluster (i = 1, .., N), a scalar covariate xij , and

a scalar covariate sij associated with fixed effects, and a scalar covariate zij as-

sociated with random effects. Conditional on a (q, 1) vector of random effects bi,

the yij are assumed to be independent with conditional means E(yij |bi) = µbij
and conditional variances var(yij |bi) = φ̟−1

ij v(µ
b
ij), where φ is a dispersion pa-

rameter, ̟ij is a known prior weight, and v is a variance function. The SAMM

assumes that the conditional mean µbij takes this form:

(2.1) g(µbij) = sij γ + f(xij) + zij bi ,

where γ is a fixed effect, f(x) is an arbitrary smooth function and g is a known

link function. bi is a random effect associated with covariates zij . It is further as-

sumed that the random effects bi are independent and have a normal distribution

N(0, σ2
b ).

We propose to transforme the model (2.1) to fully parametric model where

the unknown smoothing function f(xij) may be expressed as a linear combination

of proper basis functions. We consider the truncated power basis usually used in

this context, as by Ruppert et al. (2003) or Ngo and Wand (2004). A penalized

linear spline model for (2.1) is

(2.2) g(µbij) = sij γ +

H
∑

h=1

δh x
h
ij +

K
∑

k=1

ak(xij − κk)+ + zij bi ,

where κ1, ...,κK is a set of distinct knots in the range of xij and x+ = max(0;x).

The number of knots K is fixed and large enough (in this case K= 40) to ensure

the exibility of the curve. The knots are chosen as quantiles of x with probabilities

1/(K+1), ...,K/(K+1). We use truncated lines as the basis for regression since
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their simple mathematical form is very useful in formulating complicated models.

More complex basis such as B-splines and radial basis functions (with better

numerical properties) could also be used.

Let Y,X,B and b denote the matrix obtained from stacking up the N

subject-specific vectors of the same symbol. Also, let Z = diag(Z1, ..., ZN ) and

a = (a1, ..., aK)
′
. Zhang and Lin (2003) suggested that a can be treated as random

effects following N(0, τI), so the model (2.2) is considered as a linear combination

of the fixed effects β and the random effects a and b. Under this mixed-model

representation of the smoothing spline estimator of f , the SAMM (2.1) can be

written as the following GLMM:

(2.3) g(µb) = Xβ +Ba+ Zb ,

where β is the fixed effect associated with covariates matrix X. The vector a is

Normal (0, τI), the independent random effect b is Normal (0, σ2
b ). This GLMM

representation takes the same form as that Lin and Zhang (1999) used for natural

cubic spline estimators. For detailed justification of the estimation procedure, see

Lin and Zhang (1999).

3. THE POLYNOMIAL TEST

3.1. Asymptotic score test

Zhang and Lin (2003) considered the problem of testing the nonparametric

function f(x) in model (2.1) being a h-order polynomial. They first estimated

f(x) by a h-order smoothing spline and expressed f with a mixed effects repre-

sentation. Then, they tested if f(x) is h order. Testing f(x) in SAMM (2.1) being

a h-order polynomial is equivalent to testing H0 : τ = 0 in the induced GLMM in

(2.3). Under the induced GLMM in (2.3), Zhang and Lin (2003) showed that the

score Uτ for testing H0 : τ = 0 takes the following form:

Uτ (ψ̂) =
∂lM (τ, ψ; y)

∂τ

∣

∣

∣

∣

τ=0
(3.1)

=
1

2

{

(y −Xβ)
′V −1BB′V −1

(y −Xβ) − tr(PBB′
)

}

∣

∣

∣

∣

β=β̂,ψ̂

,

where ψ = (σ2
b , φ) is the nuisance parameter vector, and lM (τ, ψ) is the marginal

log likelihood function of τ and ψ (by integrating out random effects b and fixed ef-

fects β). β̂ is the maximum likelihood estimator (MLE) of β and ψ̂ is the restricted
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maximum likelihood estimator (REML) of ψ, and Y = Xβ + Zb+ ∆(y − µb) is

the working vector from the following null GLMM

(3.2) g(µb) = Xβ + Zb ,

where ∆ = diag
{

g′(µbij)
}

, W = diag
{

ωij
}

is the working weight and ωij =
{

φ̟−1
ij v(µij) [g′(µij)]

2
}

−1
, b ∼ N(0, σ2

b ), P = V −1 −V −1X(X ′V −1X)
−1X ′

and

V = W−1
+ZDZ ′

. W is working weight matrix evaluated at the conditional ex-

pectation µb and taken under the null hypothesis τ = 0. One can use the existing

software such as the R packages (glmmPQL) to obtain the estimates β̂ and ψ̂

by fitting the model (3.2).

Zhang and Lin (2003) showed that the null distribution of Uτ can be ap-

proximated by a scaled chi-squared distribution. A major problem in the score

test context comes from the fact that applicable procedure rely heavily on asymp-

totic approximations whose accuracy can be quiet poor. This is evident from the

study simulation reported in Zhang and Lin (2003). In any case, it is widely ac-

knowledged that score asymptotic test is unreliable in finite sample, in the sense

that the test was a little conservative and not very powerful. We reemphasize

this fact and propose to use the technique of Monte Carlo test [Dwass (1957),

Barnard (1963), Dufour and Khalaf (2002)] in order to obtain provably exact

procedures.

3.2. Monte Carlo test

In this paper, we describe the MC test methodology for testing the polyno-

mial degree of f(x). In effect, it is possible to apply the test of MC because the

statistic of score Uτ under the null distribution is a continuous pivotal function

(its distribution does not depend on unknown parameter). Let U0 denote the

observed test statistic of score calculated on the basis of data observed. Then

the critical region of a test with level α can be expressed as G(U0) ≤ α such as

G(U0) = P (U ≥ U0/H0) is the critical function for a right tailed test. G(U0) is

unknown and it will be estimated by generating under null assumption M inde-

pendent replications or exchangeable statistics U1, .., UM [see Dwass (1957) and

Dufour et al. (1998)]. For the application of the technique of the tests of MC,

we define

(3.3) ĜM (U0) =
1

M

M
∑

i=1

I[0,∞)

(

Ui − U0

)

, IA(z) =

{

1, if z ∈ A ,

0, if z /∈ A .

In other words, MĜM (U0) is the number of simulated statistics which are

greater or equal to U0, R̂M (U0) = M −MĜN (U0)+1 gives the rank of U0 among
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the variables U0, U1, .., UM . The estimated critical function is then given by this

formula:

(3.4) p̂M (U0) =
MĜM (U0) + 1

M + 1
.

Thus the critical region of level α associated with a test MC is expressed by

p̂M (U0) ≤ α such as p̂M (U0) represents the empirical probability that the value

more superior than U0 is realized if the null hypothesis is true. Hence p̂M (U0) may

be viewed as a MC-value. Note that the MC decision rule may also be expressed

in terms of R̂M (U0). Indeed the critical region
MĜM (kU0)+1

M+1 < α is equivalent to

R̂M (U0) ≥ (M + 1)(1 − α) + 1.

In other words, the MC test is significant at a 5% level if the rank of U0

in the series U0, U1, .., UM is at least equal to 96. If the null distribution of U0

is nuisance-parameter-free and α(M +1) is an integer, then the critical region is

probably exact, in the sense

(3.5) P
[

p̂M (U0) ≤ α
]

= α

or alternatively

(3.6) P
[

R̂M (U0) ≥ (M +1)(1 − α) + 1

]

= α .

The proof of the equation (3.5) and (3.6) is based on the theorem concern-

ing the distribution of the ranks associated with a finite dimensional array of

exchangeable statistics; see Dufour (2006) for more informations.

The determination of the Monte Carlo p-Value for the polynomial degree

test to the model (2.1), is described as follows:

• Fit the model on original data set Y (0)
and calculate the ML estimates

β̂, ψ̂ = (σ̂2
b , σ̂

2
ε) and τ̂ .

• Obtain the score statistic based on ψ̂ and denote it U
(0)
τ .

• Treat ψ̂ as fixed and fitted from the null model g(µ) = Xβ + Zb (under

the null hypothesis H0 : τ = 0 and ψ = ψ̂), repeat the following steps for

m = 1, ..,M .

– Draw the vector b̃(m)
as i.i.d. N(0, σ̂2

b ) and the vector ε̃(m)
as i.i.d.

N(0, σ̂2
ε).

– Obtain the simulated independent variable Ỹ (m)
=Xβ+Zb̃(m)

+ ε̃(m)

where Ỹ = Xβ +Ba+ Zb+ ∆(y − µb) is working vector, such as

∆ = diag{g′(µbij)}.

– Regress Ỹ (m)
on X and B (fit the model g(µ) = Xβ + Ba + Zb on

simulated data set).
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– Derive the score statistic test U1, ..., UM associated with the regres-

sion of Ỹ (m)
on X and B.

• Obtain the rank R̂M (U0) in the series U0, U1, ..., UM .

• Reject the null H0 : τ = 0 if R̂M (U0) ≥ (M + 1)(1 − α) + 1.

Furthermore, a MC p-value may be obtained as p̂M (U0) =
M+1−R̂M (U0)

M+1 .

We choose M so that α(M + 1) is an integer (for example, for α = 0.05; we can

take M = 19; 39; 99...).

MC test can be interpreted as a parametric bootstrap method applied to

statistics whose null distribution does not depend on nuisance parameters. How-

ever the central additional observation is that the randomization allows one to

exactly control the size of the test for a given (possibly small) number of MC

simulations. For further discussion of Monte Carlo tests (including its relation

with the bootstrap), Kiviet and Duffour (1997) and Dufour et al. (1998).

4. SIMULATION EXPERIMENTS

In order to assess the performance of two test procedures discussed above,

we conduct a small simulation study. The performance of the polynomial test are

evaluated and compared for clustered data with different types of responses and

different magnitudes of correlation. For illustration purpose, we consider testing

the linearity of covariate effects under the partially linear model framework, i.e.

whether f(x) is a linear function of x in model (2.1). Following the penalized

spline, we formulate the asymptotic score test as variance component test based

on the GLMM representation (2.3) as discussed above. In addition, for testing

the same null hypothesis, we also formulate the Monte Carlo test which is exact

in the sense that the probability of rejection the null hypothesis when is true is

always less than or equal to the nominal size of the test. In our case, we are

testing whether f(x) is a 1-degree polynomial of x. Conditional on the cluster-

specific random intercept bi ∼ N(0, σb) with σb = 0.5 and σb = 1, independent

Gaussian and Binary responses yij (for i = 1, ..., N and j = 1, .., n) were generated

respectively under the model

(4.1) g(µij) = γ0 + sij γ1 + f(xij) + bi ,

where g(µ) = µ for Gaussian response, and g(µ) = logit(µ) for Binary responses.

The scale parameter φ was estimated for Gaussian responses and was set to be

one for Binary responses. Where sij is generated from Normal lawN(0, 0.1), xij is

generated from Uniform law (U [0, 1]), the true values of γ0 and γ1 are taken to be

γ0 = 1 and γ1 = 2; two sample sizes are used (N = 2, n = 5) and (N = 4, n = 5);
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five different functions of f(x) are considered:

fc(x) = (0.25 c)x · exp(2 − 2x) − x+ 0.5 , for c = (0, 1, 2, 3, 4) .

Note that when c = 0, fc(x) is a linear function of x and fc(x) deviates further

from linearity with increasing c. The functions fc(x) are plotted in Figure 1.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1.5

−1

−0.5

0

0.5

1

1.5

x

f(
x
)

c=2 c=3
c=0 c=1

c=4

Figure 1: Functions fc(x) for c = (0, 1, 2, 3, 4) used in the simulation studies

for the polynomial test.

We apply the Asymptotic score (Asy.Sco) and the Monte Carlo (MC.Sco)

testing procedures to each simulated data set. The simulation results are based

on 1000 Monte Carlo simulation runs. For testing the null hypothesis that f(x)

is a linear function of x, the size and the power of each testing procedures are

calculated by setting c = 0 and c 6= 0 respectively. We used a penalized spline

to estimate f(x), the number of knots for the penalized spline is set to be 40.

The number of trials for the MC test was set to 19. The number of overall

replications was 1000. All experiments were performed with language R (version

7.2.1). The simulation results are presented in the table 1 and 2, which report

rejection percentages from 1000 replications at the nominal level 5% under the

null hypothesis.
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Table 1: Empirical sizes and powers of linearity test for two types of data

where N= 2 and n = 5.

Variance Data
Test

Size Powers

random effect Type c = 0 c = 1 c = 2 c = 3 c = 4

σb = 0.05

Gaussian
Asy 0.055 0.178 0.624 0.934 0.995
MC 0.051 0.211 0.645 1.000 1.000

Binary
Asy 0.033 0.073 0.167 0.260 0.511
MC 0.054 0.291 0.711 0.887 1.000

σb = 1

Gaussian
Asy 0.048 0.202 0591 0.942 0.995
MC 0.054 0.251 0.671 1.000 1.000

Binary
Asy 0.040 0.068 0.120 0.271 0.442
MC 0.061 0.125 0.741 0.910 1.000

Table 2: Empirical sizes and powers of linearity test for two types of data

where N= 4 and n = 5.

Variance Data
Test

Size Powers

random effect Type c = 0 c = 1 c = 2 c = 3 c = 4

σb = 0.05

Gaussian
Asy 0.055 0.199 0.627 0.914 0.990
MC 0.050 0.223 0.775 1.000 1.000

Binary
Asy 0.047 0.095 0.211 0.310 0.621
MC 0.052 0.325 0.812 0.970 1.000

σb = 1

Gaussian
Asy 0.045 0.207 0.603 0.922 0.995
MC 0.050 0.304 0.789 1.000 1.000

Binary
Asy 0.042 0.077 0.211 0.314 0.511
MC 0.050 0.301 0.805 0.960 1.000

The results showed that the asymptotic score test for Binary responses

was a conservative and not very powerful. The increased sample size brings

the empirical sizes of the two tests closer to the nominal levels, whereas the

variance component seems to have not much influence on them. These tests

show decreased power where the variance component increases. Regarding the

empirical size, our simulation results show that the linearity test with Monte

Carlo is very performant for Gaussian responses for different magnitudes of the

variance component. The empirical sizes were very close to the nominal size

and the powers of the test were high, and were not significantly affected by the

magnitude of the variance component. Indeed, the table 1 and 2 show that MC

test achieves a perfect size control for Binary responses for different magnitudes

of the variance component. As expected, the increased sample size improves the

overall power.
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In fact the simulation results show clearly that the technique of MC test

correct size distortion due to poor large sample approximations. In general, our

simulation indicates that the MC test is more powerful than the asymptotic score

test. For simplicity, only the linearity test is considered in the current simulation;

however in practice, one might be interested in testing higher-order polynomial

covariate effects (i.e. h > 1), which can be easily carried out by using a different

values of h.

5. DISCUSSION

We have reviewed in this paper a test procedure for testing whether the

nonparametric function is some fixed-degree polynomial. The key idea is based

on the mixed-effect representation of the natural spline estimator of the nonpara-

metric function. Zhang and Lin (2003) developed score test and approximated

its distribution by a scaled Chi-square distribution. For Binary data, the sim-

ulation studies show that the performance of the test is less satisfactory. This

is mainly due to the less satisfactory performance of the Laplace approximation

for the score statistic and the implicit Gaussian fourth-moment assumption when

estimating the variance of the score statistic. We have hence proposed the simu-

lation based procedures to derived exact p-value for polynomial test for SAMM.

We have exploited the fact the score test is pivotal under the null hypothesis

which allows one to apply the technique of MC tests.

The feasibility of our approach was illustrated trough a simulation exper-

iment. The results show that asymptotic score test is unreliable for binary re-

sponse in contrast MC test achieve perfect size control and have a good power.

It is important to emphasis that MC procedure require less calculation with mod-

ern computer facilities. Zhang and Davidian (2004) have proposed a conditional

estimation procedure built on likelihood inference for generalized additive mixed

models. It is interesting for future research to extend our Monte Carlo test con-

sidering the conditional estimation procedure.

However, The score test is sensitive to outliers. Recently, Qin and Zhu

(2008) focus on robust estimation of mean parameters of partial linear mixed

model. They proposed to approximate the nonparametric function f by a regres-

sion spline and to estimate both the linear parameter and the spline coefficients

by a M-estimator. It is interesting for future research to extend our Monte Carlo

test considering the robust score test.
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1. INTRODUCTION

Extreme value (EV) models are appropriate to establish the probability of

events that are larger or smaller than others previously observed. As an example

where these models can be used, suppose that a sea-wall projection requires a

coastal defence from all sea levels for the next 100 years. These EV models are

a precious tool that enables this type of extrapolations. Actually, the EV theory

is widely used by many researchers in applied sciences when high values of cer-

tain phenomena are modeled. For instance, ocean wave, thermodynamics of

earthquakes, wind energy, risk assessment on financial markets, and medical phe-

nomena can be mentioned. Some books on EV theory are Leadbetter et al.

(1983), Galambos (1987), Embrechts et al. (1997), Beirlant et al. (2004), and

de Haan and Ferreira (2006). For a more practical view on this topic, see Coles

(2001), and for more recent references, see Ferreira and Canto e Castro (2008),

Gomes et al. (2008a,b), Beirlant et al. (2012), and Scarrot and MacDonald (2012),

among others.

Life distributions are usually positively skewed, unimodal, two-parameter

models and with non-negative support; see Marshall and Olkin (2007) and Saun-

ders (2007). A life distribution that has received a considerable attention in recent

decades is the Birnbaum–Saunders (BS) model. This model was originated from a

problem of material fatigue and has been largely applied to reliability and fatigue

studies; see Birnbaum and Saunders (1969). The BS distribution relates the total

time until the failure to some type of cumulative damage normally distributed.

This attention for the BS distribution is due to its many attractive properties

and its relationship with the normal distribution.

Extensive work has been done on the BS model with regard to its properties,

inference and applications. A comprehensive treatment on this model until mid

90’s can be found in Johnson et al. (1995, pp. 651–662). For more detail about

new applications of the BS model, see Leiva et al. (2009a). For applications in

fields beyond engineering allowing business, environmental and medical data to

be analyzed by using this model, see Leiva et al. (2007, 2008b, 2009b, 2010a,b,

2011), Podlaski (2008), Barros et al. (2008), Bhatti (2010), Ahmed et al. (2010),

and Vilca et al. (2010). Thus, at the present, the BS model can be widely used

as a statistical distribution rather than restricted to a life distribution.

Because a random variable (r.v.) following the BS distribution can be repre-

sented by another basis r.v., generalizations of this distribution can be obtained

switching the distribution of the basis variable by diverse arguments allowing

to construct more general classes of models. Several generalizations of the BS

distribution have been recently proposed by a number of authors, including Dı́az-

Garćıa and Leiva (2005), Vilca and Leiva (2006), Sanhueza et al. (2008), Gómez

et al. (2009) and Guiraud et al. (2009), which allow us to obtain a major degree of
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flexibility for this distribution. Usual and generalized versions of the BS distribu-

tion are implemented in the R software (http://www.R-project.org) by packages

called bs and gbs, which can be downloaded from http://CRAN.R-project.org;

see Leiva et al. (2006) and Barros et al. (2009). These packages contain functions

for computing probabilities, estimating parameters, generating random numbers

and carrying out goodness-of-fit and hazard analysis. Leiva et al. (2008a) stud-

ied three generators of random numbers from the BS and generalized BS (GBS)

distributions.

The main aim of this work is to obtain an EV version of the BS distribution

relevant not only by itself as a model, but also for a parametric statistical anal-

ysis of extreme or rare events. The paper is organized as follows. In Section 2,

we provide a preliminary notion of different aspects related to BS and EV distri-

butions. In Section 3, we characterize extreme value Birnbaum–Saunders (EVBS)

distributions. In Section 4, we focus on extremal domains of attraction of a gen-

eral class of BS models that we call BS type (BST) distributions. In Section 5,

we carry out a hazard analysis of EVBS distributions mainly based on the hazard

rate (h.r.). In Section 6, we discuss about the estimation procedure based on the

maximum likelihood (ML) method and model checking. In Section 7, we con-

duct out the numerical application of this work, which includes an exploratory

data analysis (EDA) and a parametric statistical analysis based on the EVBS

distribution. Finally, in Section 8, we sketch some concluding remarks.

2. A PRELIMINARY NOTION

In this section, we provide preliminary aspects about BS, BST and EV

distributions.

2.1. BS and BST distributions

An r.v. T with usual BS distribution is characterized by its shape and scale

parameters α > 0 and β > 0, respectively. This is denoted by T ∼ BS(α, β),

where β is also the median of the distribution. BS and standard normal r.v.’s,

denoted respectively by T and Z for now, are related by

(2.1) T = β
(

αZ/2 +

√

{αZ/2}2

+ 1

)2
and Z =

(

√

T/β −
√

β/T
)

/

α .

Let T ∼ BS(α, β). Then, the probability density function (p.d.f.) and cumulative

distribution function (c.d.f.) of T are respectively given by

(2.2) f
T
(t) = φ

(

a(t)
)

a′(t) and F
T
(t) = Φ

(

a(t)
)

, t > 0 ,
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where φ and Φ are the standard normal p.d.f. and c.d.f., respectively,

(2.3) a(t) ≡ at =

(

√

t/β−
√

β/t
)

/

α and a′(t) ≡ At = t−3/2
(

t+β
)/(

2α
√

β
)

,

with a′(t) = da(t)/dt being the derivative of a(t) with respect to t. The quantile

function (q.f.) of T is expressed as

(2.4) t(q) ≡ tq = F−1
T

(q) = β
(

α ξq/2 +

√

{α ξq/2}2

+1

)2
, 0 < q < 1 ,

where F−1
T

(t) := inf{x : F (x) ≥ t} is the generalized inverse function of the c.d.f. of

T and ξq is the qth
quantile of the r.v. Z ∼ N(0, 1). Note from (2.4) that, as men-

tioned, the median of T is t0.5 = β.

Important properties of T ∼ BS(α, β) are: (i) c T ∼ BS(α, c β), c > 0;

(ii) 1/T ∼ BS(α, 1/β); and (iii) V = (T/β + β/T − 2)/α2 ∼ χ2
(1), i.e., V fol-

lows the χ2
distribution with one degree of freedom (d.f.).

The assumption given in (2.1) can be relaxed supposing that Z follows

any other distribution with p.d.f. f
Z
. Thus, we obtain the general class of BST

distributions earlier mentioned, which is denoted by T ∼ BST(α, β; f
Z
) for an

associated r.v. T and whose p.d.f. is given by

(2.5) f
T
(t) = f

Z

(

a(t)
)

a′(t) , t > 0 .

In particular, if Z follows a standard symmetric distribution in the real num-

ber set, denoted by Z ∼ S(f
Z
), we then find the GBS distribution, i.e., T ∼

GBS(α, β; g), where g is the kernel of the p.d.f. of Z given by f
Z
(z) = c g(z2

), with

z ∈ R and c being the normalization constant, i.e., the positive value such that
∫ +∞

−∞
g(z2

) dz = 1/c; see Dı́az-Garćıa and Leiva (2005). Then, if f
Z
(z) = φ(z) =

exp(−z2/2)/
√

2π, for z ∈ R, the standard normal p.d.f., we obviously recover the

usual BS distribution, i.e., an r.v. T ∼ BST(α, β; φ) ≡ BS(α, β); see Birnbaum

and Saunders (1969). For the GBS case, V = (T/β + β/T − 2)/α2 ∼ Gχ2
(1; f

Z
),

i.e., V follows the generalized χ2
class of distributions with one d.f., which has

the χ2
(1) distribution as a special case if f

Z
is the standard normal density; see

Sanhueza et al. (2008).

2.2. EV distributions and extremal domains of attraction

The central limiting result in EV theory states the following. Consider an

independent identically distributed sequence of r.v.’s {Xn, n ≥ 1}, with marginal

c.d.f. F . Hence, if there are constants an > 0 and bn ∈ R, and a non-degenerate

c.d.f. G such that, as n → ∞,

P

(

max{X1, ..., Xn} ≤ anx + bn

)

→ G(x) ,(2.6)
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then G must be the c.d.f. of a generalized extreme value (GEV) r.v., depending

on a parameter γ ∈ R. The notation X ∼ GEV(γ) is used in this case and the

corresponding c.d.f. is given by

(2.7) G(x) ≡ Gγ(x) =

{

exp
(

−{1 + γx}−1/γ
)

; 1 + γx > 0, γ ∈ R\{0} ,

exp
(

− exp(−x)
)

; x ∈ R, γ = 0 ,

with G0(x) obtained from Gγ(x), for γ ∈ R\{0}, as γ → 0. As a consequence, we

say that F belongs to the max-domain of attraction of Gγ , in short F ∈ DM(Gγ).

The parameter γ, known as the EV index, is a shape parameter that determines

the right-tail behavior of F , being so a crucial parameter in EV theory. Specif-

ically, if γ < 0, we have the Weibull max-domain of attraction, i.e., light right-

tails, with a finite right endpoint. In addition, γ = 0 corresponds to the Gumbel

max-domain of attraction (exponential right-tails). And if γ > 0, we have the

Fréchet max-domain of attraction corresponding to heavy right-tails (polynomial

tail decay), with an infinite right endpoint.

The GEV distribution with c.d.f. given in (2.7) is also known as the

von Mises–Jenkinson representation. This is a general form from which we derive

the three above mentioned distribution types, i.e.,

Gγ(x) =











Ψ−1/γ(−1 − γx); γ < 0 ,

Λ(x); γ = 0 ,

Φ1/γ(1 + γx); γ > 0 ,

where, for ̺ > 0, Ψ̺(x) = exp
(

−{−x}̺
)

with x < 0 (Weibull distribution for

maxima), Λ(x) = exp
(

− exp(−x)
)

with x ∈ R (Gumbel distribution for maxima),

and Φ̺(x) = exp(−x−̺
) with x > 0 (Fréchet distribution for maxima). The Gum-

bel distribution for maxima and the Fréchet distribution for maxima are the com-

monly known Gumbel and Fréchet distributions, respectively. Location (µ ∈ R)

and scale (σ > 0) parameters can be introduced in the GEV distribution by con-

sidering Gγ({x − µ}/σ), denoted by X ∼ GEV(µ, σ, γ).

All results developed for maxima can easily be reformulated for minima be-

cause min{X1, ..., Xn} = −max{−X1, ...,−Xn}. Actually, if we are interested in

the lower tail, we can rewrite a result similar to the one given in (2.6) for minima,

with a limiting c.d.f. G(x) ≡ G∗

γ(x), which is now denoted as X ∼ GEV
∗
(γ), such

that G∗

γ(x) = 1 − Gγ(−x), i.e.,

(2.8) G∗

γ(x) =

{

1 − exp
(

−{1 − γx}−1/γ
)

; 1 − γx > 0, γ ∈ R\{0} ,

1 − exp
(

− exp(x)
)

; x ∈ R, γ = 0 .

As a consequence, we say that F belongs to the min-domain of attraction of G∗

γ ,

in short F ∈ Dm(G∗

γ). Analogously to the GEV distribution, the GEV
∗

case

(minima) is a general form from which we derive the following three possible
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EV limiting cases:

G∗

γ(x) =















Ψ
∗

−1/γ
(1 − γx); γ < 0 ,

Λ
∗
(x); γ = 0 ,

Φ
∗

1/γ
(−1 + γx); γ > 0 ,

where, for ̺ > 0, Φ
∗

̺(x) = 1 − exp
(

−{−x}−̺
)

with x < 0 (Fréchet distribution for

minima), Λ
∗
(x) = 1 − exp

(

− exp(x)
)

with x ∈ R (Gumbel distribution for min-

ima), and Ψ
∗

̺(x) = 1 − exp(−x̺
) with x > 0 (Weibull distribution for minima,

commonly known as the Weibull distribution).

3. EXTREME VALUE BS DISTRIBUTIONS

In this section, we propose and characterize the EVBS model based on

limiting EV models for maxima, as well as for minima, denoted as EVBS
∗

distri-

butions. In addition, a shape analysis for the EVBS and EVBS
∗

distributions is

provided. Specifically, consider that

Z ∼ GEV(γ) ≡ GEV(0, 1, γ) ,(3.1)

i.e., Z has c.d.f. as given in (2.7). Then,

T = β
(

αZ/2 +

√

α2Z2/4 + 1

)2
∼ EVBS(α, β, γ) .

Directly from the GEV p.d.f., gγ(t) = dGγ(t)/dt, associated with the GEV c.d.f.

Gγ(t) given in (2.7), and considering F
T
(t) = Gγ(at), tq = F−1

T (q) and f
T
(t) =

At gγ(at), with at and At as given in (2.3), the EVBS r.v. T can be defined in the

following ways:

I. The p.d.f. of T is given by

(3.2) f
T
(t) =

{

At(1 + γat)
−1−1/γ

exp
(

−{1 + γat}
−1/γ

)

; γ 6= 0 ,

At exp
(

− exp(−at) − at

)

; γ = 0 ,

where t > (α2β +2βγ2
)/(2 γ2

)−
√

(α4β2 + 4α2β2γ2)/γ4
/

2 if γ > 0;

t>0 if γ =0; and 0<t<(α2β+2βγ2
)/(2γ2

)+
√

(α4β2 +4α2β2γ2)/γ4
/

2

if γ < 0.

II. The c.d.f. of T is expressed as

(3.3) F
T
(t) =

{

exp
(

−{1 + γat}
−1/γ

)

; γ 6= 0 ,

exp
(

− exp(−at)
)

; γ = 0 .

III. The q.f. of T is as given in (2.4) by replacing ξq with zq, the qth
quantile

of the c.d.f. Gγ(x), as expressed in (2.7), i.e., zq =
(

{− log(q)}−γ−1
)/

γ

if γ 6= 0, and zq =− log
(

− log(q)
)

if γ = 0.
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Analogously, if we consider in (3.1) the GEV distribution for minima given

in (2.8), we use the notation T ∗ ∼ EVBS
∗
(α, β, γ) for an associated r.v. T ∗

,

and, as before, noting that F
T∗

(t) = G∗

γ(at) = 1 − Gγ(−at) and that f
T∗

(t) =

At g∗γ(at) = At gγ(−at), the EVBS* r.v. T ∗
can be defined in the following ways:

I′. The p.d.f. of T ∗
is given by

(3.4) f
T∗

(t) =

{

At(1 − γat)
−1−1/γ

exp
(

−{1 − γat}
−1/γ

)

; γ 6= 0 ,

At exp
(

− exp(at) + at

)

; γ = 0 ,

where t > (α2β +2βγ2
)/(2 γ2

)−
√

(α4β2 + 4α2β2γ2)/γ4
/

2 if γ < 0;

t>0 if γ =0; and 0<t<(α2β+2βγ2
)/(2γ2

)+
√

(α4β2 +4α2β2γ2)/γ4
/

2

if γ > 0.

II′. The c.d.f. of T ∗
is defined as

(3.5) F
T∗

(t) =

{

1 − exp
(

−{1 − γat}
−1/γ

)

; γ 6= 0 ,

1 − exp
(

− exp(at)
)

; γ = 0 .

III′. The q.f. of T ∗
is also as given in (2.4), but by replacing ξq with

z∗q = z∗q (γ), the qth
quantile of the c.d.f. G∗

γ(x), as expressed in (2.8),

i.e., with zq(γ) being the qth
quantile of the c.d.f. Gγ(x), as given in

(2.7), z∗q = −z1−q(γ) =
(

1 − {− log(1− q)}−γ
)/

γ if γ 6= 0, and z∗q =

log
(

− log(1− q)
)

if γ = 0.

Next, as a direct application of the change of variable method, some prop-

erties of the EVBS and EVBS
∗

distributions are provided.

Proposition 3.1. Let T ∼ EVBS(α, β, γ) and T ∗ ∼ EVBS
∗
(α, β, γ).

Then,

(i) c T ∼ EVBS(α, c β, γ) and c T ∗ ∼ EVBS
∗
(α, c β, γ), with c > 0;

(ii) 1/T ∼ EVBS
∗
(α, 1/β, γ) and 1/T ∗ ∼ EVBS(α, 1/β, γ).

Figure 1 (first and second panels) displays shapes for the EVBS and EVBS
∗

densities for different values of their parameters. In all of these graphs, we con-

sider β = 1, without loss of generality, because β is a scale parameter, such

as stated in Proposition 3.1(i). In these plots, we further use the notation

EVBS(α, γ) ≡ EVBS(α, 1, γ). For the EVBS densities presented in Figure 1 (first

panel), we see how the shape parameter α modifies the shape of these densities.

In the case of the parameter γ, we detect changes in the kurtosis, as expected.

Similar aspects are observed when we consider the EVBS
∗

densities presented in

Figure 1 (second panel).
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Figure 1: p.d.f. plots of the EVBS (1
st

panel) and EVBS
∗

(2
nd

panel)

distributions for β = 1 and the indicated values of (α, γ),

where EVBSmin ≡ EVBS
∗
.

4. BST EXTREMAL DOMAINS OF ATTRACTION

In this section, we obtain the extremal domains of attraction for BST dis-

tributions.

We analyze the extremal domain of attraction of the c.d.f. of an r.v.

T = β
(

α Z/2 +

√

α2Z2/4 + 1

)2
, α > 0, β > 0 ,(4.1)

not necessarily following an EVBS distribution, whenever the c.d.f. of the r.v. Z,

compulsory given by

Z =

(

√

T/β −
√

β/T
)

/

α ,

belongs to some extremal domain of attraction either for maxima or for minima.

4.1. Max-domains of attraction

We start with the Fréchet case and use the following necessary and sufficient

condition for F ∈ DM(Gγ) with γ > 0, derived in Gnedenko (1943) (see also de

Haan and Ferreira, 2006, Theorem 1.2.1-1):

F ∈ DM(Gγ), γ > 0 ⇐⇒ lim
t→∞

1 − F (tx)

1 − F (t)
= x−1/γ ,(4.2)
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for all x > 0, and the right endpoint of F , namely xF
:= inf{x : F (x) ≥ 1}, is

necessarily infinite.

Theorem 4.1. Let the c.d.f. of the r.v. Z be in the Fréchet max-domain

of attraction, necessarily with a positive EV index, i.e., γ
Z

> 0. Then, the c.d.f. of

the r.v. T given in (4.1) is also in the Fréchet max-domain of attraction, i.e.,

F
T
∈ DM(Gγ

T
), with γ

T
= 2 γ

Z
.

Proof: By hypothesis, F
Z
∈ DM(Gγ

Z
) for γ

Z
> 0. Thus, F

Z
satisfies (4.2)

for γ
Z
. Then, we have that, as t → ∞,

1 − F
T
(tx)

1 − F
T
(t)

=
1 − F

Z
(atx)

1 − F
Z
(at)

≈
1 − F

Z

(

{tx/β}1/2/α
)

1 − F
Z

(

{t/β}1/2/α
) ≈ x−1/(2γ

Z
) ,

with the notation ut ≈ vt being valid if and only if ut/vt → 1, as t → ∞.

For light right-tails, i.e., for the Weibull max-domain of attraction, we can

prove a result similar to that of Theorem 4.1, if we use the following necessary

and sufficient condition for F ∈ DM(Gγ) with γ < 0 (also derived in Gnedenko,

1943):

F ∈ DM(Gγ), γ < 0 ⇐⇒ lim
t→∞

1 − F
(

xF −1/{tx}
)

1 − F (xF −1/t)
= x1/γ ,(4.3)

for all x > 0, and the right endpoint of F , namely xF
, is finite.

Theorem 4.2. Let the c.d.f. of the r.v. Z be in the Weibull max-domain

of attraction, necessarily with a negative EV index, i.e., γ
Z

< 0. Then, the c.d.f. of

the r.v. T given in (4.1) is also in the Weibull max-domain of attraction and

γ
T

= γ
Z
.

Proof: We have

lim
t→∞

1 − F
T

(

tF −1/{tx}
)

1−F
T
(tF −1/t)

= lim
t→∞

1 − F
Z
(atF−1/{tx})

1 − F
Z
(atF−1/t)

,

with tF being the right endpoint of F
T
. But we can assume, without loss of

generality, that zF
, the right endpoint of F

Z
, is null, i.e., zF

= 0. Hence, tF = β

and, as t → ∞,

1 − F
Z

(

atF−1/{tx}

)

1 − F
Z
(atF−1/t)

≈
1 − F

Z

(

−{αβ tx}−1
)

1 − F
Z

(

−{αβ t}−1
) ≈ x1/γ

Z .
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We next work on the slight more restrictive class of twice-differentiable

c.d.f.’s F ∈DM(Gγ), the so-called twice-differentiable domain of attraction of Gγ ,

denoted by ˜DM(Gγ). A possible characterization of the twice-differentiable do-

main of attraction of Gγ is due to Pickands (1986). Let us then assume that there

exists F ′′
, f = F ′

, and consider the function

k(x) = −f(x)
/{

F (x) log
(

F (x)
)}

=
{

− log
(

− log F (x)
)}

′

.

Hence, with γ(x) = {1/k(x)}′, we have

(4.4) F ∈ ˜DM(Gγ) ⇐⇒ lim
x↑xF

γ(x) = γ .

Consequently, if xF
= +∞, limx→∞ xk(x) = 1/γ, and if xF < +∞, limx↑xF

(xF− x) k(x) = −1/γ, i.e., limx→∞ k(x) = 0, if γ > 0, and limx↑xF k(x) = +∞,

if γ < 0. If γ = 0, we can have k(x)→ 0, k(x)→+∞, or k(x)→ c, for 0 < c < +∞.

Observe also that, after some simple calculations, we can write

(4.5) γ(x) = F ′′
(x)F (x) log

(

F (x)
)/

f2
(x) − log

(

F (x)
)

− 1 .

Theorem 4.3. Let T ∼ BST(α, β; f
Z
), with Z in the subset of the max-

domain of attraction of Gγ
Z

constituted by twice-differentiable c.d.f.’s, the so-

called twice-differentiable max-domain of attraction of Gγ
Z
, and assume that

c = lim
t↑tF

F
Z
(at) log

(

F
Z
(at)

)

A′

t

/{

A2
t f

Z
(at)

}

is finite, where tF is the right endpoint of the r.v. T and at and At are as given

in (2.3), with A′

t = dAt/dt. Then, F
T
∈ DM(Gγ

T
), with γ

T
= γ

Z
+ c.

Proof: By hypothesis, the necessary and sufficient condition (4.4) holds

for Z, with F, γ and γ(x) replaced by F
Z
, γ

Z
and γ

Z
(x), respectively. Now,

just observe that, by applying (4.5), and then (2.3)–(2.5) and A′

t = −
(
√

t/β +

3
√

β/t
)/

(4αt2), we have

γ
T
(t) =

F ′′

T
(t)F

T
(t) log

(

F
T
(t)
)

f2
T
(t)

− log
(

F
T
(t)
)

− 1

(4.6)

=
F

Z
(at) log

(

F
Z
(at)

)

A′

t

A2
t f

Z
(at)

+
F ′′

Z
(at)FZ

(at) log
(

F
Z
(at)

)

f2
Z

(at)
− log

(

F
Z
(at)

)

− 1 .

On the basis of the limit in Theorem 4.3, the first term in the second line of (4.6)

approaches c as t ↑ tF . Because the following term approaches γ
Z
, the result

follows.

Corollary 4.1. Under the conditions of Theorem 4.3, we have c = γ
Z

if

γ
Z

> 0 and c = 0 if γ
Z

< 0.
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Example 4.1. We now provide a few illustrations of Corollary 4.1:

(i) If Z has Fréchet or Pareto distributions (in the Fréchet max-domain

of attraction, i.e., γ
Z

> 0), then the limit in Theorem 4.3 is c = γ
Z

and

so γ
T

= 2 γ
Z
. Indeed, as stated in Theorem 4.1, this result holds more

generally in DM(Gγ
Z
), with γ

Z
> 0.

(ii) If Z has Weibull or uniform distributions (in the Weibull max-domain

of attraction, i.e., γ
Z

< 0), then c = 0 and γ
T

= γ
Z
. In fact, as stated

in Theorem 4.2, this result holds more generally in DM(Gγ
Z
), with

γ
Z

< 0.

Remark 4.1. We further conjecture that, in Corollary 4.1, we can often

replace γ
Z

< 0 by γ
Z
≤ 0. This is supported by the examples of an r.v. Z either

exponential or gamma, or Gumbel or normal, all in DM(G0), i.e., with γ
Z

= 0.

Then c = 0 and γ
T

= γ
Z

= 0. Also, if Z has an exponential-type (ET) distribution,

with a finite right endpoint, i.e., F
Z
(x) = K exp

(

−c/{zF−x}
)

, for x < zF
, c > 0,

and K > 0 (again in the Gumbel max-domain of attraction), then also c = 0 and

γ
T

= γ
Z

= 0.

Because in the twice-differentiable domain of attraction of Gγ the von

Mises condition is necessary and sufficient to have limx↑xF γ(x) = γ, with γ(x) =

{1/k(x)}′ (see Pickands, 1986, Theorem 5.2), we can also state that

(4.7) F ∈ ˜DM(Gγ) ⇐⇒ lim
x↑xF

{

1−F (x)
}

F ′′
(x)
/{

F ′
(x)
}2

= −γ − 1 .

Therefore, we can still write the following result.

Theorem 4.4. Under the conditions and notations of Theorem 4.3, let

us assume that

c∗ = lim
t↑tF

{

1−F
Z
(at)

}

A′

t

/{

A2
t F ′

Z
(at)

}

< ∞ .

Then, F
T
∈ DM(Gγ

T
), with γ

T
= γ

Z
− c∗.

Proof: Just observe that
{

1−F
T
(t)
}

F ′′

T
(t)

{

F ′

T
(t)
}2 =

{

1−F
Z
(at)

}{

A′

tF
′

Z
(at) + A2

t F ′′

Z
(at)

}

A2
t

{

F ′

Z
(at)

}2

(4.8)

=

{

1−F
Z
(at)

}

A′

t

A2
t F ′

Z
(at)

+

{

1−F
Z
(at)

}

F ′′

Z
(at)

{

F ′

Z
(at)

}2 .

By hypothesis, as t ↑ tF , the last term in (4.8) converges to −γ
Z
− 1, and the

result follows.

Corollary 4.2. Under the conditions and notations of Theorem 4.4, if we

further assume that Z has an infinite right endpoint, then F
T
∈ DM(Gγ

T
), with

γ
T

= γ
Z
, provided there exists a finite limit for {1−F

Z
(x)}/F ′

Z
(x), as x → ∞.
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4.2. Min-domains of attraction

We now analyze the domains of attraction for minima. To emphasize the

possible difference between the right and left EV indices, we denote this last one

as γ∗
.

We reformulate conditions (4.2) and (4.3) for minima obtaining respectively

F ∈ Dm(G∗

γ∗), γ∗ > 0 ⇐⇒ lim
t→−∞

F (tx)

F (t)
= x−1/γ∗

, ∀x > 0 ,(4.9)

and

F ∈ Dm(G∗

γ∗), γ∗< 0 ⇐⇒ lim
t→−∞

F
(

x
F
−1/{tx}

)

F
(

x
F
−1/t

) = x1/γ∗

, ∀x > 0 ,(4.10)

where the left endpoint x
F

:= inf{x : F (x) > 0} is finite; see, e.g., Galambos (1987,

Theorem 2.1.5). Observe that a BST r.v. T cannot be in the Fréchet min-domain

of attraction because its left endpoint is not −∞; see, e.g., Galambos (1987,

Theorem 2.1.4).

In the sequel, the notations Weibullmin, Frechetmin and Gumbelmin are used

for denoting Weibull, Fréchet and Gumbel distributions for minima, respectively,

with parameter γ∗
, and z

F
and t

F
denoting the left endpoints of Z and T , respec-

tively.

Theorem 4.5. Let the c.d.f. of the r.v. Z be in the Weibull min-domain

of attraction, necessarily with a negative EV index, i.e., γ∗

Z
< 0. Then, the c.d.f. of

the r.v. T given in (4.1) is in the Weibull min-domain of attraction and γ∗

T
= γ∗

Z
.

Proof: Assume, without loss of generality, that z
F

= 0, with z
F

being the

left endpoint of F
Z

(i.e., t
F

= β, with t
F

being the left endpoint of F
T
). Then,

lim
t→−∞

F
T

(

t
F
−1/{tx}

)

F
T

(

t
F
−1/t

) = lim
t→−∞

F
Z

(

at
F
−1/{tx}

)

F
Z

(

at
F
−1/t

) = lim
t→−∞

F
Z

(

−{αβ tx}−1
)

F
Z

(

−{αβ t}−1
)

and the result follows from the fact that F
Z

satisfies (4.10) for γ∗

Z
.

Theorem 4.6. Let the c.d.f. of the r.v. Z be in the Fréchet min-domain of

attraction, necessarily with a positive EV index, i.e., γ∗

Z
> 0. Then, the c.d.f. of the

r.v. T given in (4.1) is in the Weibull min-domain of attraction, and γ∗

T
= −2 γ∗

Z
.

Proof: Consider, without loss of generality, t
F

= 0. Then, z
F

= −∞ and

lim
t→−∞

F
T

(

t
F
−1/{tx}

)

F
T

(

t
F
−1/t

) = lim
t→−∞

F
Z

(

a−1/{tx}

)

F
Z

(

a−1/t

)

= lim
t→−∞

F
Z

(

−{−β tx}1/2/α
)

F
Z

(

−{−β t}1/2/α
) = x−1/(2γ∗

Z
) ,

where the last step is due to the fact that F
Z

satisfies (4.9) for γ∗

Z
.
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Next, we again work on the slight more restrictive class of twice-differentiable

c.d.f.’s, such as in Subsection 4.1. Analogously to the domain of attraction for

maxima, the von Mises condition in (4.7), reformulated for minima, enables us

to state that

F ∈ ˜Dm(G∗

γ∗) ⇐⇒ lim
x↓x

F

F (x)F ′′
(x)/

(

F ′
(x)
)2

= γ∗
+ 1 ,(4.11)

where x
F

is the left endpoint of F and ˜Dm(G∗

γ∗) denotes the twice-differentiable

domain of attraction of G∗

γ∗ .

Theorem 4.7. Let T ∼ BST(α, β; f
Z
), with Z in the subset of the min-

domain of attraction of G∗

γ∗

Z

constituted by the twice-differentiable c.d.f.’s, the

so-called twice-differentiable min-domain of attraction of G∗

γ∗

Z

, and assume that

d = lim
t↓t

F

F
Z
(at)A

′

t

/(

A2
t F ′

Z
(at)

)

is finite, where t
F

is the left endpoint of T and at and At are as given in (2.3),

with A′

t = dAt/dt. Then, F
T
∈ D∗

m(G∗

γ∗

T

), with γ∗

T
= γ∗

Z
+ d.

Proof: The result is easy to prove because

F
T
(t)F ′′

T
(t)

f
T
(t)2

=
F

Z
(at)

{

A′

tfZ
(at) + A2

t F ′′

Z
(at)

}

A2
t f

Z
(at)

2
=

F
Z
(at)A

′

t

A2
t f

Z
(at)

+
F

Z
(at)F

′′

Z
(at)

f
Z
(at)

2
.

Corollary 4.3. Under the conditions of Theorem 4.7, we have d = 0 if

γ∗

Z
< 0 and d = −3 γ∗

Z
if γ∗

Z
> 0.

Example 4.2. We next provide a few illustrations of Corollary 4.3:

(i) If Z has a Weibull distribution for minima (in the Weibull min-

domain of attraction, i.e., γ∗

Z
< 0), or an exponential, Pareto or uni-

form distribution (also in the Weibull min-domain of attraction, with

γ∗

Z
= −1), or even a Gamma(p, q) distribution (in the Weibull min-

domain of attraction, with γ∗

Z
= −1/p), then d = 0 and γ∗

T
= γ∗

Z
.

Indeed, as stated in Theorem 4.5, this result holds more generally

in Dm(G∗

γ∗

Z

), with γ∗

Z
< 0.

(ii) If Z has a Fréchet distribution for minima (in the Fréchet min-domain

of attraction, i.e., γ∗

Z
> 0), then d = −3 γ∗

Z
and γ∗

T
= −2 γ∗

Z
. In fact, as

stated in Theorem 4.6, this result holds more generally in Dm(G∗

γ∗

Z

),

with γ∗

Z
> 0.

(iii) If Z has an ET distribution as in Remark 4.1 (in the Fréchet min-

domain of attraction, with γ∗

Z
= 1), then d = −3 γ∗

Z
=−3 and γ∗

T
= −2,

i.e., T belongs to the Weibull min-domain of attraction.



On an Extreme Value Version of the Birnbaum–Saunders Distribution 195

Remark 4.2. Similarly to what we mentioned in Remark 4.1, we further

conjecture that, in Corollary 4.3, we can often replace γ∗

Z
< 0 by γ∗

Z
≤ 0. This is

supported by the fact that if Z has a Gumbel distribution for minima, or any of

the limiting distributions for maxima (Fréchet, Gumbel, Weibull), or a normal

distribution (all in the Gumbel min-domain of attraction, i.e. γ∗

Z
= 0), then the

limit in Theorem 4.7 is d = 0 and γ∗

T
= γ∗

Z
= 0.

5. HAZARD ANALYSIS

We may define a hazard as a dangerous event that could conduct to an emer-

gency or disaster. The origin of this event may be due to a situation that could

have an adverse effect. Thus, a hazard is a potential and not an actual possibility,

i.e., it can be statistically evaluated. A hazard analysis is the assessment of a risk

that is present in a particular environment. Therefore, hazard assessment allows

us to evaluate potential risk by the estimated frequency or intensity of the r.v. of

interest. In this section, we study the EVBS h.r. and its change point.

5.1. Hazard rate

Statistically, a hazard analysis can be carried out by the h.r. function.

Apart from hazard rate, this function is also known as chance function, fail-

ure rate, force of mortality, intensity function, or risk rate, among other names.

In actuarial science, for example, the h.r. is the annualized probability that a

person at a specified age will die in the next instant, expressed as a death rate

per year. For more details about the concept of h.r., see Marshall and Olkin

(2007, pp. 10–13).

A nice property of the h.r. is that it allows us to characterize the behavior of

statistical distributions. For example, the h.r. may have several different shapes

such as increasing (IHR), constant (exponential distribution), decreasing (DHR),

bathtube (BT), inverse bathtube (IBT or upside-down) approaching to a non-

null constant and IBT approaching to zero. An incorrect specification of the

h.r. could have serious consequences in the analysis; see, e.g., Bhatti (2010) for a

study about this issue.

The h.r. of an r.v. T is given in general by h
T
(t) = f

T
(t)/R

T
(t), for t > 0,

and 0 < F
T
(t) < 1, where R

T
(t) = 1 − F

T
(t), for t > 0, is the reliability function

(r.f.), and f
T

and F
T

are the p.d.f. and c.d.f. of the r.v. T . The change point

of h
T
(t), denoted by tc, is defined as the moment where the h.r. attains either

a maximum or a minimum value and it is the solution of the equation f(tc) =

−f ′
(tc)/h(tc), whenever F is twice-differentiable, and such a solution exists.
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5.2. TTT curve

The h.r. of an r.v. T can be characterized by its corresponding total time

on test (TTT) function given by

H−1
T

(u) =

∫ F−1

T
(u)

0

(

1 − F
T
(y)
)

dy

or by its scaled version given by W
T
(u) = H−1

T
(u)/H−1

T
(1), for 0 ≤ u ≤ 1, where

once again F−1
T

is the generalized inverse function of the c.d.f. of T . Now,

W
T

can be empirically approximated, allowing to construct the empirical scaled

TTT curve by plotting the consecutive points
[

k/n, Wn(k/n)
]

, where Wn(k/n) =
{
∑k

i=1 T(i) + (n− k)T(k)

}/
∑n

i=1 T(i), for k = 1, ..., n, with T(i) being the corre-

sponding ith ascending order statistic, for 1 ≤ i ≤ n.

From Figure 2 (left), we observe different theoretical shapes for the scaled

TTT curve. Thus, a TTT plot expressed by a curve that is concave (or con-

vex) corresponds to the IHR (or DHR) class. A concave (or convex) and then

convex (or concave) shape for the TTT curve corresponds to a IBT (or BT) h.r.

A TTT plot represented by a straight line is an indication that the exponential

distribution must be used. Thus, a graphical plot of the empirical scaled TTT

curve could provide to us the type of distribution that the data have. See also in

Figure 2 the theoretical scaled TTT curves for EVBS (center) and EVBS
∗

(right)

models. In these plots, we again use the notation EVBS(α, γ) ≡ EVBS(α, 1, γ).
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Figure 2: Theoretical scaled TTT curves for a general distribution with the

indicated h.r. shape (left) and for the EVBS(0.5, γ) (center) and

EVBS
∗
(0.5, γ) (right) distributions for the indicated values of γ.
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5.3. EVBS hazard rate

The normal distribution is in the IHR class. The gamma and Weibull

distributions can be either in IHR or DHR classes (of course, the case of the

exponential distribution with constant h.r. is considered by these two models).

However, the lognormal (LN) distribution has a non-monotonic h.r., because it

is initially increasing until its change point and then it decreases to zero, i.e.,

the LN model is in the IBT h.r. class. The BS h.r. behaves similarly to the LN

h.r., i.e., it is initially increasing until its change point and then decreasing not

to zero, but to a positive constant. Thus, although BS, gamma, LN and Weibull

distributions have densities with similar shapes, their h.r.’s are totally different.

Let T ∼ EVBS(α, β, γ). Then, directly from the definition of the p.d.f.,

f
T
(t), and the c.d.f., F

T
(t), of the r.v. T ∼ EVBS(α, β, γ), given in (3.2) and

(3.3), respectively, we have that:

A. The r.f. of T is expressed as R
T
(t) = 1−F

T
(t), with F

T
(t) given in (3.3).

B. Again with at and At as given in (2.3), the h.r. of T is defined as

h
T
(t) =

f
T
(t)

R
T
(t)

=

{

At(1+ γat)
−1−1/γ

/(

exp
(

{1+ γat}
−1/γ

)

−1
)

; γ 6= 0 ,

At exp(−at)
/

exp
(

exp(−at)
)

−1; γ = 0 ,

where t > (α2β + 2βγ2
)/(2 γ2

) −
√

(α4β2 + 4α2β2γ2)/γ4
/

2 if γ > 0;

t>0 if γ=0; and 0<t<(α2β + 2βγ2
)/(2γ2

)+
√

(α4β2 +4α2β2γ2)/γ4
/

2

if γ < 0.

C. With the notation btc = 1 + γatc , the change point tc of the h.r. of T

is obtained as the solution of the equations:















































(

{

A′

tc
−A2

tc
(1 + γ)b−1

tc

}{

exp
(

b
−1/γ
tc

)

− 1

}

+

+ A2
tc

{

1 + γatc

}

−1−1/γ
exp
(

b
−1/γ
tc

)

)

b
−1−1/γ
tc

= 0 ; γ 6= 0 ,

A2
tc

(

1 +
{

exp(−atc)− 1
}

exp
(

exp(−atc)
)

)

+

+ A′

tc

(

exp
(

exp(−atc)
)

− 1

)

= 0 ; γ = 0 .

Let T ∗ ∼ EVBS
∗
(α, β, γ). Then, now, directly from the definition of the

p.d.f., f
T∗

(t), and the c.d.f., F
T∗

(t), of the r.v. T ∗ ∼ EVBS
∗
(α, β, γ), given in (3.4)

and (3.5), respectively, we have that:
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D. The r.f. of T ∗
is expressed as R

T∗
(t) = 1−F

T∗
(t), with F

T∗
(t) as given

in (3.5).

E. Again with at and At as given in (2.3), the h.r. of T ∗
is defined as

h
T∗

(t) =
f

T∗
(t)

R
T∗

(t)
=

{

At(1 − γat)
−1−1/γ

; γ 6= 0 ,

At exp(at); γ = 0 ,

where t > (α2β + 2βγ2
)/(2 γ2

) −
√

(α4β2 + 4α2β2γ2)/γ4
/

2 if γ < 0;

t>0 if γ=0; and 0<t<(α2β + 2βγ2
)/(2γ2

) +
√

(α4β2 +4α2β2γ2)/γ4
/

2

if γ > 0.

F. The change point tc of the h.r. of T ∗
is obtained as the solution of the

equations:

{

(1 − γatc)
−1−1/γ

(

A′

tc
+ {1 + γ}A2

tc
{1− γatc}

−1
)

= 0; γ 6= 0 ,

A2
tc

+ A′

tc
= 0; γ = 0 .

As can be seen in Figure 3, the EVBS and EVBS
∗

h.r.’s present sev-

eral different shapes going through all the h.r. shape classes mentioned above.

In these plots, once again, we use the notation EVBS(α, γ) ≡ EVBS(α, 1, γ).

The h.r. of T can also approach ∞, zero or a positive constant, as t → ∞. These

are strong points in favor of our models, as they become interesting for modeling

purposes.

0 1 2 3 4

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

t

h
T

T

EVBS

EVBS 0.25 1

EVBS 0.5 1

EVBS 1 1

EVBS 2 1

0 5 10 15 20

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

t

h
T

T

EVBS

EVBS 0.25 0

EVBS 0.5 0

EVBS 1 0

EVBS 2 0

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6

t

h
T

T

EVBS

EVBS 0.25 1

EVBS 0.5 1

EVBS 1 1

EVBS 2 1

0 1 2 3 4 5

0
1

2
3

4
5

6
7

t

h
T

T

EVBSmin

EVBSmin 0.25 1

EVBSmin 0.5 1

EVBSmin 1 1

EVBSmin 2 1

0 5 10 15 20

0
2

4
6

8
1
0

t

h
T

T

EVBSmin

EVBSmin 0.25 0

EVBSmin 0.5 0

EVBSmin 1 0

EVBSmin 2 0

0 1 2 3 4 5 6 7

0
1

2
3

4
5

t

h
T

T

EVBSmin

EVBSmin 0.25 1

EVBSmin 0.5 1

EVBSmin 1 1

EVBSmin 2 1

Figure 3: h.r. plots of the EVBS (1
st

panel) and EVBS
∗

(2
nd

panel)

distributions for β = 1, and the indicated values of (α, γ),

where EVBSmin ≡ EVBS
∗
.
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6. ESTIMATION AND MODEL CHECKING

In this section, we present some results related to estimation aspects and

model checking for EVBS distributions.

6.1. ML estimation

As is well-known, ML estimates are obtained from the solution of the system

ℓ̇(θ) ≡ 0, where ℓ̇(θ) denotes the score vector of first derivatives of the logarithm

of the likelihood function for θ, namely ℓ(θ). In our case, if we consider the EVBS

model (the procedure is similar for the EVBS
∗

model), this function is given by

ℓ(θ) =
∑n

i=1 ℓi(θ), where, for i = 1, ..., n,

ℓi(θ) =

{

log(Ati) −
(

1 +
1
γ

)

log(1 + γati) − (1 + γati)
−1/γ

; γ 6= 0 ,

log(Ati) − exp(−ati) − ati ; γ = 0 ,

with θ = [α, β, γ]
⊤
. The score vector ℓ̇(θ) = ∂ℓ(θ)/∂θ = [ℓ̇θ1

], with θ1 = α, β, or γ,

is given by
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whenever γ 6= 0 and, if γ = 0, is given by
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.

In this case, the system of likelihood equations ℓ̇(θ) ≡ 0 does not produce an expli-

cit solution so that a numerical procedure is necessary. To this end, initial values

for the parameters α, β and γ can be obtained using the methods to be described

in Subsection 6.2. In addition, these likelihood equations seem to be often unstable.
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We propose to use the following approach for solving this problem of instability.

The approach consists of obtaining the optimum value for the parameter γ assum-

ing it to be known, for example, following a similar algorithm to that proposed by

Rinne (2009, pp. 426–433) and called by him as non-failing (NF); see also Barros

et al. (2009) and Leiva et al. (2011). In these works, they fixed values for their

parameter, in our case γ, within a set of several possible values for this parameter,

and they then estimate the structural parameters, in our case, α and β. Finally,

we consider the fixed γ that maximizes the likelihood function. Specifically, this

approach is based on a partition of the real number set into a suitable amount of

sub-intervals. Fixing γ in each of these intervals, we estimate α and β by using

the ML method and then we look for the value of γ that maximizes the likelihood

function. In this case, the NF algorithm is given by:

NF1 For a fixed value of γ:

NF1.1 Estimate the parameters α and β of the EVBS model using

the estimates of α and β from the procedure to be described

in Subsection 6.2 as starting values.

NF1.2 Compute the associated likelihood function.

NF2 Choose the value of γ that maximizes the likelihood function and

then consider the obtained ML estimates of α and β as result.

6.2. Starting estimation

Firstly, to find initial values for the numerical optimization procedure

needed for the ML estimation of the EVBS distribution parameters described

in Subsection 6.1, we introduce a graphical method analogous to the probability

plots; see Leiva et al. (2008a). This method is useful for goodness-of-fit and can

also be used as an estimation method or, at least, to find initial values for an

iterative procedure. The method consists of transforming the data forming pairs

of values that should follow a linear relationship if these data would come from

the EVBS distribution. Then, by using a simple linear regression method, the

slope and intercept of this linear relationship are estimated. The line is used

for goodness-of-fit such as a quantile versus quantile (QQ) plot. Specifically,

if we consider the EVBS c.d.f. as given in (2.2), but with Φ replaced by F
Z
,

we have t = β + α
√

β
√

t F−1
Z

(F
T
(t)), where F−1

Z
is the generalized inverse c.d.f.

of the generator EV distribution and F
T

is the EVBS c.d.f. However, it is difficult

to derive a linear function over t in the above expression, which is fundamental for

probability plots. We consider p =
√

t F−1
Z

(F
T
(t)) obtaining the linear function

y ≈ a + b x, where x = p, y = t, the intercept is a = β, and the slope is b = α
√

β.

Now, suppose we have n ordered observations, say t(1) ≤ ... ≤ t(n). Because we
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can estimate F
T
(t(i)) by qi = (i − 0.3)/(n + 0.4), for i = 1, ..., n, the graphical

plot of t(i) versus p̄i, where p̄i =
√

t(i) F−1
Z

(qi) is approximately a straight line

whenever the data come from some EVBS distribution. Goodness-of-fit can be

visually and analytically studied using the coefficient of determination of the fit

of regression between t(i) and p̄i. Therefore, the parameters α and β of this dis-

tribution can be estimated by using the least square method obtaining β̄ = ā and

ᾱ = b̄/
√

ā.

Secondly, to find an initial value for the parameter γ, we can use a landmark

from the EV theory. This landmark is the result about the limiting generalized

Pareto (GP) behavior of the scaled excesses; see, e.g., Balkema and de Haan

(1974) and Pickands (1975). This enables the development of the so-called ML

EV index estimators, which we can take as an initial value for γ to be used

for the numerical optimization procedure needed for the ML estimation of the

EVBS distribution parameters. We refer the peaks over threshold methodology

of estimation (see Smith, 1987) as well as the methodology used by Drees et al.

(2004), named peaks over random threshold in Araújo Santos et al. (2006).

6.3. Model checking

Once the EVBS distribution parameters are estimated, a natural ques-

tion that arises is checking how good is the fit of the model to the data. We

can use the invariance property of the ML estimators for fitting the p.d.f. and

c.d.f. of the EVBS model. Also, to compare the EVBS distributions to other

distributions, we can use model selection procedure based on loss of information,

such as Akaike (AIC), Schwarz’s Bayesian (BIC) and Hannan–Quinn (HQIC)

information criteria. These criteria allow us to compare models for the same

data set and are given by AIC = −2 ℓ(̂θ) + 2d, BIC = −2 ℓ(̂θ) + d log(n), and

HQIC = −2 ℓ(̂θ) + 2 d log(log(n)), where, as mentioned, ℓ(̂θ) is the log-likelihood

function for the parameter θ associated with the model evaluated at θ = ̂θ, n is

the sample size, and d is the dimension of the parameter space.

AIC, BIC and HQIC are based on a penalization of the likelihood function

as the model becomes more complex, i.e., with more parameters. Thus, a model

whose information criterion has a smaller value is better. This is an important

point, because the EVBS distribution has more parameters than the usual BS

distribution. Because models with more parameters always provide a better fit,

AIB, BIC and HQIC allow us to compare models with different numbers of pa-

rameters due to the penalization incorporated in such criteria. This methodology

is very general and can be applied even to non-nested models, i.e., those models

that are not particular cases of a more general model; see Vilca et al. (2011) and

references therein.



202 Marta Ferreira, M. Ivette Gomes and Vı́ctor Leiva

Generally, differences between two values of the information criteria are not

very noticeable. In that case, the Bayes factor (BF) can be used to highlight such

differences, if they exist. To define the BF, assume the data D belong to one of

two hypothetical models, namely M1 and M2, according to probabilities P(D|M1)

and P(D|M2), respectively. Given probabilities P(M1) and P(M2) = 1 − P(M1),

the data produce conditional probabilities P(M1|D) and P(M2|D) = 1−P(M1|D),

respectively. Then, the BF that allow us to compare M1 (model considered as

correct) to M2 (model to be contrasted with M1) is given by

B12 =
P(D|M1)

P(D|M2)
.(6.1)

Based on (6.1), we can use the approximation

(6.2) 2 log(B12) ≈ 2
[

ℓ(̂θ1) − ℓ(̂θ2)
]

−
[

d1 − d2

]

log(n) ,

where ℓ(̂θk) is the log-likelihood function for the parameter θk under the model

Mk evaluated at θk = ̂θk, dk is the dimension of θk, for k = 1, 2, and n is the

sample size. Notice that the approximation in (6.2) is computed subtracting the

BIC value from the model M2, given by BIC2 = −2 ℓ(θ2) + d2 log(n), to the BIC

value of the model M1, given by BIC1 = −2 ℓ(θ1) + d1 log(n). In addition, notice

that if model M2 is a particular case of M1, then the procedure corresponds to ap-

plying the likelihood ratio (LR) test. In this case, 2 log(B12) ≈ χ2
12 − df12 log(n),

where χ2
12 is the LR test statistic for testing M1 versus M2 and df12 = d1− d2 are

the d.f.’s associated with the LR test, so that one can obtain the corresponding

p-value from 2 log(B12)
·∼ χ2

(d1 − d2), with d1 > d2.

In general, the BF is informative because it presents ranges of values in

which the degree of superiority of one model with respect to another can be

quantified. An interesting interpretation of the BF is displayed in Table 1; see

Vilca et al. (2011) and references therein.

Table 1: Interpretation of 2 log(B12) associated with the BF.

2 log(B12) Evidence in favor of M1

< 0 Negative (M2 is accepted)

[0, 2) Weak

[2, 6) Positive

[6, 10) Strong

≥ 10 Very strong
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7. APPLICATION

In this section, to illustrate some of the results obtained in this study, we fit

the EVBS
∗

model (for minimum) to a real data set corresponding to air pollutant

concentrations. We assume that the data are uncorrelated and independent and,

therefore, a diurnal or cyclic trend analysis is not necessary. This assumption has

been supported by some authors for different reasons; see, e.g., Vilca et al. (2010)

and references therein. For example, environmental data are sometimes reported

as average or total values and so spatiotemporal dependence is missing. In this

analysis, we first discuss an implementation in R code of the EVBS model. Next,

the data set upon analysis is introduced. Then, an EDA is produced. Finally,

estimation and EVBS model checking are carried out.

7.1. Implementation in R code

Several R packages for analyzing data from different distributions are avail-

able from CRAN (for example, the bs and gbs packages). An R package named

evbs to analyze data from EVBS models is being developed by the authors, whose

“in progress” version is available upon request. This package contains diverse in-

dicators and methodologies useful for EVBS distributions. In addition, the evbs

package incorporates the scaled TTT curve as a descriptive tool to identify the

possible shape of the h.r.

7.2. The data set

The data correspond to daily ozone concentrations that were collected in

New York during May–September, 1973. These data were taken from Nadarajah

(2008) and have been provided by the New York State Department of Conserva-

tion. This set of daily ozone level measurements (in ppb = ppm×1000), that we

call from now simply ozone, are: 41, 36, 12, 18, 28, 23, 19, 8, 7, 16, 11, 14, 18, 14, 34,

6, 30, 1, 11, 4, 32, 23, 45, 115, 37, 29, 71, 39, 23, 21, 37, 20, 12, 13, 49, 32, 64, 40, 77, 97,

97, 85, 10, 27, 7, 48, 35, 61, 79, 63, 16, 108, 20, 52, 82, 50, 64, 59, 39, 9, 16, 78, 35, 66,

122, 89, 110, 44, 65, 22, 59, 23, 31, 44, 21, 9, 45, 168, 73, 76, 118, 84, 85, 96, 78, 91, 47,

32, 20, 23, 21, 24, 44, 21, 28, 9, 13, 46, 18, 13, 24, 16, 23, 36, 7, 14, 30, 14, 18, 20, 11,

135, 80, 28, 73, 13.
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7.3. Exploratory data analysis

Firstly, an analysis of autocorrelation indicates that there is not such au-

tocorrelation so that the dependence over time can be discarded. Thus, the use

of a methodology based on univariate random samples is adequate for ozone.

Secondly, Table 2 presents a descriptive summary of these data, which includes

standard deviation (SD) and coefficients of variation (CV), skewness (CS) and

kurtosis (CK). Figure 4 (left) displays their histogram. This table and histogram

indicate a positively skewed distribution. Thirdly, the TTT plot shown in Figure 4

(right) indicates that ozone seems to have a h.r. that is coherent with that of the

EVBS distributions. However, maybe the more relevant aspect of the EDA of

these ozone levels is noted when we analyze the original boxplot and the ad-

justed boxplot for asymmetric distributions. Interestingly, the original boxplot

displayed in Figure 4 (first plot on the center figure) shows some atypical ob-

servations lying on the right-tail of the distribution of ozone, but this boxplot

was constructed for symmetric data. When we produce the adjusted boxplot for

asymmetric distributions using ozone, there are not atypical observations on the

right-tail. Nevertheless, this type of observations appear on the left-tail of the

distribution of the data; see Figure 4 (second plot on the center figure). For

more details about this adjusted boxplot for asymmetric data, see Hubert and

Vandervieren (2008), an R package called robustbase and its function adjbox.

Therefore, the EDA provides to us diverse evidences for supporting the use of the

EVBS model to describe ozone.

Table 2: Descriptive statistics for ozone (in ppb = ppm×1000).

Median Mean SD CV CS CK Range Min. Max. n

31.50 42.13 32.99 78.30% 1.21 3.11 167.00 1.00 168.00 116
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Figure 4: Histogram (left), indicated boxplots (center) and TTT plot (right) for ozone.
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The EVBS
∗

distribution should accommodate the observations concen-

trated on the left-tail well. Then, we think the EVBS
∗

distribution based on the

Gumbelmin model should be an appropriate model for describing ozone. Because

this model belongs to the Gumbel min-domain of attraction (see Subsection 4.2),

we carry out a semi-parametric EV test to analyze whether ozone belongs to this

domain or not. Specifically, we want to test H0 : F ∈Dm(G∗

γ), with γ ≥ 0. For

details about this test, see Dietrich et al. (2002). In Figure 5, we see the sample

path of the test statistic as a function of the k largest order statistics and the

critical value (horizontal line) above which we reject the null hypothesis. We do

not reject H0 for 1 ≤ k ≤ 60, which is a credible result in EV theory to keep this

hypothesis. Observe that we cannot have γ > 0 because the left endpoint −∞

does not make sense for these data (the daily ozone measures must be greater or

equal to 0).
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k

Figure 5: Sample path of the extreme value condition test applied to

the ozone data (horizontal line: critical value above which

we reject F ∈ Dm(G∗

γ
), with γ ≥ 0).

Next, we fit the EVBS
∗
model based on the Gumbelmin distribution to ozone.

GEV and GP models are also considered as comparative models. In addition, a

skew-normal BS (SNBS) model is also fitted, because according to Vilca et al.

(2011), a SNBS distribution has heavier tails than the usual BS distribution.

This characteristic can also be obtained by, for instance, a BS model based on

the Student-t distribution. Moreover, when the distribution of the data is concen-

trated on the left-tail, a SNBS distribution should be a better alternative than the

usual BS distribution or than a BS model based on any symmetric distribution,

such as the Student-t model. In fact, if ozone comes from a SNBS model and we

fit the usual BS distribution, we overestimate the lower percentiles. However, the

EVBS distributions introduced here are also good alternatives for modeling data

following a distribution with heavier tails than the usual BS distribution.
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7.4. Estimation and checking model

To find the ML estimates of the EVBS distribution parameters, we use the

procedure described in Subsections 6.1 and 6.2. Thus, based on ozone, we obtain

the ML estimates along with the values of AIC, BIC, HQIC and BF used for

model selection; see Table 3.

Table 3: ML estimates, information criteria and Bayes factors

in the indicated models for ozone.

Distribution bθ1 bθ2
bθ3 −ℓ AIC BIC HQIC 2 log(B12)

EVBS∗(α, β, γ) 0.80 45.68 0.00 541.31 1088.62 1088.81 1084.51 —

GEV(µ, σ, γ) 24.00 18.34 0.36 543.78 1093.55 1093.75 1089.44 4.93
GP(σ, γ) — 52.49 −0.25 546.19 1096.37 1096.50 1093.63 5.00
SNBS(α, β, λ) 1.27 14.84 1.07 545.61 1097.21 1097.40 1093.10 8.59
BS(α, β) 0.98 28.02 — 549.10 1102.19 1102.32 1099.45 10.82

From Table 3, we note that the EVBS
∗

model based on the Gumbelmin

distribution has lower values of AIC, BIC and HQIC with respect to the BS, EV,

GP and SNBS models for ozone data. This is a first indication of the superiority

of the proposed model. Then, we use the BF to establish the magnitude of the

differences between the values of the BIC of the proposed model and of its com-

petitors. Thus, according to Table 1 and the BF’s (approximated by the BIC’s)

given in Table 3, we detect for the EVBS
∗

model (i) a very strong evidence in

its favor with respect to the BS model, (ii) a strong evidence with respect to the

SNBS model and (iii) a positive evidence with respect to the GEV and GP models.

This is a second more power indication of the superiority of the proposed model.
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Figure 6: Histogram with estimated EVBS
∗

(Gumbelmin) p.d.f. (left),

empirical and estimated EVBS
∗
theoretical c.d.f. plots (center)

and QQ plot (right) for ozone.
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Now, from Figure 6 (center), we see the excellent coherence between the empirical

and EVBS theoretical c.d.f.’s. for ozone. Moreover, a QQ plot for the EVBS

distribution shown in Figure 6 (right) confirms such a coherence between the

EVBS
∗

model and the data. In fact, the histogram and the estimated EVBS
∗

p.d.f. based on the Gumbelmin distribution provided in Figure 6 (left) also shows

an excellent fit of the EVBS
∗

model to these ozone data. Therefore, we conclude

that the EVBS
∗

distribution provides a much better fit than the other considered

models for the ozone data analyzed in this study.

8. CONCLUDING REMARKS

This article has dealt with an extreme value version of the Birnbaum–

Saunders distribution. Specifically, we have found the density of the extreme

value Birnbaum–Saunders distribution and discussed its shape. We have obtained

the cumulative distribution and quantile functions of this distribution as well

as highlighted some of their properties. Extremal domains of attraction for

Birnbaum–Saunders type distributions have been studied. A characterization

of the hazard rate of extreme value Birnbaum–Saunders distributions has been

also carried out. We have developed an R package with the obtained results and

used part of it for analyzing a real data set of ozone concentrations. This analysis

has allowed us to show the adequacy of these new statistical distributions.
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1. INTRODUCTION

Construction of CIs in discrete distributions is a widely addressed problem.

The standard method of obtaining a 100× (1−α)% CI for the Poisson mean µ is

based on inverting an equal tailed test for the null hypothesis H0 : µ = µ0. This

is an “exact” CI, in the sense that it is constructed using the exact distribution.

Exact CIs are very conservative and too wide. A large number of alternate

methods for obtaining CIs for µ based on approximations for the Poisson distri-

bution are suggested in the literature to overcome these drawbacks. Desirable

properties of those approximate CIs are:

• for (1−α) confidence interval the infimum over µ of the coverage prob-

ability should be equal to (1 − α);

• confidence interval can not be shortened without the infimum of the

coverage falling below (1 − α).

We attempt to perform an exhaustive review of the existing methods for

obtaining confidence intervals for the Poisson parameter and present an extensive

comparison among these methods based on the following criterion:

1) Expected length of confidence intervals (E(LOC)),

2) Percent coverages (Coverage),

3) E(P-bias) and E(P-confidence),

4) Balance of right and left noncoverage probabilities.

Section 2 enumerates several methods for interval estimation of µ, giving

appropriate references. Section 3 describes criteria used for comparison, Section 4

reports details of the comparative study and Section 5 presents concluding re-

marks.

2. A REVIEW OF THE EXISTING METHODS

Table 1 presented next reports 19 CIs for the Poisson mean. In the table,

“Schwertman and Martinez” is abbreviated as SM, “Freeman and Tukey” by FT,

“Wilson and Hilferty” by WH, “continuity correction” by CC, “Second Normal”

by SN and “Likelihood Ratio” by LR. Furthermore, α1 = α/2, α2 = 1 − α/2, and

xc = x + c for any number c.
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Table 1: Confidence limits for the nineteen methods.

Name and reference Lower Limit Upper Limit

1: Garwood (GW) �
χ2

(2x,α1)

�Æ
2

�
χ2

(2x1,α2)

�Æ
2

(1936)

2: WH (WH)
x
�
1 − 1/9x + Zα1

/3
√

x
�
3

x1

�
1 − 1/9x1 + Zα2

/3
√

x1

�
3

(1931)

3: Wald (W)
x + Zα1

√

x x + Zα2

√

x
SM (1994)

4: SN (SN)
x + Z2

α1
/2 + Zα1

q
x + Z2

α1
/4 x + Z2

α1
/2 + Zα2

q
x + Z2

α2
/4

SM (1994)

5: Wald CC (FNCC)
x−0.5 + Zα1

√
x−0.5 x0.5 + Zα2

√
x0.5

SM (1994)

6: SN CC (SNCC) x−0.5 + Z2

α1
/2 + Zα1

x0.5 + Z2

α2
/2 + Zα2

SM (1994)
�
x−0.5 + Z2

α2
/4
�.5 �

x0.5 + Z2

α1
/4
�.5

7: Molenaar (MOL) x−0.5 +
�
2Z2

α1
+1

�
/6 + Zα1

x0.5 +
�
2Z2

α2
+1

�
/6 + Zα2

(1970)
�
x−0.5 +

�
Z2

α1
+2

�
/18

�.5 �
x0.5 +

�
Z2

α2
+2

�
/18

�.5
8: Bartlett (BART) �√

x + Zα1
/2
�
2

�√
x + Zα2

/2
�
2

(1936)

9: Vandenbroucke (SR) �√
xc + Zα1

/2
�
2

�√
xc + Zα2

/2
�
2

(1982)

10: Anscombe (ANS) �p
x + 3/8 + Zα1

/2
�
2
− 3/8

�p
x + 3/8 + Zα2

/2
�
2
− 3/8

(1948)

11: FT (FT) 0.25
��√

x +
√

x1 + Zα1

�
2
−1

�
0.25

��√
x +

√
x1 + Zα2

�
2
−1

�
(1950)

12: Hald (H) �√
x−.5 + Zα1

/2
�
2

+ .5
�√

x−.5 + Zα2
/2
�
2

+ .5
(1952)

13: Begaud (BB) �√
x.02 + Zα1

/2
�
2

�√
x.96 + Zα2

/2
�
2

(2005)

14: Modified Wald (MW) For x=0; 0 For x=0; − log(α1)

Barker (2002) For x > 0; Wald limit For x > 0; Wald limit

15: Modified Bartlett (MB) For x=0; 0 For x=0; − log(α1)

Barker (2002) For x > 0; Bartlett limit For x > 0; Bartlett limit

16: LR (LR) No closed form No closed form
Brown et al. (2003)

17: Jeffreys (JFR)
G
�
α1, x0.5, 1/r

�
G
�
α2, x0.5, 1/r

�
Brown et al. (2003)

18: Mid-P No closed form No closed form
Lancaster (1961)

19: Approximate Bootstrap
x +

Z0 + Zα1�
1 − a(Z0 + Zα1

)
�
2

√

x x +
Z0 + Zα2�

1 − a(Z0 + Zα2
)
�
2

√

x
Confidence (ABC)

Swift (2009) where a = Z0 =1/(6
√

x )
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3. CRITERIA FOR COMPARISON

The criteria considered for the comparison among the above mentioned CIs

are E(LOC) of CIs, coverage probability, ratio of the left to right noncoverage

probabilities, E(P-confidence) and E(P-bias).

Here we explain the details of the three criterion for comparison mentioned

in Section 1. Without loss of generality a sample of size n = 1 is considered. The

comparisons are carried out over µ ∈ (0, 50].

The expected value of a function g(x) is computed as
∑

∞

x=0 g(x) pµ(x) where

pµ(x) = e−µµx/x!. The infinite sums in the computation of these quantities were

approximated by appropriate finite ones up to 0.001 margin of error.

The coverage probability C(µ), noncoverage probability on the left L(µ),

noncoverage probability on the right R(µ), and corresponding expected length

E(LOC) of a CI
(

l(x), u(x)
)

are respectively computed by taking g(x) = I
(

l(x)≤

µ≤ u(x)
)

, I
(

µ > u(x)
)

, I
(

µ < l(x)
)

and
(

u(x)− l(x)
)

, where I(·) is the indicator

function of the bracketed event.

3.1. Computation of E(P-confidence) and E(P-bias)

Let CI(x) be the CI obtained for the observation x having nominal level (1−

α)100%. The P-bias and P-confidence are defined in terms of the standard equal

tailed P-value function P (µ, x) = min
(

2 Pµ(X≤ x), 2 Pµ(X≥ x), 1
)

. The P-con-

fidence of the CI that measures how strongly the observation x rejects parameter

values outside CI is defined as Cp

(

CI(x), x
)

=
(

1 − supµ/∈CI(x)P (µ, x)
)

× 100%.

The P-bias of a CI which quantifies the largeness of P-values for val-

ues of µ outside the CI in comparison with those inside the CI is given by

b
(

CI(x), x
)

= max
(

0, supµ/∈CI(x)P (µ, x) − infµ∈CI(x)P (µ, x)
)

× 100%. For the

Poisson distribution P (µ, x) is continuous and a monotone function in µ in op-

posite directions to the left and right of the interval for each value of x. Hence

the supremums and infimums occur at the upper or lower end points of the CIs.

Consequently the formulae of P-bias and P-confidence are reduced to

Cp

(

CI(x), x
)

=

(

1−max

{

2P
(

X≥ x; µ = l(x)
)

, 2P
(

X≤ x; µ = u(x)
)

})

×100% ,

b
(

CI(x), x
)

= max

{

0,
{

2P
(

X≥ x; µ = l(x)
)

−2P
(

X≤ x; µ = u(x)
)

}

}

×100% .

Their expected values are computed as described above.
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It was observed that when the actual value of µ is a fraction, the CI with

their endpoints rounded to the nearest integer (for lower limit, rounding to an

integer less than the limit and reverse for the upper limit) improved coverage

probabilities to a very large extent at the cost of increasing E(LOC) at most

by one unit. This is clearly visible from Figure 1 which displays the Box plot

of coverages for the rounded and unrounded CIs obtained using Wald method.

Similar pattern was observed for other methods.

roundedunrounded

95

90

85

C
o
ve
ra
g
e

Figure 1: Impact of rounding on coverage of Wald CI.

Consequently the E(LOC) and percent coverages reported here correspond

to these rounded intervals and the comparison carried out among the methods in

the sequel is based on rounded intervals.

4. COMPARISON AMONG THE METHODS

4.1. Comparison based on coverages and E(LOC)

On careful examination revealed that different methods perform differently

in certain subsets of the parameter space.

Consequently the performance of each method was studied separately on

the three regions, namely (0,2), [2,4] and (4,50] in the parameter space. Panels

(a) and (b) of Figures 2A to 4A display respectively the boxplots of coverages and

graphs of relative E(LOC) of conservative methods (i.e. ratio of E(LOC) for the

concerned method to the same for Garwood exact CI) for different regions defined

above. Figures 2B to 4B display similar plots for nonconservative methods.

The observations from these graphs are tabulated in Table 2. The methods

displayed in bold face have shortest length among the concerned group. Here

G1 = {GW,MOL,WH,BB} and G2 = {BART, W,H}.
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Table 2: Coverage performance of the nineteen methods.

Type µ ∈ (0,2) µ ∈ [2,4] µ ∈ (4,50]

Conservative

FNCC,LR, ANS, G1, MB,ANS, SN, G1 G1, SNCC,ABC,LR
FT, JFR,MB,MW,SN ABC, SR, JFR H,BART,MW,ANS
SNCC,ABC, SR,Mid-P SNCC,Mid-P FT,MB, SN,Mid-P

JFR,FNCC,W, SR

Non-
G2

G2, FNCC,FT, LR
—
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(a) Boxplot of coverages for conservative methods. (b) Relative lengths of conservative methods.

Figure 2A: Coverages and relative E(LOC) for conservative methods for

parametric space (0,2), where G1 = {GW,MOL,WH,BB}.
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(a) Boxplot of coverages for nonconservative methods. (b) Relative lengths of nonconservative
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Figure 2B: Coverages and relative E(LOC) for nonconservative methods

for parametric space (0,2).
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Figure 3A: Coverages and relative E(LOC) for conservative methods for

parametric space [2,4], where G1 = {GW,MOL,WH,BB}.
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Figure 3B: Coverages and relative E(LOC) for nonconservative methods

for parametric space [2,4].
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Figure 4A: Coverages and relative E(LOC) for conservative methods for

parametric space (4,50], where G1 = {GW,MOL,WH,BB}.
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for parametric space (4,50].
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4.2. Comparison with respect to balance of noncoverage probabilities

For a two sided CI procedure it is desirable to have the right and left non-

coverage probabilities to be fairly balanced. We plot the ratio of the left to right

noncoverage probabilities as a function of Poisson mean for the nineteen methods

in Figure 5A and 5B for regions (2,4) and (4,50). For balanced noncoverage, ratio

should oscillate in the close neighborhood of 1. For region (0,2) all methods are

well below 1, with the exception of Wald method.

A careful observation of figures leads to the following region wise perfor-

mance of methods with respect to right-to-left noncoverage balance reported in

Table 3.

Table 3: Performance based on right-to-left noncoverage balance.

Performance µ ∈ (2,4) µ ∈ (4,50)

Fairly balanced around 1 — G1,ABC,LR, JFR, SR

Uniformly below 1 SNCC, SN, G1,ABC,MB SN, SNCC,Mid-P

Uniformly above 1
LR, JFR, SR,Mid-P

FT,MB,ANS,FNCC,MW, G2
FT,ANS,FNCC,MW, G2

4.3. Comparison based on E(P-bias) and E(P-confidence)

For comparison of methods on the basis of E(P-bias) and E(P-confidence),

we consider three regions of sample space (0,2), (2,4) and (4,50). Three panels

(a) to (c) of Figures 6 and 7 represent boxplots of E(P-confidence) and E(P-bias)

for these three regions. Recommendations on the basis of E(P-bias) and E(P-con-

fidence) for two regions tabulated in Table 4.

Table 4: Recommendations on the basis of E(P-bias) and E(P-confidence).

Performance µ ∈ (0,2) µ ∈ (2,4) µ ∈ (4,50)

Smallest E(P-bias) FNCC,MW,W FNCC, SNCC SNCC,Mid-P, SN
Largest E(P-confidence) SNCC, SN,ABC, G1 SNCC, SN, G1 SNCC,G1, SN
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Figure 5A: Graph of ratio of noncoverage probabilities for parametric space (2,4].

The ratio of noncoverage probabilities for methods SNCC, SN, G1,

ABC and MB are zero for parametric space (2,4].
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(continued)
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Figure 5B: Graph of ratio of non coverage probabilities for parametric space (4,50].
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Figure 6(a): Boxplot of E(P-confidence) for parametric space (0,2].
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Figure 6(b): Boxplot of E(P-confidence) for parametric space (2,4].
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Figure 6(c): Boxplot of E(P-confidence) for parametric space (4,50).
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Figure 7(a): Boxplot of E(P-bias) for parametric space (0,2].
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Figure 7(b): Boxplot of E(P-bias) for parametric space (2,4].
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Figure 7(c): Boxplot of E(P-bias) for parametric space (4,50).
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5. CONCLUDING REMARKS

Rounding of end points of CI considerably improves the coverages of CI.

Our remarks are based on rounded intervals. A best choice for CI depends on the

objectives of the underlying investigations and a broad prior knowledge about

the underlying parameter if any.

Finally, our investigation suggests the following recommendations:

1) In the analysis of rare events where µ is expected to be very small

in between 0 to 2, we recommend MW and FNCC method on the

basis of highest coverage probabilities with shortest expected length

and smallest expected P-bias and reasonable expected P-confidence.

In this region LR is also recommendable on the basis of all the criteria

except E(P-bias).

2) For the situations where the parameter is expected to be large more

than 4, methods involved in G1 are the best choice. In fact the perfor-

mance of methods in G1 is uniformly satisfactory (if not best) on the

entire parameter space with respect to all the criteria, so in the absence

of any knowledge regarding the underlying parameter, we recommend

these methods for use.

3) We strongly recommend to avoid using W, BART, and H methods in all

kinds of applications, since these are uniformly nonconservative for all

parameter values, have large E(P-bias) and smallest E(P-confidence)

and highly imbalanced noncoverage on the right and left side.

These recommendations are useful guidelines for consulting professionals,

in data analysis, software development, and can be an interesting addition to the

discussion of case studies in Applied Statistic courses.
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1. INTRODUCTION

Let T (F ) be any smooth functional of one or more unknown distributions F

based on random samples from them. Bias reduction of estimates of T (F ), say

T ( ̂F ), has been a subject of considerable interest. Traditionally bias reduction

has been based on well known resampling methods like bootstrapping and jack-

knifing in nonparametric settings. However, these methods may not be effective

in complex situations when the sampling distribution of the statistic changes too

abruptly with the parameter, or when this distribution is very skewed and has

heavy tails. Also the robustness properties of F may not be preserved for T (F )

for all T (·). For excellent reviews of bias reduction methods, we refer the readers

to Gray and Schucany [11], Anderson et al. [1], Zacks [30], Efron [8], Hall [12],

and Chapter 4 of Beirlant et al. [2].

Recently, various analytical methods have been developed for bias reduction

in parametric settings. Withers [27] developed methods for bias reduction based

on Taylor series expansions. Sen [18] and originally von Mises [22] established

asymptotic normality of
√

n
{

T ( ̂F )− T (F )
}

as n → ∞ under suitable regularity

conditions. Cabrera and Fernholz [3], [4] defined a target estimator: for a given T

and a parametric family of distributions it is defined by setting the expected

value of the statistic equal to the observed value. Cabrera and Fernholz [3], [4]

established under suitable regularity conditions that the target estimator has

smaller bias and mean squared error than the original estimator. See also Fernholz

[9].

The first analytical bias reduction method in a nonparametric setting was

proposed by Withers and Nadarajah [29]. The technical tools required for Withers

and Nadarajah [29] were contained in an unpublished technical report cited there

as Withers (1994a).

This paper is an update of the unpublished technical report. The emphasis

of this paper is to describe how to find estimates of low bias for T (F ). Because

of the material in Withers and Nadarajah [29], the emphasis here will not be

on numerical illustrations or applications. In Withers and Nadarajah [29], the

estimates proposed here were compared to alternatives. We showed in particular

that our estimates consistently outperform bootstrapping, jackknifing and those

due to Sen [18] and Cabrera and Fernholz [3], [4]. We also provided computer

programs in MAPLE for implementation of the proposed estimates.

Suppose we have k ≥ 1 independent samples of sizes n1, ..., nk from dis-

tribution functions (d.f.s) F = (F1, ..., Fk) on R
s1 , ..., Rsk . Let ̂F = ( ̂F1, ..., ̂Fk)

denote their sample d.f.s and let n be the minimum sample size. The problem we

consider in this paper is that of finding an estimate of low bias for an arbitrary
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smooth functional T (F ). The natural estimate T ( ̂F ) generally has bias ∼ n−1
,

that is, O(n−1
) as n → ∞.

For the reader’s convenience, in Section 2, we repeat the definition of func-

tional derivatives and rules for obtaining them given in Withers [28]. In Section 3,

we have a formal asymptotic expansion of the form

ET ( ̂F ) =

∞
∑

r=0

n−rCr ,(1.1)

where C0 = T (F ). The coefficient of n−r
in ET ( ̂F ), Cr(F, T ) = Cr may be writ-

ten in terms of the (functional or von Mises) derivatives of T ( ̂F ) of order ≤ 2r,

and is given in Section 3 explicitly for r ≤ 4.

From (1.1) if a functional T(n)(F ) can be expanded as

T(n) =

∞
∑

i=0

n−i Ti(F )

then

ET(n)(
̂F ) =

∞
∑

i=0

n−i ETi(
̂F )

=

∞
∑

i=0

n−i
∞
∑

r=0

n−rCr(F, Ti)

=

∞
∑

j=0

j
∑

r=0

n−j Cr(F, Tj−r)

=

∞
∑

j=0

n−j Cj(T) ,

where

Cj(T) =

j
∑

r=0

Cr(F, Tj−r) .

Defining Ti iteratively by T0 = T and

Ti(F ) = −
i
∑

j=1

Cj(F, Ti−j)(1.2)

for i ≥ 1 it follows that for p ≥ 1

Tn,p(F ) =

p−1
∑

i=0

n−i Ti(F )(1.3)
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satisfies

ETn,p(
̂F ) =

p−1
∑

i=0

n−iETi(
̂F )

=

p−1
∑

i=0

n−i
∞
∑

r=0

n−rCr(F, Ti)

=

p−1
∑

i=0

n−i

[

p−1
∑

r=0

n−rCr(F, Ti) +

∞
∑

r=p

n−rCr(F, Ti)

]

=

p−1
∑

i=0

n−i

p−1
∑

r=0

n−rCr(F, Ti) +

p−1
∑

i=0

n−i
∞
∑

r=p

n−rCr(F, Ti)

=

p−1
∑

j=0

n−j

j
∑

r=0

Cr(F, Tj−r) +

p−1
∑

i=0

∞
∑

r=p

n−i−rCr(F, Ti) + O(n−p
)

= T0(F ) +

p−1
∑

j=1

n−j Tj(F ) +

p−1
∑

j=1

n−j

j
∑

r=1

Cr(F, Tj−r)

+

p−1
∑

i=0

∞
∑

r=p

n−i−rCr(F, Ti) + O(n−p
)

= T0(F ) +

p−1
∑

i=0

∞
∑

r=p

n−i−rCr(F, Ti) + O(n−p
)

= T (F ) + O(n−p
) ,

where the two middle terms in the third last step cancel out because of (1.2).

So, we can write

ETn,p(
̂F ) = T (F ) + O(n−p

) .

So, Tn,p(
̂F ) is a pthorder estimate in the sense that it has bias O(n−p

). This result

was given for the case k = 1, p = 2 using a different approach in an unpublished

technical report by Jaeckel [13].

Note that Ti(
̂F ) given by (1.2) is the coefficient of n−i

in the expansion in

powers of n−1
of the unbiased estimate (UE) of T (F ), if an UE exists.

Section 4 gives Ti(F ) explicitly in terms of the first 2 i derivatives of T (F )

for i ≤ 3. So, Tn,4(
̂F ) is an explicit estimate of bias O(n−4

). Proposition 4.1

shows how to obtain from (1.3) an estimate of bias O(n−p
) of the form Sn,p(

̂F ),

where

Sn,p(F ) =

p−1
∑

i=0

Si(F )
/{

(n − 1) ···(n − i)
}

.

This estimate is unbiased for one sample if T (F ) is a polynomial in F (such as

a moment or cumulant) of degree up to p.
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Section 5 gives examples and makes comparisons with the UEs of central

moments and cumulants given by James [14] and by Fisher [10]. Our method is

demonstrated to be give much simpler results for UEs of products of moments

than the polykay system of Wishart [23] as expounded in Section 12.22 of Stuart

and Ord [19] using tables of the symmetric functions.

Examples 5.1 to 5.3 estimate an arbitrary function of the vector µ(F ),

the mean of one multivariate distribution. Example 5.2 specializes to T (F ) =

a′
µ(F )/b′

µ(F ), where a,b are given s1-vectors, in particular for the ratio of

means of a bivariate sample,

T (F ) = µ1(F )/µ2(F ) .

Examples 5.4 and 5.5 estimate an arbitrary function of the means of k univariate

distributions; in particular it considers the case of two univariate samples (k = 2,

s1 = s2 = 1) with

T (F ) = µ(F1)/µ(F2) .

Example 5.6 gives an explicit expression for the general derivative of the rth
central

moment µr. Together with the chain rule of Appendix A this enables one to obtain

a pth
order estimate of any smooth function of moments. In particular, we give

fourth order estimates for any central moment and UEs for µr for r ≤ 7.

Examples 5.7 to 5.11 extend this to an arbitrary product of moments. An

alternative matrix method for obtaining UEs of products of moments is given

there. This involves obtaining simultaneously the UEs of all moment products of

a given degree. Examples 5.12 to 5.15 give fourth order estimates of the standard

deviation and functions of it. Example 5.16 gives third order estimates of the

ratio of the mean to the standard deviation.

Examples 5.17 to 5.21 give applications to return times and exceedances.

Examples 5.22 and 5.23 illustrate how to obtain UEs for multivariate moments

and cumulants from univariate analogs. Finally, Examples 5.24 and 5.25 give

second order estimates for the correlation and its square.

The method can also be used to estimate with reduced bias any cumulant

of T ( ̂F ). This is illustrated in Section 6 which gives a third order estimate for

the covariance of any estimate of the form T( ̂F ), where now T may be a vector.

For example, by Example 5.1, if k = 1 and T (F ) is any function of µ(F ) (such as

µ1(F )/µ2(F )) if s1 = 2), this estimate is a function of the mean and covariance

of F only, whereas C1 depends also on the third moment.

Section 7 shows how to estimate the covariance of an estimate of bias.

There are, of course, other pth
order estimates of T (F ), but they are all

computationally intensive, requiring O(np
) calculations (except in special cases),
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whereas our method requires only O(n) calculations for fixed p. The main exam-

ples are, firstly, the (p−1)
th

iterated bootstrap, ̂θp−1 of equation (1.35) of Hall [12]

in which (−1)
i+1

should be inserted in the right hand side; and, secondly, the

pth
order jackknife ̂θp−1

of equation (4.17) of Schucany et al. [17], a ratio of p×p

determinants. To see that this requires O(np
) calculations note that tp of their

equation (4.19) requires O(np
) calculations.

The techniques given here can also be applied to quantify their biases. Note

that if A and B are two pth
order estimates of T (F ) then A − B = Op(n

−p
).

Appendix A gives a very useful chain rule for obtaining the derivatives of

a function of a functional. Appendix B gives some results used to obtain {Ti}

of (1.3). Appendix C shows how to estimate the number of simulated samples

needed to estimate the bias to within a given relative error.

[21] by an entirely different method obtained an expansion of the form (1.1)

for

m(v) = T (F ) =

s
∏

i=1

EXvi ,

where X ∼F , and so also for µr(F ). For these cases he constructs estimates

of bias O(n−p
) given p ≥ 1. He shows for T (F ) = m(v) that the UE Tn,∞( ̂F )

converges if E|X|h < ∞, where h =
∑s

i=1 vi and n−1 > the number of partitions

of h. His expression on page 12, Theorem 4, is incorrect. He gives

var m̂(v) = n−1V + O(n−2
) ,

where

V = m(v)
2
(A − s2

) and A =

s
∑

i=1

m2vi
m2

vi
.

Here, A should be

s
∑

i,j=1

mvi+vj
m−1

vi
m−1

vj
.

For the case T (F ) = µ3
his Table 2 illustrates through simulations for F = U(0, 1)

and n = 5,10 how the bias of Tn,p(
̂F ) falls to zero as p increases.

Throughout the paper, we shall assume that T (F ) and all of its relevant

derivatives are continuous and bounded, and that (1.1) converges with each term

and its relevant derivatives continuous and bounded.
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2. FUNCTIONAL PARTIAL DERIVATIVES AND NOTATION

Let Fs denote the space of d.f.s on R
s
. Let x,y,x1, ...,xr be points in R

s
,

F ∈ Fs and T : Fs → R. In Withers [25] and originally in [22], the rth
order func-

tional derivative of T (F ) at (x1, ...,xr)

Tx1,...,xr
= TF (x1, ...,xr) ,

was defined. It is characterized by the formal functional Taylor series expansion:

for G in Fs,

T (G) − T (F ) ≈
∞
∑

r=1

∫ r

TF (x1, ...,xr)

r
∏

j=1

d
(

G(xj) − F (xj)
)/

r! ,(2.1)

where
∫ r

denote r integral signs, and the constraints Tx1,...,xr
is symmetric in its

r arguments, and

∫

Tx1,...,xr
dF (x1) = 0 .

These imply F (xj) in (2.1) can be replaced by zero. In particular, it was shown

that, for 0 ≤ ε ≤ 1,

Tx = ∂T
(

F + ε (δx−F )
)/

∂ε

at ε = 0, where δx is the d.f. putting mass 1 at x, that is δx(y) = I(x≤ y) = 1

if x ≤ y and 0 otherwise. For example, T (F ) = F (y) has first derivative Tx =

TF (x) = δx(y) − F (y) = F (y)x, say.

Also, Tx1,...,xr
= 0 if T (F ) is a ‘polynomial in F ’ of degree less than r (for

example, a moment or cumulant of F of order less than r), so that the Taylor

series in (2.1) consists of only r −1 terms. Note that T (F ) is a polynomial in F

of degree m if for any G in Fs, T (F + ε(G−F )) is a polynomial in ε of degree m.

Suppose now that F = (F1, ..., Fk) consists of k distributions on R
s1 , ..., Rsk

and that T (F ) is a real functional of F . Then the functional partial derivative of

T (F ) at

(

a1, ..., ar

x1, ...,xr

)

is defined by

T a1,...,ar

x1,...,xr
= TF

(

a1, ..., ar

x1, ...,xr

)

,

where xi in R
sai and ai in {1, 2, ..., k}, and is obtained by treating the lower order

functional partial derivatives and T (F ) as functionals of Fa alone for a = a1, ..., ar.
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For example, T a,...,a
x1,...,xr

is the ordinary functional derivative of S(Fa) = T (F ) at

(x1, ...,xr), and T a,...,a,b,...,b
x1,...,xry1,...,ys

is the ordinary functional derivative of S(Fb) =

T a,...,a
x1,...,xr

at (y1, ...,ys).

Just as ∂2f(x, y)/∂x ∂y = ∂2f(x, y)/∂y ∂x under mild conditions, swap-

ping columns of T a1,...,ar

x1,...,xr
(for example,

a1

x1
and

a2

x2
) will not alter its value. So,

T a,...,a,b,...,b
x1,...,xr ,y1,...,ys

is also the ordinary functional derivative of S(Fa) = T b,...,b
y1,...,yr

at

(x1, ...,xs).

The partial derivatives may also be characterized by the formal functional

Taylor series expansion: for G = (G1, ..., Gk) ∈ Fs1
×···×Fsk

,

T (G) − T (F ) ≈
∞
∑

r=1

∫ r

TF

(

a1, ..., ar

x1, ...,xr

) r
∏

j=1

d
(

Gaj
(xj) − Faj

(xj)
)/

r!(2.2)

with summation of the repeated subscripts a1, ..., ar over their range 1, ..., p im-

plicit, together with the constraints

T a1,...,ar

x1,...,xr
is not altered by swapping columns ,

and
∫

T a1,...,ar

x1,...,xr
dFa1

(x1) = 0 .

These imply Faj
(xj) in (2.2) can be replaced by zero. The partial derivatives

may also be calculated using

T
a1,...,ar+1

x1,...,xr+1
=

(

T a1,...,ar

x1,...,xr

)

ar+1

xr+1
+

r
∑

i=1

δai,ar+1
T
〈a1,...,ar+1

x1,...,xr+1

〉

i
,(2.3)

where δi,j = 1 or 0 for i = j or i 6= j, 〈 〉i means ‘drop the ith column’, and T a
x

denotes the ordinary functional derivative of S(Fa) = T (F ) at x. The proof of

(2.3) is as for equation (2.6) of Withers [25].

3. EXPANSIONS FOR BIAS

Perhaps the easiest method to obtain expressions for the bias coefficients

{Cr} of (1.1) and the bias reduction coefficients {Ti(F )} of (1.3) is from their

parametric analogs, given in equation (A.1) and Appendix D (for i ≤ 3) of With-

ers [27]. The method is to identify (θ, ̂θ, t,
∑

) with (F, ̂F , T,
∫

), where the integral

is with respect to the appropriate d.f. Fi. This method was used in Withers [28]

to derive non-parametric confidence intervals of level 1−α+O(n−j/2
) from their

parametric analogs. It is convenient to set

T
(

ai, bj , ...
)

=

∫

···

∫

TF

(

ai, bj

xi, yj ···

)

dFa(x) dFb(y) ··· ,(3.1)
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where xi
denotes a string of i x’s (not a product) and similarly, for ai

. In the

notation of Withers [28] this is [1
i, 2j , ...]a,b,.... Setting

λa = n/na with n = minni ,(3.2)

the above approach yields

C1 = |2|/2 , C2 = |3|/6 + |22|/8 ,(3.3)

C3 = |4|/24 + |2, 3|/12 + |23|/48,(3.4)

C4 = |5|/120 + |2, 4|/48 + |32|/72 + |22, 3|/48 + |24|/384 ,(3.5)

where

|2| =

∑

λa T (a2
) ,

|3| =

∑

λ2
a T (a3

) ,

|22| =

∑

λa1
λa2

T (a2
1, a

2
2) ,

|4| =

∑

λ3
a

{

T (a4
) − 3 T (a2, a2

)

}

,

|2, 3| =

∑

λaλ2
b T (a2, b3

) ,

|23| =

∑

λa1
λa2

λa3
T (a2

1, a
2
2, a

2
3) ,

|5| =

∑

λ4
a

{

T (a5
) − 10 T (a2, a3

)

}

,

|2, 4| =

∑

λaλ3
b

{

T (a2, b4
) − 3 T (a2, b2, b2

)

}

,

|32| =

∑

λ2
a1

λ2
a2

T (a3
1, a

3
2) ,

|22, 3| =

∑

λa1
λa2

λ2
b T (a2

1, a
2
2, b

3
) ,

|24| =

∑

λa1
λa2

λa3
λa4

T (a2
1, a

2
2, a

2
3, a

2
4) .

For example, if k = 1 (one sample) then

C1 = T (1
2
)/2 , C2 = T (1

3
)/6 + T (1

2, 12
)/8 , ... .(3.6)

More generally,

|Ai| =

∑

λA−1
a1

···λA−1
ai

|Ai|a1,...,ai
,

(3.7)

|Ai, Bj | =

∑

λA−1
a1

···λA−1
ai

λB−1
b1

···λB−1
bj

|AiBj |a1,...,ai,b1,...,bj

with each a1, ..., bj summed over 1, ..., k,

|Ai, Bj |a1,...,ai,b1,...,bj
= T

(

aA
1 , ..., aA

i , bB
1 , ..., bB

j

)

if A and B = 2 or 3 ,

|4|a = T (a4
) − 3 T (a2, a2

) ,

|5|a = T (a5
) − 10 T (a2, a3

) ,

|2, 4|a,b = T (a2, b4
) − 3 T (a2, b2, b2

) .
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For example,

|A2| =

∑

λA−1
a1

λA−1
a2

|A2|a1,a2
,

and

|A2|a1,a2
= T (aA

1 , aA
2 ) if A = 2 or 3

=

∫ ∫

TF

(

aA
1 , aA

2

xA, yA

)

dFa1
(x) dFa2

(y) ,

so for the one sample case (k = 1),

|Ai| = T (1
A, ..., 1A

) if A = 2 or 3 ,

|Ai, Bj | = T
(

1
A, ..., 1A, 1B, ..., 1B

)

if A and B = 2 or 3 ,

|4| = T (1
4
) − 3 T (1

2, 12
) , |5| = T (1

5
) − 10 T (1

2, 13
) ,

|2, 4| = T (1
2, 14

) − 3 T (1
2, 12, 12

) .

The general term Cr is given by equation (A.1) of Withers [27], (3.2), (3.7),

and

|i, j, ...|a,b,... =

∫ i

diκ′

a(x1, ...,xi)

∫ j

dκ′

b(y1, ...,yj) ··· TF

(

a, ..., a, b, ..., b
x1, ...,xi,y1, ...,yj

···

)

,

where
∫ i

diκ′

a(x1, ...,xi) is the Lebesgue–Stieltjes integral,

x1 ∧ x2 ∧ ··· = min(x1,x2, ...) taken componentwise ,

f1,2,... = Fa(x1 ∧ x2 ∧ ···) ,

κa(x1,x2, ...) = κ(Y1,Y2, ...) , the joint cumulant at Yj = I(Xa≤ xj) ,

κ′

a(x1,x2, ...) = κa(x1,x2, ...) expressed as a function of {fi,j,...} at fi ≡ 0 ,

and I is the indicator function and Xa ∼ Fa. For example, using an obvious

summation notation

κa(x1,x2) = f1,2 − f1f2 ,

κa(x1,x2,x3) = f1,2,3 −
3
∑

f1,2 f3 + 2 f1f2f3 ,

κa(x1, ...,x4) = f1,...,4 −
4
∑

f1,2,3f4 −
3
∑

f1,2f3,4 ,

imply

κ′

a(x1,x2) = f1,2 , κ′

a(x1,x2,x3) = f1,2,3 ,

κ′

a(x1, ...,x4) = f1,...,4 −
3
∑

f1,2f3,4 .

As a check if k = 1, (C1, C2) = (a1,1, a1,2) on page 580 of Withers [25].
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4. ESTIMATES OF BIAS O(n−4
)

Here, we give expressions for {Ti, i ≤ 3} of (1.2) and for {Si, i ≤ 3} of

Proposition 4.1. Estimates of bias O(n−4
) are then given by Tn,4(

̂F ) of (1.3) and

Sn,4(
̂F ) of (4.5), (4.6).

From their parametric analogs in Appendix D of Withers [27], we obtain

(see Appendix B) in the notation of (3.7)

T1(F ) = −|2|/2 , T2(F ) = |3|/3 + |22|/8 −
∑

λ2
a T (a2

)/2 ,(4.1)

and

T3(F ) = −
∑

λ3
a T (a2

)/2 +

∑

λ3
a T (a3

) −
∑

λ3
a T (a4

)/4

+

∑

λ3
a T (a2, a2

)/2 +

∑

λaλ2
b T (a2, b2

)/4 −
∑

λaλ2
b T (a2, b3

)/6

−
∑

λaλbλc T (a2, b2, c2
)/48 .

For the one sample case (k = 1), these reduce to

T1(F ) = −T (1
2
)/2 ,(4.2)

T2(F ) = T (1
3
)/3 + T (1

2, 12
)/8 − T (1

2
)/2 ,(4.3)

T3(F ) = −T (1
2
)/2 + T (1

3
) − T (1

4
)/4 + 3T (1

2, 12
)/4 − T (1

2, 13
)/6

(4.4)
−T (1

2, 12, 12
)/48 .

Proposition 4.1. Let {Ni(n), i ≥ 0} be given functions satisfying Ni(n)

/ n−i → 1. Then (1.3) may be rewritten as Sn,p(F ) + O(n−p
), where

Sn,p(F ) =

p−1
∑

i=0

Ni(n)Si(F ) .(4.5)

So, Sn,p(
̂F ) is a pth order estimate of T (F ).

Suppose now that it is known that there exists an UE and that it has the

form Sn,p(
̂F ). Then this gives a method of obtaining it. For example, if k = 1

and T (F ) is a polynomial of degree p in F (for example, a product of moments

or cumulants of total degree p), then the UE of T (F ) has the form (4.5) with

Ni(n) = 1/(n − 1)i ,(4.6)

where (r)i = r!/(r − i)! = r(r − 1) ···(r − i + 1). In this case, {Si} are given in

terms of {Ti} by equation (2.17.2) of Withers [27]:

S0 = T , S1 = T1 , S2 = T2 − T1 , S3 = T3 − 3 T2 + 2T1 , ...
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If k = 1 and we choose Ni(n) as in (4.6), then Si is generally a simpler expression

than Ti:

S0(F ) = T (F ) , S1(F ) = −T (1
2
)/2 ,

S2(F ) = T (1
3
)/3 + T (1

2, 12
)/8 ,(4.7)

S3(F ) = −T (1
4
)/4 + 3T (1

2, 12
)/8 − T (1

2, 13
)/6 − T (1

2, 12, 12
)/48 .(4.8)

If k 6= 1,

S0(F ) = T (F ) , S1(F ) = T1(F ) of (4.2) ,

S2(F ) = T2(F ) − T1(F ) = |3|/3 + |22|/8 +

∑

(λa− λ2
a) T (a2

)/2 ,

and so on.

For p ≥ 1, set en,p(T, F ) = Tn,p(F ) of (1.3) and let {Ui(F )} be smooth.

Then a pth
order estimate of

Un(F ) =

∞
∑

i=0

n−i Ui(F )

is

U⋆
(n)p(

̂F ) =

p−1
∑

i=0

n−ien,p−i(Ui, ̂F ) .(4.9)

Let κr(X) denote any rth
order cumulant of X, any q×1 random vector. Then

n1−rκr(T ( ̂F )) can be expanded in the form (4.9); a method of obtaining {Ui} is

illustrated in Section 6 for the case r = 2.

Proposition 4.2. ET ( ̂F ) may be infinite or may not exist. For example,

this is the case if k = s = 1, T (F ) = µ(F )
−I , I ≥ 1 and F has positive density at

zero, or Ḟ (x) approaches zero too slowly as x→ 0. So, page 356 in Quenouille [16]

is wrong in giving X
−1

finite bias for X ∼N (2,1). In such cases, our method may

be salvaged provided we know an upper bound for |T (F )|, say |T (F )| < u < ∞.

By large deviation theory P
(

|T ( ̂F )| ≥ u
)

= O
(

exp(−nλ)
)

, where λ > 0. Typically,

˜Tn,p(
̂F ) is a pth order estimate of T (F ), where

˜Tn,p(F ) =

{

Tn,p(F ) , if |T (F )| < u ,

c, otherwise ,
(4.10)

and c is any finite constant, for example, u.

The estimates (4.5) and (4.9) can be adapted similarly, to give ˜Sn,p(
̂F ) and

˜U⋆
n,p(

̂F ) say. Similarly, if U(n)(F ) is the formal expansion of nr−1κr

(

Tn,p(
̂F )
)

then

U⋆
n,q(

̂F ) I
(

|T ( ̂F )|< u
)

is a qth order estimate of nr−1κr

(

˜Tn,p(
̂F )
)

even if κr

(

T ( ̂F )
)

is not finite. For example, the variances in equations (10.17)–

(10.20) of Kendall and Stuart [15] are infinite if the density at zero is positive.
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An alternative estimate of bias O(n−p
) is T+

n,p(
̂F ) = Tn,q(

̂F ), where q ≤ p

is the maximum integer such that
{

n−i Ti(
̂F ), 0 ≤ i ≤ q

}

decreases in absolute

value. This may be useful if Tn,p(
̂F ) diverges. Note that S+

n,p(F ) and ˜T+
n,p(

̂F )

may be defined analogously from (4.5) and (4.10).

5. EXAMPLES

Example 5.1. Suppose k = 1, X∼F on R
s

and T (F ) = g(µ), where

µ = µ(F ) = EX has dimension s1 = s and g is a function with finite deriva-

tives at µ. By the chain rule (A.6) or (A.7) of Appendix A,

TF (x1, ...,xr) = gj1,...,jr
µj1,x1

···µjr,xr
,

where

µj,x = µj,F (x) = xj − µj , g ··· = g ···(µ)

are the partial derivatives of g(µ) with respect to µ, and summation of the

repeated indices j1, ..., jr over their range 1, ..., s is implicit. So,

T (1
i1 , 1i2 , ...) = gj1,...,ji1

,k1,...,ki2
,... µ[j1, ..., ji1 ] µ[k1, ..., ki2 ] ··· ,

where

µ[j1, ..., ja] =

∫

(xj1 − µj1) ··· (xja
− µja

) dF (x) ,(5.1)

the joint central moment. So,

T (1
2
) = gi,j µ[i, j] =

s
∑

i=1

gi,i µ[i, i] + 2

∑

1≤i<j≤s

gi,j µ[i, j] ,

T (1
3
) = gi,j,k µ[i, j, k] ,

T (1
4
) = gi,j,k,l µ[i, j, k, l] ,

T (1
2, 12

) = gj1,j2,k1,k2
µ[j1, j2] µ[k1, k2] ,

T (1
2, 13

) = gi,j,k,l,m µ[i, j] µ[k, l, m] ,

T (1
2, 12, 12

) = gi,j,k,l,m,n µ[i, j] µ[k, l] µ[m, n] .

So, by (4.2)–(4.4)

T1(F ) = −C1 = −gi,j µ[i, j]/2 ,

T2(F ) = −gi,j µ[i, j]/2 + gi,j,k µ[i, j, k]/3 + gi,j,k,l µ[i, j] µ[k, l]/8 ,

T3(F ) = −gi,j µ[i, j]/2 + gi,j,k µ[i, j, k] − gi,j,k,l

{

µ[i, j, k, l] − 3 µ[i, j] µ[k, l]
}

/

4

− gi,j,k,l,m µ[i, j] µ[k, l, m]/6 − gi,j,k,l,m,n µ[i, j] µ[k, l] µ[m, n]/48 .

A pth
order estimate of T (F ) is now given in terms of these by Tn,p(

̂F ) of (1.3).
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Example 5.2. Consider Example 5.1 with g(µ) = α
′
µ/β

′
µ = N/D, say,

where α, β are given s-vectors. Its ith order partial derivative with respect to µ

is

gj1,...,ji
= (−1)

i−1
(i − 1)! D−i

i
∑

δj1 βj2 ···βji
,(5.2)

where

δi = αi − βi T (F )(5.3)

and

m
∑

fi1,...,im = fi1,...,im + fi2,...,im,i1 + ··· + fim,i1,...,im−1
.

So,

T (1
i
) = (−1)

i−1 i! D−iδj1 βj2 ···βji
µ[j1, ..., ji] ,

T (1
2, 12

) = −4! D−4 δj1 βj2 βj3 βj4 µ[j1, j2] µ[j3, j4] ,

T (1
2, 13

) = 4!D−5
{

2 δj1/βj1 + 3 δj3/βj3

}

βj1···βj5 µ[j1, j2] µ[j3, j4, j5] ,

T (1
2, 12, 12

) = −6! D−6δj1 βj2 ···βj6 µ[j1, j2] µ[j3, j4] µ[j5, j6] .

In particular, for g(µ) = µ1/µ2 (the ratio of means for one bivariate sample),

T (1
i
) = (−1)

i−1 i! µ−i
2

{

µ[1, 2i−1
] − T (F ) µ[2

i
]

}

,

T (1
2, 12

) = −4! µ−4
2

{

µ[1, 2] µ[2
2
] − T (F )µ[2

2
]
2
}

,

T (1
2, 13

) = 4! µ−5
2

{

2 µ[1, 2] µ[2
3
] + 3µ[2

2
] µ[1, 22

] − 5 T (F )µ[2
2
] µ[2

3
]

}

,

T (1
2, 12, 12

) = −6! µ−6
2

{

µ[1, 2] − T (F )µ[2
2
]

}

µ[2
2
]
2 ,

so

S1(F ) = T1(F ) = −C1 = µ−2
2

{

µ[1, 2] − T (F )µ[2
2
]

}

,

T2(F ) = 2µ−3
2

{

µ[1, 22
] − T (F )µ[2

3
]

}

− T1(F )

{

1 + 3µ−2
2 µ[2

2
]

}

,

S2(F ) is the same as T2(F ) with ‘1 +’ deleted,

T3(F ) = µ−2
2

{

µ[1,2]− T (F )µ[2
2
]

}{

1− 18 µ−2
2 µ[2

2
]− 8 µ−3

2 µ[2
3
] + 15µ−4

2 µ[2
2
]
2
}

+ 6µ−3
2

{

µ[1, 22
] − T (F )µ[2

3
]

}{

1 − 2 µ−2
2 µ[2

2
]

}

+ 6µ−4
2

{

µ[1, 23
] − T (F )µ[2

4
]

}

and

S3(F ) = µ−2
2

{

µ[1, 2] − T (F )µ[2
2
]

}{

−9 µ−2
2 µ[2

2
] − 8 µ−3

2 µ[2
3
] + 15µ−4

2 µ[2
2
]
2
}

− 12 µ−5
2

{

µ[1, 22
] − T (F )µ[2

3
]

}

µ[2
2
]

+ 6µ−4
2

{

µ[1, 23
] − T (F )µ[2

4
]

}

.
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Example 5.3. Consider Example 5.1 with g(µ) = (α
′
µ)

p
= Np

, say,

where α is a given s-vector. The ith order partial derivative of g(µ) with re-

spect to µ is

gj1,...,ji
= (p)i N

p−iαj1 ···αji
.

Set

α(i) = N−iαj1 ···αji
µ[j1, ..., ji] .

Then

T (1
i
) = (p)i N

pα(i) ,

T (1
2, 12

) = (p)4 Npα2
(2) ,

T (1
2, 13

) = (p)5 Npα(2) α(3) ,

T (1
2, 12, 12

) = (p)6 Npα3
(2) ,

T1(F ) = −C1 = −(p)2 Npα(2)/2 ,

T2(F ) = Np
{

−(p)2 α(2)/2 + (p)3 α(3)/3 + (p)4 α2
(2)/8

}

,

T3(F ) = Np
{

−(p)2 α(2)/2 + (p)3 α(3) − (p)4

[

α(4) − 3 α2
(2)

]

/4

− (p)5 α(2) α(3)/6 − (p)6 α3
(2)/48

}

.

In particular, for a univariate sample (s = 1) with central moments {µr}

and g(µ) = µp
,

S1(F ) = T1(F ) = −(p)2 µp−2µ2/2 ,

T2(F ) = −(p)2 µp−2µ2/2 + S2(F ) ,

S2(F ) = (p)3 µp−3µ3/3 + (p)4 µp−4µ2
2/8 ,

T3(F ) = −(p)2 µp−2µ2/2 + (p)3 µp−3µ3 − (p)4 µp−4
(

µ4 − 3 µ2
2

)

/4

−(p)5 µp−5µ3µ2/6 − (p)6 µp−6µ3
2/48

and

S3(F ) = −(p)4 µp−4
(

2 µ4 − 3 µ2
2

)

/8 − (p)5 µp−5µ3µ2/6 − (p)6 µp−6µ3
2/48 .

In particular, for p a positive integer, by Proposition 4.1, an UE for µp
is

p−1
∑

i=0

Si(
̂F )/(n − 1)i ,

where S0(F ) = µp
, and

for p = 2 : S1(F ) = −µ2 ,

for p = 3 : S1(F ) = −3 µµ2 , S2(F ) = 2µ3 ,

for p = 4 : S1(F ) = −6 µ2µ2 , S2(F ) = 8µµ3 + 3µ2
2 , S3(F ) = −6 µ4 + 9µ2

2 .

These results may be checked by by solving the system of equations given by page 5

in Wishart [23]. For p = 4 the system has seven equations. Alternatively, one
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may follow the method of Section 12.22 of Stuart and Ord [19] using their tables

of the symmetric functions. For example, after some labor one obtains for p = 4

the UE Tn( ̂F ), where

(n − 1)3 Tn(F ) =
(

N3 − 8n2
+ 23n − 30

)

m4 − n
(

n2 − 7n + 4
)

m3m1

− n
(

n2 − 6 n + 6
)

m2
2 + n2

(

n − 9
)

m2m2
1 + n3m4

1 ,

where mi = EXi
. Clearly, our method gives a much simpler form.

For p = −1, that is T (F ) = µ−1
, the above gives

Sn,p(F ) =

p−1
∑

i=0

Si(F )/(n − 1)i ,

where

S0(F ) = µ−1 , S1(F ) = −µ−3µ2 ,

S2(F ) = −2 µ−4µ3 + 3µ−5µ2
2 ,

S3(F ) = −3 µ−5
(

2 µ4−3 µ2
2

)

+ 20µ−6µ3µ2 − 15 µ−7µ3
2 ,

so setting γr = µr µ−r
, si = Si(F )/T (F ) is given by

s1 = −γ2 ,

s2 = −2 γ3 + 3 γ2
2 ,

s3 = −3
(

2 γ4 − 3 γ2
2

)

+ 20 γ3γ2 − 15 γ3
2 .

Some simulations estimating the bias of ˜Sn,i(
̂F ) of (4.5), (4.6) and Proposition 4.2

with c = 1/u = µ/10 for 1 ≤ i ≤ 4, for µ−1
, are given in Table 1. The estimates

present bias even for n = 100 and bias-corrected estimates of order n−2
(i.e. p = 2):

see Appendix C.

Table 1: Relative bias of ˜Sn,p(
̂F ) for T (F ) = µ−1

estimated from

two runs of 5000 simulations.

n = 10 n = 100

p = 1 p = 2 p = 1 p = 2

Norm (1/2, 1)
Run 1 0.0773 −0.0242 0.0089 0.0013
Run 2 0.0916 −0.0092 0.0087 0.0011

Norm (1, 1)
Run 1 −0.0780 −0.0105 −0.0149 −0.0094
Run 2 −0.0660 −0.0040 −0.0141 −0.0087

Norm (2, 1)
Run 1 0.0208 −0.0048 −0.0046 −0.0070
Run 2 0.0202 −0.0056 −0.0056 −0.0078

Exp (1)
Run 1 0.1096 0.0120 0.0052 −0.0045
Run 2 0.1062 0.0184 0.0062 −0.0035
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Example 5.1 estimated a smooth function of the mean of one multivariate

distribution. We now estimate a smooth function of the means of k univariate

distributions.

Example 5.4. Suppose we have k univariate samples (that is s1 = ··· =

sk = 1) with T (F ) = g(µ), where now µ =
(

µ(F1), ..., µ(Fk)
)

. That is, T (F ) is a

function of the means of k univariate samples. Then

TF

(

a1, ..., ar

x1, ..., xr

)

= ga1,...,ar
µa1,x1

···µar,xr
,

where g ··· is the partial derivative with respect to µ and

µa,x = µFa
(x) = x − µ(Fa) = x − µa .

So,

T (ai, bj , ...) = gai,bj ,... µi[a] µj [b] ··· ,

where

µi[a] = µi(Fa) =

∫

(x − µa)
idFa(x) ,

the ith central moment of Fa. So, for λa of (3.2),

C1 =

∑

a

λa ga,a µ2[a]/2 ,

C2 =

∑

a

λ2
a ga,a,a µ3[a]/6 +

∑

a,b

λaλb ga,a,b,b µ2[a] µ2[b]/8 ,

C3 =

∑

λ3
a ga,a,a,a

{

µ4[a] − 3 µ2[a]
2
}

/24

+

∑

λaλ2
b ga,a,b,b,b µ2[a] µ3[b]/12 +

∑

λaλbλc ga,a,b,b,c,c µ[a] µ2[b] µ2[c]/48 ,

T1(F ) = −C1 ,

T2(F ) =

∑

λ2
a ga,a,a µ3[a]/3 +

∑

λaλb ga,a,b,b µ1[a] µ2[b]/8 −
∑

λ2
a ga,a µ2[a]/2 ,

T3(F ) = −
∑

λ3
a ga,a µ2[a]/2 +

∑

λ3
a ga,a,a µ3[a]

−
∑

λ3
a ga,a,a,a

{

µ4[a]/4 + µ2[a]
2/2
}

+

∑

λ2
aλb ga,a,b,b µ2[a] µ2[b]/4 −

∑

λaλ2
b ga,a,b,b,b µ2[a] µ3[b]/6

−
∑

λaλbλc ga,a,b,b,c,c µ2[a] µ2[b] µ2[c]/48 .



Nonparametric Estimates of Low Bias 247

Example 5.5. Consider Example 5.4 with g(µ) = α
′
µ/β

′
µ = N/D, say,

where α and β are given k-vectors. Set

γa = αa/βa − T (F ) ,

Ai,k,l = D−kl
∑

a

λi+kl−1
a βk

a µk(a)
l γa ,

Bi,k,l = {Ai,k,l} at γa ≡ 1 ,

Ak = A0,k,1 ,

Bk = B0,k,1 .

Then, by (5.2),

C1 = −A2 ,

C2 = A3 − 6A2B2 ,

C3 = −A4 + 3A0,2,2 + 6A2B3 + 9A3B2 − 15A2B
2
2 ,

T1(F ) = A2 ,

T2(F ) = 2A3 − 3A2B2 + A1,2,1,

T3(F ) = A2,2,1 − 9A1,3,1 − 3A3 + 6A4 − 12A0,2,2 − 3A1,2,1B2 − 3A2B1,2,1

− 8A2B3 − 12A3B2 + 15A2B
2
2 .

In particular, for g(µ) = µ1/µ2 (the ratio of means for two univariate samples),

setting νk = µ−k
2 µk[2], we obtain

C1 = λ2ν2 µ1/µ2 ,

C2 = λ2
2

(

−ν3 + 6ν2
2

)

µ1/µ2 ,

C3 = λ3
2

(

ν4 − 3ν2
2 − 15 ν2ν3 + 15 ν3

2

)

µ1/µ2 ,

T1(F ) = −λ2ν2 µ1/µ2 ,

T2(F ) = λ2
2

(

−2ν3 − ν2 + 3ν2
2

)

µ1/µ2 ,

T3(F ) = λ3
2

(

−6ν4 − 6ν3 − ν2 − 15 ν3
2 + 20 ν3ν2 + 18 ν2

2

)

µ1/µ2 .

This may also be derived from (5.2).

Central moments and functions of them may be viewed as functions of

noncentral moments and so dealt with using Examples 5.1 and 5.4. However, it

is much more convenient to deal with them directly in terms of the derivatives of

the central moments. We now give these.
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Example 5.6. One univariate sample (that is k = s1 = 1) with T (F ) =

µr(F ) = µr, the rth
central moment of X∼F . Let µ = µ(F ) denote the mean of F .

Recall that (r)i = r!/(r − i)! and set hi = µxi
= xi −µ. The general derivative of

µr(F ) is

Tx1,...,xp
= µr,F (x1, ..., xp)

(5.4)

= (−1)
p

{

(r)p µr−p − (r)p−1

p
∑

i=1

(

hr−p
i − µr−p+1h

−1
i

)

}

p
∏

j=1

hj .

For example,

Tx = −rµr−1µx + µr
x − µr ,

Tx,y = (r)2 µr−2µxµy − r
2
∑

x,y

(

µr−1
x − µr−1

)

µy ,

Tx,y,z = −(r)3 µr−3µxµy µz + (r)2

3
∑

x,y,z

(

µr−2
x − µr−2

)

µy µz .

These basic building blocks are written out more explicitly up to r = 6 in Ap-

pendix D. Setting q = i1 + i2 + ···, this gives

µr(1
i1 , 1i2 , ...) = (−1)

q

[

(r)q µr−q

∞
∏

j=1

µij

− (r)q−1

∞
∑

I=1

iI
(

µr−q+iI − µr−q+1µiI−1

)

∞
∏

j 6=I

µij

]

(5.5)

=















0 , if q > r ,

(−1)
r−1

(r − 1)!

∞
∏

j=1

µij , if q = r .

For example,

µr(1
2
) = (r)2 µr−2µ2 − 2 rµr ,(5.6)

µr(1
3
) = −(r)3 µr−3µ3 + 3(r)2

(

µr − µr−2µ2

)

,(5.7)

µr(1
4
) = (r)4 µr−4µ4 − 4(r)3

(

µr − µr−3µ3

)

,(5.8)

µr(1
2, 12

) = (r)4 µr−4µ2
2 − 4(r)3 µr−2µ2 ,(5.9)

µr(1
2, 13

) = −(r)5 µr−5µ3µ2 + (r)4
(

2 µr−3µ3 + 3µr−2µ2 − 3 µr−4µ2
2

)

,(5.10)

µr(1
2, 12, 12

) = (r)6 µr−6µ3
2 − 6(r)5 µr−4µ2

2 .(5.11)

Substituting into the expressions of (3.3)–(3.5) for the coefficient Ci of n−i
in the
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expansion of Eµr(
̂F ) gives

T1(F ) = −C1 = rµr − (r)2 µr−2µ2/2 ,(5.12)

C2 = (r)2 µr/2 − (r)2 (r−1)µr−2µ2/2 − (r)3 µr−3µ3/6
(5.13)

+ (r)4 µr−4µ2
2/8 ,

C3 = −(r)3 µr/6 + (r)3 (r−1)µr−2µ2/4 + (r)3 (r−2)µr−3µ3/6

+ (r)4 µr−4

(

µ4 − 3(r−1)µ2
2

)

/24 − (r)5 µr−5µ3µ2/12

+ (r)6 µr−6µ3
2/48 ,

C4 = (r)4 µr/24 − (r)4 (r−7)µr−2µ2/12 − (r)6 µr−3µ3/2

+ µr−4

{

−(r)4 (r−3)µ4/24 + (r)4
(

r2−3r−8
)

µ2
2/16

}

+ µr−5

{

−(r)5 µ5/120 + (r)6 (r−2)µ3µ2/12
}

+ (r)6µr−6

(

µ4µ2/48 + µ2
3/72 − rµ3

2/48
)

− (r)7 µr−7µ3µ2
2/48

+ (r)8 µr−8µ4
2/384 .

Substituting into the expressions of (4.3)–(4.4) for the coefficient Ti(
̂F ) of n−i

in

the expansion for the UE of µr(F ) gives

T2(F ) = r2µr − (r3− r)µr−2µ2/2 − (r)3 µr−3µ3/3 + (r)4 µr−4µ2
2/8 ,

and

T3(F ) = r3µr − (r4− r)µr−2µ2/2 − (r)3 (r+3)µr−3µ3/3

+ (r)4 µr−4

{

−2 µ4 + (r+6)µ2
2

}

/8

+ (r)5 µr−5µ3µ2/6 − (r)6 µr−6µ3
2/48 .

Similarly, from (4.7) and (4.8),

S2(F ) = (r)2 µr − r2
(r−1)µr−2µ2/2 − (r)3 µr−3µ3/3 + (r)4 µr−4µ2

2/8

and

S3(F ) = (r)3 µr − r (r)3 µr−2µ2/2 − r (r)3 µr−3µ3/3

− (r)4 µr−4µ4/4 + (4r−9)(r)4 µr−4µ2
2/8 + (r)5 µr−5µ3µ2/6

− (r)6 µr−6µ3
2/48 .

Now from page 6 in James [14] the UE for µr has the form

lr =

{

s
∑

i=0

ai,r(
̂F )n−i

}

/ r−1
∏

i=1

(

1 − i/n
)

(5.14)

for r = 2s or 2s+1, which can be recovered from {Ti, i≤ s} as in Proposition 4.1.

So, the above {Ti, i≤ 3} provide UEs for µr for r ≤ 7. These were given for r ≤ 6

on page 6 in James [14] and agree with our results.

For example, for µ3, T (1
2
) = −2µ2, so S1(F ) = 3µ3 and T (1

3
) = 12µ3,

T (1
2, 12

) = 0, so S2(F ) = 4µ3 and so the UE of µ3 is

µ3(
̂F )
{

1 + 3/(n−1) + 4/(n−1)2

}

= µ3(
̂F )
{

(1−n−1
) (1−2 n−1

)
}

−1
.



250 C.S. Withers and S. Nadarajah

For r = 7, we obtain in this way {ai,7 = ai,7(F )} of (5.14) as

a0,7 = µ7 , a1,7 = −7
(

2 µ7 + 3µ5µ2

)

,

a2,7 = 7
(

11 µ7 + 39µ5µ2 − 10 µ4µ3 + 15µ3µ2
2

)

,

a3,7 = −7
(

28 µ7 + 192µ5µ2 − 80 µ4µ3 + 60µ3µ2
2

)

.

Example 5.7. One univariate sample (that is k = s1 = 1) with T (F ) =
∏q

j=2 µ
pj

j for {pj} arbitrary and {µj} as in Example 5.6. Set Si(µ) = µi and

g(S) =
∏

S
pj

j . The ordinary partial derivatives of g(S) are

gi = piµ
−1
i T (F ) , gi,j = pi(pj − δi,j)(µiµj)

−1 T (F ) ,

gi,j,k = pi(pj − δi,j)(pk − δi,k − δj,k)(µiµj µk)
−1 T (F ) ,

and so on, where δi,j = 1 if i = j and 0 otherwise. Set

[

a,b
i,j ···

]

=

∫

µi,F (xa
)µj,F (xb

) ··· dF (x) .

So,
[

a
i

]

= µi(1
a
) of (5.5) and by (5.4), and

[

1,1
i,j

]

= ij µi−1µj−1µ2 −
2
∑

i,j

i µi−1µj+1 + µi+j − µiµj ,

where
∑m

i1,...,im
fi1,...,im =

∑m fi1,...,im is defined in Example 5.2.

By (A.8),

−2 T1(F ) = 2C1

= T (1
2
)(5.15)

= T (F )
{

2 〈1, 2〉 + 〈1, 1〉 + 〈12〉
}

,

where

〈1, 2〉 =

∑

i<j

pipj

[

1,1
i,j

]

µ−1
i µ−1

j ,

〈1, 1〉 =

∑

i

(pi)2

[

1,1
i,i

]

µ−2
i ,

〈12〉 =

∑

i

pi

[

2
i

]

µ−1
i .

Other terms are calculated similarly. For example, C2, T2(F ) and S2(F ) are given

by (3.6), (4.3), and (4.7) in terms of T (1
2
), T (1

3
) and T (1

2, 12
). Also by (A.9)

to (A.11)

T (1
3
) = T (F )

{

∑

i,j,k

pi (pj − δi,j) (pk − δi,k − δj,k) (µiµj µk)
−1
[

1,1,1
i,j,k

]

(5.16)

+ 3

∑

i,j

pi (pj − δi,j) (µiµj)
−1
[

2,1
i,j

]

+

∑

i

piµ
−1
i

[

3
i

]

}

,
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and

T (1
2, 12

) = T (F )

{

∑

i,j,k,l

pi (pj − δi,j) (pk − δi,k − δj,k) (pl − δi,l − δj,l − δk,l)

× (µiµj µk µl)
−1
[

1,1
k,l

]

+

∑

i,j,k

pi (pj − δi,j) (pk − δi,k − δj,k) (µiµj µk)
−1 Gi,j,k(5.17)

+

∑

i,j

pi (pj − δi,j) (µiµj)
−1Hi,j +

∑

i

piµ
−1
i µi(1

2, 12
)

}

,

where

Gi,j,k = 2

[

1,1
i,j

] [

2
k

]

+ 4
[

1, 2i, 1j , 2k

]

,

Hi,j = 4
[

1i, 1, 22
j

]

+

[

2
i

][

2
j

]

+ 2
[

1, 2i, 1, 2j

]

,

[

1
a, 2b

i , 1
c, 2d

j , ...
]

=

∫∫

µi(x
a, yb

) µj(x
c, yd

) ··· dF (x) dF (y) ,

so that

[

1
a
i , 1

b
j , ...

]

=

[

a,b
i,j ···

]

,

[

1, 2i, 1j , 2k

]

= (i)2 µi−2 Aj Ak − i
2
∑

j,k

Bi,j Ak

for

Aj = µj+1 − jµj−1µ2 , Bi,j = µi+j−1 − jµj−1µi − µi−1µj .

By (5.4),

[

1,1,1
i,j,k

]

= −ijk µi−1µj−1µk−1µ3 +

3
∑

ij µi−1µj−1

(

µk+2 − µk µ2

)

−

3
∑

iµi−1

(

µj+k+1 − µj+1µk − µk+1µj

)

+ µi+j+k

−
3
∑

µiµj+k + 2µiµj µk ,

[

2,1
i,j

]

= −(i)2 jµi−2µj−1µ3 + (i)2 µi−2

(

µj+2 − µj µ2

)

+ 2 ij µj−1

(

µi+1 − µi−1µ2

)

− 2 i
(

µi+j − µiµj − µi−1µj+1

)

,

[

1i, 1, 22
j

]

= (j)2

{

(

−3 iµi−1µj−1 + µi+j−2 − µiµj−2

)

µ2 + 2µi+1µj−1

}

+ (j)3
(

iµi−1µj−3µ2
2 − µj−3µi+1µ2

)

,

[

1, 2i, 1, 2j

]

= (i)2 (j)2 µi−2µj−2µ2
2 − 2

2
∑

i(j)2 µiµj−2µ2

+ 2 ij
(

µi+j−2µ2 − µi−1µj−1µ2 + µiµj

)

.

Also
[

i
r

]

for 2 ≤ i ≤ 4 and µi(1
2, 12

) are given by (5.6)–(5.11).
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Example 5.8. Consider Example 5.7 with T (F ) = µp
r . Then

T (1
2
)/T (F ) = p

[

2
r

]

µ−1
r + (p)2µ−2

r

[

1,1
r,r

]

,

T (1
3
)/T (F ) = pµ−1

r

[

3
r

]

+ 3(p)2µ−2
r

[

2,1
r,r

]

+ (p)3µ−3
r

[

1,1,1
r,r,r

]

,

T (1
2,12

)/T (F ) = pµ−1
r µr(1

2,12
) + (p)2µ−2

r Hr,r + (p)3µ−3
r Gr,r,r + (p)4µ−4

r

[

1,1
r,r

]2
.

Example 5.9. Consider Example 5.8 with T (F ) = µp
2. Set βr = µr µ

−r/2
2 .

Then

T (1
2
)/T (F ) = −2 p + (p)2

(

β4 − 1
)

,

T (1
3
)/T (F ) = −6(p)2

(

β4 − 1
)

+ (p)3

(

β6 − 3β4 + 2
)

,

T (1
2, 12

)/T (F ) = 12(p)2 − 4(p)3

(

β4 − 1 + 2β2
3

)

+ (p)4

(

β4 − 1
)2

.

So,

−T1(F )/T (F ) = C1/T (F ) = −p + (p)2

(

β4 − 1
)

/2 ,

C2/T (F ) = (p)2

(

5/2 − β4

)

+ (p)3

(

β6/6 − β4 − β2
3 + 5/6

)

+ (p)4

(

β4 − 1
)2

,

T2(F )/T (F ) = p + (p)2

(

4 − 5β4/2
)

+ (p)3

(

2β6 − 9β4 + 7 − 6β2
3

)

/6

+ (p)4

(

β4 − 1
)2

/8 =

r
∑

i=1

(p)iAi say ,

S2(F )/T (F ) = (p)2

(

7/2 − 2β4

)

+

4
∑

i=3

(p)iAi .

For p = 2 this gives T (F ) = µ2
2,

C1 = µ4 − 3µ2
2 , T1(F ) = −µ4 + 3µ2

2 ,(5.18)

C2 = −2µ4 + 5µ2
2 , T2(F ) = −5µ4 + 10µ2

2 , S2(F ) = −4µ4 + 7µ2
2 .(5.19)

Note that C1, C2 agree with µ(2
2
) of page 368 in Sukhatme [20].

The UE of µ2
2 has the form

l2,2 =

(

2
∑

i=0

ai,2,2(
̂F )n−i

)

/ 3
∏

i=1

(

1 − i/n
)

.

So,
{

ai = ai,2,2(F )
}

are given by

a0 = T (F ) = µ2
2 ,

a1 = −6 T (F ) + T1(F ) = −µ4 − 3µ2
2 ,

a2 = 11T (F ) − 6 T1(F ) + T2(F ) = µ4 + 3µ2
2 .
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We now present a second method for finding an UE of
∏

i µ
pi

i . This method

avoids computing {Ti(F )}, but derives the UE of the vector

T(F )
′
=

{

∏

i

µpi

i :

∑

pi = p

}

,(5.20)

that is, for all products of a given degree p, directly from their first few coefficients

{Ci}. Suppose T(F ) has dimension d = dp. Then

Ci = AiT(F ) ,

where Ai is a d×d matrix of integers and A0 = Id, the identity matrix. So,

α(n)
−1 T( ̂F )

is the UE of T(F ), where

α(n) =

∞
∑

i=0

Ai n
−i .

But this is known to have the form

Tn( ̂F ) = ̂βn

/ p−1
∏

i=1

(

1 − i/n
)

,(5.21)

where

̂βn =







[p/2]
∑

i=0

Bi n
−i







T( ̂F ) ,

where Bi is a d×d matrix of integers with B0 = Id. So,

[p/2]
∑

i=0

Bi ε
i

=

{

p−1
∏

i=1

(

1 − iε
)

}

α(ε−1
)

=

{

1 − D1(p)ε + D2(p)ε2 − ···
}

×
{

Id−A1ε+
(

−A2 +A2
1

)

ε2
+
(

−A3 +A1A2 +A2A1−A3
1

)

ε3
+ ···

}

,

where D1(p) = (p)2/2 and D2(p) = (p)3(p − 1/3)/8. So, the UE (5.21) is given

in terms of {Ai, i ≤ p/2}:

B0 = Id ,

B1 = −D1(p)Id − A1 ,

B2 = D2(p)Id + D1(p)A1 − A2 + A2
1 ,

B3 = −D3(p)Id − D2(p)A1 − D1(p)
(

−A2 + A2
1

)

− A3 + A1A2 + A2A1 − A3
1 ,
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and so on. The method also applies to obtaining an UE for

T(F )
′
=

{

µp1

1

q
∏

i=2

µpi

i :

q
∑

i=1

pi = p

}

,

where µ=µ(F ). A third method (for p≤8) due to Fisher [10] is given in Section 12

of Stuart and Ord [19]. Their Tables 11 and 10, pages 554–555, may be used to

verify Examples 5.8 to 5.11 after some labor.

Example 5.10. Consider Example 5.7 with T(F ) = (µ4, µ
2
2)

′
. So, (5.20)

holds with p = 4 and d = [p/2] = 2.

By (5.12), (5.13), for µ4, C1 =−4µ4 + 6µ2
2 and C2 = 6µ4 − 15µ2

2, in agree-

ment with µ(4) on page 368 in Sukhatme [20]. So, by (5.18), (5.19)

A1 =

(

−4 6

1 −3

)

and A2 =

(

6 −15

−2 5

)

.

So,

B1 = −6I2 − A1 =

(

−2 −6

−1 −3

)

, B2 = 11I2 + 6A1 − A2 + A2
1 =

(

3 9

1 3

)

.

So, UEs of µ4 and µ2
2 are µ4,n( ̂F ) and µ2,2,n( ̂F ), where

µ4,n(F ) =

{

µ4 +
(

−2µ4 − 6µ2
2

)

n−1
+
(

3µ4 + 9µ2
2

)

n−2
}

/ 3
∏

i=1

(

1 − i/n
)

,

and

µ2,2,n(F ) =

{

µ2
2 +

(

−µ4 − 3µ2
2

)

n−1
+
(

µ4 + 3µ2
2

)

n−2
}

/ 3
∏

i=1

(

1 − i/n
)

.

Table 2 gives the relative bias of Sn,p(
̂F ) as estimated from two runs of sixty thou-

sand simulations for p ≤ 2 and F normal and exponential. The estimates present

bias even for n = 100 and bias-corrected estimates of order n−2
(i.e. p = 2):

see Example C.3. For p = 3 the bias is zero.

Table 2: Relative bias of Sn,p(
̂F ) for T (F ) = µ4 estimated from

two runs of 60,000 simulations.

n = 5 n = 10 n = 100

p = 1 p = 2 p = 1 p = 2 p = 1 p = 2

Norm (0, 1)
Run 1 −0.3584 −0.1988 −0.1934 −0.0543 −0.0174 0.0021
Run 2 −0.3572 −0.1947 −0.1871 −0.0460 −0.0206 0.0012

Exp (1)
Run 1 −0.4957 −0.2861 −0.2831 −0.0754 −0.0380 −0.0063
Run 2 −0.4943 −0.2851 −0.2964 −0.0923 −0.0399 −0.0082
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Example 5.11. Consider Example 5.7 with T(F ) = (µ5, µ3µ2)
′
. So, (5.20)

holds with p = 5 and d = [p/2] = 2.

By (5.12), (5.13) for µ5, C1 = −5µ5 + 10µ3µ2 and C2 = 10µ5 − 50µ3µ2, in

agreement with µ(5) of page 368 in Sukhatme [20]. By (5.15)–(5.17), for µ2µ3,

T (1
2
) = 2µ5 − 16µ3µ2 , T (1

3
) = −24µ5 + 72µ3µ2 , T (1

2, 12
) = 96µ3µ2 ,

giving C1 = µ5 − 8µ3µ2 and C2 = −4µ5 + 24µ3µ2. So,

A1 =

(

−5 10

1 −8

)

and A2 =

(

10 −50

−4 24

)

.

So,

B1 = −10I2−A1 =

(

−5 −10

−1 −2

)

, B2 = 35I2 +10A1−A2 +A2
1 =

(

10 20

1 5

)

.

That is, UEs of µ5 and µ3µ2 are µ5,n( ̂F ), and µ3,2,n( ̂F ), where

µ5,n(F ) =

{

µ5 +
(

−5µ5−10µ3µ2

)

n−1
+
(

10µ5 +20µ3µ2

)

n−2
}

/ 4
∏

i=1

(

1− i/n
)

and

µ3,2,n(F ) =

{

µ3µ2 +
(

−µ5−2µ3µ2

)

n−1
+
(

µ5 +5µ3µ2

)

n−2
}

/ 4
∏

i=1

(

1 − i/n
)

.

Example 5.12. Suppose k = s1 = 1 and T (F ) = g(µ2). Set gr
= g(r)

(µ2),

and βr = µrµ
−r/2
2 . Then

µx = µF (x) = x−µ , µ2,x = µ2,F (x) = µ2
x−µ2 , µ2,x,y = µ2,F (x, y) = −2 µxµy

by (5.4). By (A.8),

|2| = T (1
2
) = g2µ2,2(1, 1) + g1µ2(1

2
) ,

where

µ2,2(1, 1) =

∫

µ2
2,x =

∫

µ2
2,x dF (x) = µ4 − µ2

2 ,

µ2(1
2
) =

∫

µ2,x,x = −2µ2 by (5.6) .

Similarly, by (A.9) to (A.11) and (A.15),

T (1
3
) = g3µ2,2,2(1, 1, 1) + 3g2µ2,2(1, 12

) + g1µ2(1
3
) ,

T (1
4
) = g4µ2,2,2,2(1, 1, 1, 1) + 6g3µ2,2,2(1, 1, 12

)

+ g2
{

4µ2,2(1, 13
) + 3µ2,2(1

2, 12
)

}

+ g1µ2(1
4
) ,
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T (1
2, 12

) = g4µ2,2(1, 1)
2
+ g3

{

2µ2,2(1, 1)µ2(1
2
) + 4µ2,2,2(ab, a, b)

}

+ g1µ2(a
2b2

)

+ g2
{

4µ2,2(a, ab2
) + µ2(1

2
)
2
+ 2µ2,2(ab, ab)

}

at a = b = 1

=

4
∑

i=2

giai say ,

T (1
2, 13

) = g3A3 + g4A4 + g5A5 ,

and by (A.16)

T (1
2, 12, 12

) =

6
∑

i=3

giBi ,

where

µ2,2,2(1, 1, 1) =

∫

µ3
2,x = µ6 − 3µ4µ2 + 2µ3

2 ,

µ2,2(1, 12
) =

∫

µ2,xµ2,x,x = −2
(

µ4 − µ2
2

)

,

µ2(1
3
) =

∫

µ2,x,x,x = 0 ,

µ2,2,2,2(1, 1, 1, 1) =

∫

µ4
2,x = µ8 − 4µ6µ2 + 6µ4µ

2
2 − 3µ4

2 ,

µ2,2,2(1, 1, 12
) =

∫

µ2
2,xµ2,x,x = −2

(

µ6 − 2µ4µ2 + µ3
2

)

,

µ2,2(1, 13
) = µ2(1

4
) = 0 ,

µ2,2(1
2, 12

) =

∫

µ2
2,x,x = 4µ4 ,

µ2,2(a, ab2
)a=b=1 =

∫

µ2,xµ2,x,y,y = 0 ,

µ2,2,2(ab, a, b)a=b=1 =

∫∫

µ2,x,yµ2,xµ2,y = −2µ2
3 ,

µ2,2(ab, ab)a=b=1 =

∫

µ2
2,x,y = 4µ2

2 ,

µ2(a
2b2

)a=b=1 =

∫

µ2,x,x,y,y = 0 ,

a2 = 12µ2
2 , a3 = −4

(

µ4µ2 − µ3
2 + 2µ2

3

)

, a4 =
(

µ4 − µ2
2

)2
,

and

A3 = 6µ2,2,2(a, ab, b2
) + 3µ2(a

2
)µ2,2(b, b

2
) + 6µ2,2,2(b, ab, ab) at a = b = 1

= 3

∫∫

{

2µ2,xµ2,x,yµ2,y,y + µ2,yµ2,y,yµ2,x,x + 2µ2,yµ
2
2,x,y

}

= 3

∫∫

{

8
(

µ2
x − µ2

)

µxµ3
y + 12

(

µ2
y − µ2

)

µ2
xµ2

y

}

= 12

{

2µ2
3 + 3

(

µ2µ4 − µ3
2

)

}

= 12µ3
2

{

2β2
3 + 3β4 − 3

}

,
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A4 =

∫∫

{

µ2,x,xµ3
2,y + 6µ2,x,yµ

2
2,y + 3µ2,y,yµ2,yµ

2
2,x

}

= − 2

∫∫

{

µ2
x

(

µ2
y − µ2

)3
+ 6µxµy

(

µ2
x − µ2

)(

µ2
y − µ2

)2

+ 3µ2
y

(

µ2
x − µ2

)2(
µ2

y − µ2

)

}

= − 2

{

µ2

(

µ6 − 3µ4µ2 + 2µ3
2

)

+ 6µ3

(

µ5 − 2µ3µ2

)

+ 3
(

µ4 − µ2
2

)2
}

= − 2µ4
2

{

β6 − 3β4 + 2 + 6β3

(

β5 − 2β3

)

+ 3
(

β4 − 1
)2
}

,

A5 =

∫∫

µ2
2,xµ3

2,y =

∫

(

µ2
x − µ2

)2
∫

(

µ2
y − µ2

)3

=
(

µ4 − µ2
2

)(

µ6 − 3µ4µ2 + 2µ3
2

)

= µ5
2

(

β4 − 1
) (

β6 − 3β4 + 2
)

,

B3 = Bi,j,k
3 at

{

a = b = c = 1, S = µ
}

=

∫∫∫

{

µ2,x,xµ2,y,yµ2,z,z + 6µ2,x,xµ2
2,y,z + 8µ2,x,yµ2,y,zµ2,z,x

}

= −120 µ3
2 ,

B4 = Bi,j,k,l
2 at

{

a = b = c = 1, S = µ2

}

= 3

∫∫∫

{

µ2
2,xµ2,y,yµ2,z,z + 2µ2

2,xµ2
2,y,z + 4µ2,xµ2,yµ2,x,yµ2,z,z

+ 8µ2,xµ2,yµ2,x,zµ2,y,z

}

= 36

{

(

µ4 − µ2
2

)

µ2
2 + 4µ2

3µ2

}

= 36µ4
2

{

β4 − 1 + 4β2
3

}

,

B5 = 3

∫∫∫

{

µ2,x,xµ2
2y + µ2,x,yµ2,xµ2,y

}

µ2
2,z

= −6

{

µ2

(

µ4 − µ2
2

)

+ µ2
3

}

(

µ4 − µ2
2

)

= −6µ5
2

{

β4 − 1 + β2
3

}

(

β4 − 1
)

,

B6 =

∫∫∫

µ2
2,xµ2

2,yµ
2
2,z =

(

µ4 − µ2
2

)3
= µ6

2

(

β4 − 1
)3

.

So,

C1 = −g1µ2 + g2
(

µ4 − µ2
2

)

/2 ,

C2 = g2
(

5µ2
2/2 − µ4

)

+ g3
(

µ6/6 − µ2
3 − µ4µ2 + 5µ3

2/6
)

+ g4
(µ4 − µ2

2)
2/8 ,

C3 = g2µ4/2 + g3
(

−µ6/2 + 4µ4µ2 + 2µ2
3 − 6µ3

2

)

+ g4
(

µ8/24 − µ6µ2/3 − µ5µ3 − µ2
4/2 + 5µ4µ

2
2/2 + 5µ2

3µ2 − 41µ4
2/24

)

+ g5
(

µ4 − µ2
2

)(

2µ6 − 9µ4µ2 − 3µ2
3 + 7µ3

2

)

/24 + g6
(

µ4 − µ2
2

)3
/48 ,
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T1(F ) = S1(F ) = −g2
(

µ4 − µ2
2

)

/2 + g1µ2 ,

T2(F ) = g4
(

µ4 − µ2
2

)2
/8 + g3

(

µ6/3 − µ2
3 − 3µ4µ2/2 + 7µ3

2/6
)

+ g2
(

−5µ4/2 + 4µ2
2

)

+ g1µ2 ,

T3(F ) =

6
∑

i=1

giT3,i ,

S2(F ) = g4
(

µ4 − µ2
2

)2
/8 + g3

(

µ6/3 − µ2
3 − 3µ4µ2/2 + 7µ3

2/6
)

+ g2
(

−2µ4 + 7µ2
2/2
)

,

S3(F ) =

6
∑

i=2

giS3,i ,

where

S3,2 = −3µ4 + 9µ2
2/2 ,

S3,3 = 3µ6 − 27µ4µ2/2 − 7µ2
3 + 13µ3

2 ,

S3,4 = −µ8/4 + 4µ6µ2/3 + 2µ5µ3 + 11µ2
4/8 − 6µ4µ

2
2 − 7µ2

3µ2 + 85µ4
2/24 ,

S3,5 =
(

µ4 − µ2
2

)(

−4µ6 + 15µ4µ2 + 3µ2
3 − 11µ3

2

)

/24 ,

S3,6 = −B6/48 ,

T3,1 = µ2 ,

T3,2 = −19µ4/2 + 31µ2
2/2 ,

T3,3 = 4µ6 − 18µ4µ2 + 33µ3
2/2 − 10µ2

3 ,

T3,4 = −µ8/4 + 4µ6µ2/3 + 2µ5µ3 + 7µ2
4/4 − 27µ4µ

2
2/4 − 7µ2

3µ2 + 47µ4
2/12 ,

T3,5 =
(

µ4 − µ2
2

)(

−4µ6 + 15µ4µ2 + 3µ2
3 − 11µ3

2

)

/24 ,

T3,6 = −B6/48 .

Example 5.13. Consider Example 5.12 with T (F ) = µq
2. Then

gi
= (q)i µq−i

2 ,

T (1
2
)/µq

2 = (q)2
(

β4 − 1
)

− 2q ,

T (1
3
)/µq

2 = (q)3
(

β6 − 3β4 + 2
)

− 6(q)2
(

β4 − 1
)

,

T (1
4
)/µq

2 = (q)4
(

β8 − 4β6 + 6β4 − 3
)

− 12(q)3
(

β6 − 2β4 + 1
)

+ 12(q)2β4 ,

T (1
2, 12

)/µq
2 = (q)4

(

β4 − 1
)2

− 4(q)3
(

β4 − 1 + 2µ2
3

)

+ 12(q)2 ,

T (1
2, 13

)/µq
2 = 12(q)3

(

2β2
3 + 3β4 − 3

)

− 2(q)4

{

β6 − 3β4 + 2 + 6β3

(

β5 − 2β3

)

+ 3
(

β4 − 1
)2
}

+ (q)5
(

β4 − 1
)(

β6 − 3β4 + 2
)

,

T (1
2, 12, 12

)/µq
2 = −120(q)3 + 36(q)4

(

β4 − 1 + 4β2
3

)

−6(q)5
(

β4 − 1 + β2
3

)(

β4 − 1
)

+ (q)6
(

β4 − 1
)3

.
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So, ti = Ti(F )/T (F ) and si = Si(F )/T (F ) are given by

t1 = s1 = −(q)2
(

β4 − 1
)

/2 + q ,

t2 = (q)4
(

β4 − 1
)2

/8 + (q)3
(

β6/3 − 3β4/2 + 7/6
)

+ (q)2
(

−5β4/2 + 4
)

+ q ,

s2 = (q)4
(

β4 − 1
)2

/8d + (q)3
(

β6/3 − β2
3 − 3β4/2 + 7/6

)

+ (q)2
(

−2β4 + 7/2
)

,

t3 =

6
∑

i=1

(q)i t3,i , s3 =

6
∑

i=2

(q)i s3,i ,

for

t3,1 = 1 ,

t3,2 =
(

31 − 19β4

)

/2 ,

t3,3 = 4β6 − 18β4 − 10β2
3 + 33/2 ,

t3,4 =
{

−3β8 + 16β6 + 24β5β3 − 84β2
3 + 21β2

4 − 81β4 + 47
}

/12 ,

t3,5 = s3,5 =
(

β4 − 1
)(

−4β6 + 15β4 − 11 + 3β2
3

)

/24 ,

t3,6 = s3,6 = −
(

β4 − 1
)3

/48 ,

s3,2 = −3β4 + 9/2 ,

s3,3 = 3β6 − 27β4/2 + 13 − 7β2
3 ,

s3,4 =
{

−6β8 + 32β6 − 138β4 + 33β2
4 + 85

}

/24 − 6β4 − 7β2
3 + 2β3β5 .

Example 5.14. Consider Example 5.13 with T (F ) = µ2, so ET ( ̂F ) =

(1 − n−1
)T (F ). As a check q = 1 above gives T (1

2
) = −2µ2, T (1

3
) = T (1

4
) =

T (1
2, 12

) = T (1
2, 13

) = T (1
2, 12, 12

) = 0, so t1 = t2 = t3 = 1, s1 = 1, s2 = s3 = 0.

Example 5.15. Consider Example 5.13 with T (F ) = µ
1/2
2 = σ(F ) say.

Putting q = 1/2 gives t1 = s1 = (β4 + 3)/8, so an estimate of σ(F ) of bias O(n−2
)

is

σ( ̂F )

{

1 + n−1
(

β4(
̂F ) + 3

)

/8

}

,

where β4(F ) = β4 = µ4µ
−2
2 . To reduce the bias further use

s2 =
(

16β6 + 22β4 + 164 − 15β2
4

)

/128 ,

s3 =
(

240β8 + 432β6 − 2503β4 + 2817 − 165β2
4

+ 4764β2
3 + 315β3

4 − 560β4β6 + 420β4β
2
3 − 1920β3β5

)

/1024 .

Table 3 gives the relative bias of Sn,p(
̂F ) estimated from simulations for p ≤ 2

and F normal and exponential. The estimates present bias even for n = 100 and

bias-corrected estimates of order n−2
(i.e. p = 2): see Example C.4.
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Table 3: Relative bias of Sn,p(
̂F ) for T (F ) = σ.

n = 5 n = 10 n = 100

p = 1 p = 2 p = 1 p = 2 p = 1 p = 2

Norm (0, 1)
Run 1 −0.1578 −0.0265 −0.0764 −0.0082 0.0281 −0.0045
Run 2 −0.1592 −0.0277 −0.0745 −0.0080 0.0003 0.0031

Exp (1)
Run 1 −0.2278 −0.1019 −0.1251 −0.0422 −0.0158 −0.0029
Run 2 −0.2331 −0.1084 −0.1206 −0.0422 −0.0176 −0.0004

Number of simulations/run 10,000 30,000 30,000

The usual estimator of σ(F ) is the sample standard deviation, s.d. =
{

nµ2(
̂F )/(n − 1)

}1/2
, with mean σ

{

1 − t∗1n−1
+ O(n−2

)
}

, where t∗1 = t1 − 1/2.

So, bias {s.d.}/bias {σ( ̂F )} = λ1 + O(n−1
), where λ1 = (β4 − 1)/(β4 + 3).

For the normal, exponential and gamma (γ), β4 = 3, 9 and 3 + 6 γ−1
, so

λ1 = 1/3, 2/3 and (5 γ + 12)/(6 γ + 12) and the s.d. improves on σ( ̂F ), although

both are first order estimates, that is, both have bias O(n−1
).

To see how Sn,2(
̂F ) improves on the s.d., note that bias {Sn,2(

̂F )}/bias {s.d.}

= λ2n−1
+ O(n−2

), where λ2 = s2/t∗1. For the normal, exponential and gamma

(γ),

β6 = 15, 265 and 120 γ−2
+130 γ−1

+15 ,

so

s2 = 65/64, 767/32 and N(γ)/64 ,

λ2 = 65/16 ≈ 4.06, 767/32 ≈ 24.1 and N(λ)
(

2.5 + 6λ−1
)

−1
/64 ,

where N(γ) = 690 γ−2
+ 788 γ−1

+ 65.

Example 5.16. Suppose k = s1 = 1, T (F ) = µ/σ = µµ
−1/2
2 = g(µ, µ2) = β

say. Again set βr = µrµ
−r/2
2 . Then the partial derivatives of g are g1 = µ

−1/2
2 ,

g1,1 = 0, g2 = −µµ
−3/2
2 /2, g1,2 = −µ

−3/2
2 /2, g2,2 = 3µµ

−5/2
2 /4, g1,2,2 = 3µ

−5/2
2 /4,

g2,2,2 = −15µµ
−7/2
2 /8, and so on. Set U1(F ) = µ, U2(F ) = µ2. Then defining

Ui,j,...(1
I , 1J , ...) as in (A.12)–(A.14),

U1,1(1, 1) =

∫

U2
1,x =

∫

µ2
x = µ2 ,

U1,2(1, 1) =

∫

U1,xU2,x =

∫

µxµ2,x = µ3 ,

U2,2(1, 1) =

∫

U2
2,x = µ4 − µ2

2 .
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So, by (A.21),

T (1
2
) = β3 + β

(

3β4 +1
)

/4 .

Also

U1,2,2(1, 1, 1) =

∫

µxµ2
2,x = µ5 − 2µ2µ3 ,

U2,2,2(1, 1, 1) =

∫

µ3
2,x = µ6 − 3µ4µ2 + 2µ3

2 ,

U1,2(1, 12
) =

∫

µxµ2,x,x = −2µ3 ,

U2,1(1, 12
) =

∫

µ2,xµx,x = 0 ,

U2,2(1, 12
) =

∫

µ2,xµ2,x,x = −2
(

µ4 − µ2
2

)

,

U1(1
3
) =

∫

µx,x,x ,

U2(1
3
) =

∫

µ2,x,x,x = 0 .

So, by (A.22)

T (1
3
)/3 =

(

3β5 − 2β3

)

/4 + β(−5β6 + 11β4 − 6
)

/8 .

Similarly, at (1, 1, 12
), U2,2,1 = 0,

U1,2,2 = −2
(

µ5 − µ3µ2

)

, U2,2,2 = −2
(

µ6 − 2µ4µ2 + µ3
2

)

,

Ui,j(1, 13
) = Ui(1

4
) = 0 , U1,2(1

2, 12
) = 0 , U2(1

2, 12
) = 4µ4 ,

so by (A.23),

T (1
4
) = 3

(

−5β7 + 3β5 − 3β3

)

/2 + 3β
(

35β8 − 132β6 + 242β4 − 97
)

/16 .

Also at a = b = 1,

U1,2(ab, ab) = U1(a
2b2

) = U2(a
2b2

) = 0 , U2,2(ab, ab) =

∫

µ2
2,x,y = 4µ2

2 ,

U1,2,2(ab, a, b) = U2,2(a, ab2
) = U1,2(a, ab2

) = U2,1(a, ab2
) = 0 ,

U2,2,2(ab, a, b) =

∫∫

µ2,x,y µ2,xµ2,y = −2 µ2
3 .

So, by (A.24)

T (1
2, 12

) = 4 g1,2,2,2 µ3

(

µ4 − µ2
2

)

+ g2,2,2,2

(

µ4 − µ2
2

)2
− 4 g1,2,2 µ3µ2

− 4 g2,2,2

{

(

µ4 − µ2
2

)

µ2 + 2µ2
3

}

+ 12 g2,2 µ2
2

= −3
(

5β4 − 43
)

β3/8 + 3β
(

35β2
4 + 90β4 + 320β2

3 − 77
)

/16 .
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So,

S1(F ) = T1(F ) = −β3/2 − β
(

3β4 + 1
)

/8 ,

S2(F ) =
(

48β5 − 15β4β3 − 23β3

)

/64

+ β
(

−80β6 + 446β4 − 327 + 105β2
4 + 960β2

3

)

/128 .

Note that T (1
2, 13

), T (1
2, 12, 12

) and S3(F ) may be calculated similarly using

(A.7).

In the one sample example above µ is the mean of X∼F . In many cases

Xi = h(Yi), where h : R
t → R

s
is a given transformation and Y1, ...,Yn ∼ G on R

t

is the original sample. So, µ(F ) =
∫

x dF (x) =
∫

h(y) dG(y). Equivalently, we

may replace µ(F ) =
∫

x dF (x) by µ(F ) =
∫

h(x) dF (x), so that µx = h(x) − µ.

Similarly, if s = 1 replace µr(F ) =
∫

(x−µ)
rdF (x) by

∫ (

h(x)−µ
)r

dF (x) so that

(5.4) holds with hi = hxi
= h(xi) − µ. A similar remark holds for several samples.

The next four examples apply this idea to return times and exceedances.

Example 5.17. Take k = 1, h(x) = I(x≤ a) for some a in R
s
, and

T (F ) = µ−1
. Since µ = F (a), T (F ) is the return period of the event {X ≤ a},

where X ∼ F . But the case T (F ) = µ−1
was dealt with in Example 5.3 in

terms of µr. In this instance µr = µr(Bi(1, p)), where p = F (a), so µ2 = pq,

where q = 1 − p, µ3 = pq (1 − 2p) and µ4 = pq (1 − 3pq). So, by Examples 5.6,

5.7 and Proposition 4.2 an estimate of the return period p−1
of bias O(n−4

) is

˜Sn,4[p̂ ] = Sn,4[p̂ ] if p̂ > l or l−1
if p̂ ≤ l, where 0 < l < p,

Sn,4[p] = p−1
+

3
∑

i=1

Si[p]/(n − 1)i ,

and Si[p] = Si(F ) is given by S1[p] = p−1− p−2
, S2[p] = −p−1

+ p−3
, S3[p] =

2p−1
+ p−2− 2p−3− p−4

.

The same formula with p = 1 − F (a) and p̂ = 1 − ̂F (a) gives an estimate

of bias O(n−4
) for the return time of the event {X > a}. Similarly, for the event

{x ∈ A} with p = F (A) and p̂ = ̂F (A). Similarly, we can apply Example 5.4

to obtain estimates of bias O(n−p
) for any smooth function g(p1, ..., pk) given

independent ni p̂i ∼ Bi(ni, pi), 1 ≤ i ≤ k. This problem can also be solved by the

parametric method of Withers [27].

Example 5.18. Suppose k = 1, X∼F on R
t
and T (F ) = Er(X) | (X∈A),

where A ⊂ R
t

is a measurable set, F (A) > 0 and r : R
t → R is a given function.

Then T(F)=µ1/µ2 =µ1(F)/µ2(F), where µi(F)=
∫

hi(x)dF(x), h1(x)= r(x)I(x∈A)

and h2(x) = I(x∈A). So, {Ti, Si, 1≤ i ≤ 3} are given in Example 5.2 in terms
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of the moments of (5.1) in which xji
now needs to be replaced by hji

(x). Set

p = F (A) , q = 1 − p , Ii =

∫

A

(

r(x) − µ1

)i
dF (x) .

So, µ[2
j
] = µi(Bi(1, p)) is given for 2 ≤ j ≤ 4 in Example 5.17 and

µ[1
i, 2j

] = Ii q
j
+ (−µ1)

i
(−p)

j q .

Using I1 = 0 simplification yields

Sn,4(F ) = µ1p−1
{

1 − q2p−1/(n−1) + q3p−2/(n−1)2 + q3p−3
(2p −1)/(n−1)3

}

.

Unlike Example 5.17, one does not need to know a lower bound for p, since µ1 = 0

if p = 0; so, if p̂ = 0 one interprets Sn,4(
̂F ) as an arbitrary constant. This shows,

surprisingly that the bias reduction problem for T (F ) = µ1/p can be treated as

a parametric problem, the parameters being (µ1, p). The more general problem

of T (F ) = g(µ1, p) does not reduce to a finite parameter problem as it involves

{
∫

A
ridF, i ≥ 1}.

Example 5.19. The conditional distribution of exceedances is

Fu(x) = P
(

X−u < x | X−u > 0
)

(5.22)

=
{

F (x + u) − F (u)
}/{

1 − F (u)
}

for x ≥ 0. This is µ1/µ2 with A = {y : y > u} = (u,∞), B−{y : x+u > y > u} =

(u, x+u) and r(y)=I(y∈B). So, Example 5.18 applies with µ1 = F (x+u)−F (u),

µ2 = 1 − F (u).

Example 5.20. The mean conditional exceedance is

µ(Fu) =

∫

x dFu(x) = µ1/µ2

for

µ1 =

∫

(x − u)+ dF (x) , µ2 = 1 − F (u) ,

where

x+ =

{

x, if x > 0 ,

0, if x ≤ 0 .

So, r(y) = (y − u)+ and Example 5.18 applies.

The central moments of Fu of (5.22) are not covered by Example 5.18

and are probably best dealt with by writing them as functions of the noncentral

moments and applying Example 5.1 with µ =
{∫

(x−u)
i
+ dF (x), i ≥ 0

}

. A more

direct approach is given by the following example.
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Example 5.21. Suppose T (F ) = S(Fu) for Fu of (5.22). Set Cy
(F ) =

Fu(y). Then

Cy
(

(1− ǫ)F + ǫ δx

)

= Fu(y) + ǫ Cy
F (x) + O(ǫ2) ,

and

T
(

(1− ǫ)F + ǫ δx

)

= S
(

Fu(·) + ǫ C ·
F (x) + O(ǫ2)

)

= S(F ) + ǫ

∫

SFu
(y)Cy

F (x) dy + O(ǫ2) ,

where Cy
F (x) = µ−1

2 I(u < x < u + y) − µ1µ−2
2 I(u < x). So,

TF (x) =

∫

SFu
(y)Cy

F (x) dy = µ−1
2 SFu

(x − u) .(5.23)

Higher derivatives can be calculated from (5.23).

Now let us apply the previous note with s = 1, t = r, h(y) = a′y, where a

lies in R
r
. Set µ = EY. Then the joint central moment µ1,...,r = E(Y− µ)1 ···

··· (Y−µ)r is the coefficient of a1··· ar/r! in µr(a
′Y), so the same relation is true

of their derivatives. The same is also true of the cumulants. This device allows us

to derive results for multivariate moments and cumulants from their univariate

analogs.

For example, from Example 5.6, for a univariate random variable, µ2(x) =

(x − µ)
2 − µ2 and µ2(x1, x2) = −2(x1 − µ) (x2 − µ). So, for a bivariate random

variable, µ1,2(x) = (x−µ)1(x−µ)2−µ1,2 and µ1,2(x1,x2) = −2(x1−µ)1(x2−µ)2.

We illustrate this device further with the problems of estimating multivari-

ate moments and the correlation of a bivariate distribution and its square.

Example 5.22. Suppose k =1, s = 2 and T (F ) = µ1,2. From Example 5.6

and the previous remark, an UE of µ1,2 is µ1,2/(1 − n−1
) at F = ̂F .

Similarly, we have

Example 5.23. Suppose k = 1, s = 3 and T (F ) = µ1,2,3. An UE of µ1,2,3

is µ1,2,3/{(1 − n−1
)(1 − 2n−2

)} at F = ̂F .

Example 5.24. Suppose k = 1, s = 2, and T (F ) = µ1,2{µ1,1µ2,2}
−1/2

,

the correlation of a bivariate sample. So, (A.1) of Appendix A holds with

S(F ) = (µ1,2, µ1,1, µ2,2) and g(S) = S1(S2S3)
−1/2

. We shall apply (A.8). Set

νi,j,...= µi,j,...(µi,iµj,j ···)
−1/2

. So, T (F ) = ν1,2. Now S1(1
2
) =

∫

S1,x,x = −2 µ1,2,

S2(1
2
) =
∫

S2x,x =−2 µ1,1 and S3(1
2
) =
∫

S3,x,x =−2 µ2,2. Also g1 = (µ1,1µ2,2)
−1/2

,

g2 = −ν1,2/µ1,1, g3 = −ν1,2/µ2,2. So, giSi(1
2
) = T (F ) (−2 + 1 + 1) = 0. Simi-

larly, S1,x = (x − µ)1(x − µ)2 − µ1,2, so S1,1(1, 1) =
∫

S2
1,x = µ1,1,2,2 − µ2

1,2, and
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similarly S1,2(1, 1) = µ1,1,1,2−µ1,1µ1,2, S1,3(1, 1) = µ1,2,2,2−µ1,2µ2,2, S2,2(1, 1) =

µ1,1,1,1−µ2
1,1, S3,3(1, 1) = µ2,2,2,2−µ2

2,2, and S2,3(1, 1) = µ1,1,2,2−µ1,1µ2,2. So, an

estimate of bias O(n−2
) is T (F )−T (1

2
)/(2n) or T (F )−T (1

2
)/(2n−2) at F = ̂F ,

where by (A.8), T (1
2
) = ν1,2(3ν1,1,1,1 + 3ν2,2,2,2 + 2ν1,1,2,2)/4 − ν1,1,1,2 − ν1,2,2,2.

Example 5.25. Suppose k =1, s = 2 and T (F ) = µ2
1,2{µ1,1µ2,2}

−1
= ν2

1,2,

the square of the correlation of a bivariate sample. Again (A.1) holds with S(F ) =

(µ1,2, µ1,1, µ2,2) but now g(S) = S2
1(S2S3)

−1
, so g1 = 2T (F )S−1

1 , g2 =−T (F )S−1
2 ,

g3 =−T(F )S−1
3 , gi,i =2T(F )S−2

i , g1,2 =−2 T(F )(S1S2)
−1

, g1,3 =−2 T(F )(S1S3)
−1

,

and g2,3 = T (F )(S2S3)
−1

. Again giSi(1
2
) = T (F )(−4+2+2) = 0. So, an estimate

of bias O(n−2
) is T (F )− T (1

2
)/(2n) or T (F )− T (1

2
)/(2n− 2) at F = ̂F , where

by (A.8), T (1
2
) = 2 ν2

1,2(ν1,1,1,1 + ν2,2,2,2 + 2 ν1,1,2,2 − 2 ν1,1,1,2 − 2 ν1,2,2,2).

6. ESTIMATING COVARIANCES OF ESTIMATES

In this section, we give an estimate of bias O(n−3
) for Vn(F ), the covariance

of T( ̂F ), where now T(F ) is a q×1 vector with components {Tα
(F ), 1 ≤ α ≤ q}.

After Example 6.1, we estimate the covariance of more general estimates of T(F ).

From the formulas for {Ka,b
i } on pages 66 and 67 in Withers [24],

V α,β
n (F ) = covar

(

Tα
( ̂F ), T β

( ̂F )
)

=

∞
∑

i=1

n−iKα,β
i (F ) ,(6.1)

where

Kα,β
1 (F ) = tαi tβj ki,j

=

∑

λa

∫∫

Tα
F

(

a
x

)

T β
F

(

a
y

)

dκa(x, y)

(6.2)
=

∑

λaTα,β
(a, a) ,

Kα,β
2 (F ) =

2
∑

tαi,j tβk ki,j,k/2 +

(

2
∑

tαi,j,k tβl + tαi,k tβj,l

)

ki,jkk,l/2

=

∑

λa

2
∑

∫ 3

Tα
F

(

a,a
x,y

)

T β
F

(

a
z

)

dκa(x, y, z)/2

+

∑

λaλb

∫ 4
{

2
∑

Tα
F

(

a,a,b
w,x,y

)

T β
F

(

b
z

)

(6.3)

+ Tα
F

(

a,b
w,x

)

T β
F

(

a,b
y,z

)

}

dκa(w, x) dκb(y, z)/2

=

∑

λa

2
∑

Tα,β
(a2, a)/2

+

∑

λaλa

{

2
∑

Tα,β
(a2b, b) + Tα,β

(ab, ab)

}

/2 ,
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2
∑

fα,β = fα,β + fβ,α ,

Tα,β
(a, a) =

∫

Tα
F

(

a
x

)

T β
F

(

a
x

)

dFa(x) ,

Tα,β
(a2, a) =

∫

Tα
F

(

a,a
x,x

)

T β
F

(

a
x

)

dFa(x) ,(6.4)

Tα,β
(a2b, b) =

∫∫

Tα
F

(

a,a,b
x,x,y

)

T β
F

(

b
y

)

dFa(x) dFb(y) ,(6.5)

and

Tα,β
(ab, ab) =

∫∫

Tα
F

(

a,b
y,x

)

T β
F

(

a,b
x,y

)

dFa(x) dFb(y) .(6.6)

Also, setting V α,β
(F ) = Kα,β

1 (F ) and differentiating, we have

V α,β
F

(

a
x

)

/λa = Tα
F

(

a
x

)

T β
F

(

a
x

)

− Tα,β
(a, a) +

2
∑

∫

Tα
F

(

a,a
y,x

)

T β
F

(

a
y

)

dFa(y) ,

and

V α,β
F

(

a,a
x,x

)

/λa =

2
∑

[

{

Tα
F

(

a,a
x,x

)

− Tα
F

(

a
x

)

}

T β
F

(

a
x

)

+ Tα
F

(

a,a
x,x

)

T β
F

(

a
x

)

−

∫

Tα
F

(

a,a
x,y

)

T β
F

(

a
y

)

dFa(y) +

∫

Tα
F

(

a,a
x,y

)

T β
F

(

a,a
x,y

)

dFa(y)

+

∫
{

Tα
F

(

a,a,a
x,x,y

)

− Tα
F

(

a,a
x,y

)

}

T β
F

(

a
y

)

dFa(y)

]

,

so that

C1(V
α,β , F ) =

∑

λaV
α,β

(a2
)

=

∑

λ2
a

[

2
∑

{

Tα,β
(a2, a) + Tα,β

(a2b, b)/2

}

+ 2Tα,β
(ab, ab) − Tα,β

(a, a)

]

b=a

.

So, n−1Kα,β
1 (̂F ) given by (6.2) estimates V α,β

n (F ) with bias O(n−2
) and n−1Kα,β

1 (̂F )

+ n−2Lα,β
( ̂F ) estimates V α,β

n (F ) with bias O(n−3
), where

Lα,β
(F ) = Kα,β

2 (F ) − C1(V
α,β , F )

=

∑

(

λa−λ2
a

)

2
∑

Tα,β
(a2, a)/2

+

∑

λaλb

{

2
∑

Tα,β
(a2b, b) + Tα,β

(ab, ab)

}

/2

−
∑

λ2
a

{

2
∑

Tα,β
(a2b, b)/2 + 2Tα,β

(ab, ab) − Tα,β
(a, a)

}

b=a

.
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If k = 1 this reduces to

Lα,β
(F ) = Tα,β

(a, a) − 3 Tα,β
(ab, ab)/2(6.7)

at a = b = 1, so that

(n−1)
−1 Tα,β

(a, a) − 3 n−2 Tα,β
(ab, ab)/2(6.8)

at
{

F = ̂F , a = b = 1
}

estimates V α,β
n (F ) with bias O(n−3

), where at a = b = 1,

Tα,β
(a, a) =

∫

Tα
F (x)T β

F (x) dF (x) ,

and

Tα,β
(ab, ab) =

∫∫

Tα
F (x, y)T β

F (x, y) dF (x) dF (y) .

One may prefer to use n−1−n−2
instead of (n−1)

−1
in (6.8). Remarkably, unlike

the case k > 1, the estimate (6.8) does not depend on Tα,β
(a2, a) or Tα,β

(a2b, b)

at a = b = 1.

We now show how to estimate

Wn(F ) = covarT(n)(
̂F ) ,(6.9)

where

T(n) =

∞
∑

i=0

n−iTi

is q×1 and T0 = T. Clearly, T(n)(
̂F ) estimates T(F ). Now

Wn(F ) =

∑

i,j≥0

n−i−j Wn(Ti,Tj) ,

where

Wn(Ti,Tj) = covar
(

Ti(
̂F ),Tj(

̂F )
)

has (α, β) element

Wα,β
n (Ti,Tj) = Wn(Tα

i , T β
j ) = V 1,2

n (F )

of (6.1) with (T 1, T 2
) = (Tα

i , T β
j ). So,

Wα,β
n (F ) =

∞
∑

l=1

n−lKα,β
l [F ] ,

where

Kα,β
l [F ] =

∑

i+j+k=l

Kk(T
α
i , T β

j ) ,
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and

Kk(T
1, T 2

) = K1,2
k (F ) of (6.1) .

So,

Kα,β
1 [F ] = K1(T

α, T β
) = Kα,β

1 (F )

of (6.2), and

Kα,β
2 [F ] = Kα,β

2 (F ) + △α,β ,

where

△α,β
=

2
∑

K1(T
α, T β

1 ) ,

and

K1(T
α, T β

1 ) = Kα,β
1 (F )

of (6.2) at T β
= T β

1 .

So, n−1Kα,β
1 ( ̂F ) and n−1Kα,β

1 ( ̂F )+n−2Lα,β
( ̂F ) estimate Wα,β

n (F ) with bias

O(n−2
) and O(n−3

), respectively, where

Lα,β
[F ] = Kα,β

2 [F ] − C1(V
α,β , F ) = Lα,β

(F ) + △α,β .(6.10)

Alternatively, for k = 1, the sum of (6.8) and n−2△α,β
at F = ̂F estimates Wα,β

n (F )

with bias O(n−3
). Now for p ≥ 2, Tn,p of (1.3) has the form T(n) of (6.9) with T1

given by (4.1), so that

T β
1,F

(

a
x

)

= −λa

{

T β
F

(

a2

x2

)

− T β
(a2

) +

∫

T β
F

(

a2,a

y2,x

)

dFa(y)

}

/2 ,

and so

K1(T
α, T β

1 ) = −
∑

λ2
a

{

T β,α
(a2, a) + T β,α

(a3, a)

}

/2 ,

△α,β
= −

∑

λ2
a

2
∑

{

Tα,β
(a2, a) + Tα,β

(a2b, b)
}

b=a
/2 ,(6.11)

Kα,β
2 [F ] =

∑

(

λa−λ2
a

)

2
∑

Tα,β
(a2b, b)/2 −

∑

λ2
a

2
∑

Tα,β
(a2b, b)b=a/2

+

∑

λaλb

{

2
∑

Tα,β
(a2b, b) + Tα,β

(ab, ab)

}

/2 ,

Lα,β
[F ] =

∑

(

λa/2 −λ2
a

)

2
∑

Tα,β
(a2, a)

+

∑

λaλb

{

2
∑

Tα,β
(a2b, b) + Tα,β

(ab, ab)

}

/2

−
∑

λ2
a

{

2
∑

Tα,β
(a2b, b) + 2Tα,β

(ab, ab) − Tα,β
(a, a)

}

b=a

.
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For k = 1, at a = b = 1, this gives

△α,β
= −

2
∑

{

Tα,β
(a2, a) + Tα,β

(a2b, b)
}

/2 ,

Kα,β
2 [F ] = Tα,β

(ab, ab)/2 ,(6.12)

covar
(

Tα
n,p(

̂F ), T β
n,p(

̂F )
)

= n−1Tα,β
(a, a) + n−2Tα,β

(ab, ab)/2 + O(n−3
)

which, remarkably, does not depend on T (a2, a) or T (a2b, b) to this accuracy —

whereas Lα,β
[F ] does.

Example 6.1. Consider again Example 5.1, that is k = 1, T(F ) = g(µ),

where now g may be a vector {gα}. By (A.17)–(A.20) at a = b = 1

Kα,β
1 (F ) = Tα,β

(a, a) = gα
i gβ

j µ[i, j] ,

Tα,β
(ab, ab) = gα

i,j gβ
k,l µ[i, k] µ[j, l] ,

Tα,β
(a2, a) = gα

i,j gβ
k µ[i, j, k] ,

Tα,β
(a2b, b) = gα

i,j,k gβ
l µ[i, j] µ[k, l] ,

and Kα,β
2 (F ), Lα,β

(F ), Kα,β
2 [F ], Lα,β

[F ] are given by (6.3), (6.7), (6.10), (6.11),

(6.12). Note that Lα,β
depends only on the first and second moments of F , even

though Kα,β
2 depends on the third moments!

Example 6.2. Consider Example 6.1 with g(µ) = α
′
µ/β

′
µ = N/D, say,

— that is, Example 5.2. Since q = 1 we drop suffixes α, β. Define µ[·] and δi as

in (5.1) and (5.3). Then at a = b = 1

K1(F ) = T (a, a) = D−2µ2[δ, δ] ,

T (ab, ab) = 2µ2[δ, β]
2
+ 2µ2[δ, δ] µ2[β, β] ,

T (a2, a) = −2 D−3µ3[δ, δ, β] ,

T (a2b, b) = 2D−4
{

2 µ2[δ, β]
2
+ µ2[δ, δ] µ2[β, β]

}

,

where µ2[δ, β] = δiβj µ[i, j] and µ3[α, β, γ] = αiβj γk µ[i, j, k]. In particular, for

g(µ) = µ1/µ2, at a = b = 1 setting γi,j,... = µ(i, j, ...)µ−1
i µ−1

j ···, we have

K1(F ) = T (a, a) =
(

µ1/µ2

)2(
γ1,1 − 2 γ1,2 + γ2,2

)

,(6.13)

T (ab, ab) = 2
(

µ1/µ2

)2(
γ1,1γ2,2 − 4 γ1,2γ2,2 + 2 γ2

2,2

)

,

T (a2, a) = −2
(

µ1/µ2

)2
(γ1,1,2 − 2 γ1,2,2 + γ2,2,2

)

,(6.14)

T (a2b, b) = 2
(

µ1/µ2

)2(
2 γ2

1,2 − 5 γ1,2γ2,2 + 3 γ2
2,2 + γ1,1γ2,2

)

.

Note that (6.13) is in agreement with equation (10.17) of Kendall and Stuart [15].
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Example 6.3. Consider Example 6.1 with g(µ) = Np
, where N = α

′
µ,

that is, we consider Example 5.3. In the notation there, with a = b = 1

K1(F ) = T (a, a) = p2N2pα(2) ,

T (ab, ab) = p2
(

p − 1
)2

N2pα2
(2) ,

T (a2, a) = p2
(

p − 1
)

N2pα(3) ,

T (a2b, b) = (p)3 p N2pα2
(2) .

In particular, for s = 1 and g(µ) = µp
, with a = b = 1

T (a, a) = p2µ2p−2µ2 , T (ab, ab) = p2
(

p − 1
)2

µ2p−4µ2
2 ,

T (a2, a) = p2
(

p − 1
)

µ2p−3µ3 , T (a2b, b) = (p)3 p µ2p−4µ2
2 .

For example, var{µ̂−1} or (if Proposition 4.2 needs to be applied), var{µ̂−1I(|µ̂|>l)},

where l > 0 is a known lower bound for |µ|, can be estimated by

̂Tn,2 = (n − 1)
−1 µ̂−4 µ̂2 − 6 n−2 µ̂−6 µ̂2

2

or by

̂Tn,2 I
(

|µ̂|> l
)

with bias O(n−3
), where (µ̂, µ̂2) is (µ, µ2) at F = ̂F . Alternatively, replacing n−2

in ̂Tn,2 by (n − 1)
−2

and setting s2
= µ̂2 n/(n−1), the UE of µ2, we obtain

T ⋆
n,2 = n−1 µ̂−4s2 − 6 n−2 µ̂−6s4 , T ⋆

n,2 I
(

|µ̂|> l
)

as estimates with bias O(n−3
).

7. ESTIMATING THE COVARIANCE OF AN ESTIMATE OF BIAS

The emphasis of this paper has been to reduce bias, not estimate it. How-

ever, a number of papers have given methods for estimating the variance of an es-

timate of bias for the case k =1. See, for example, Efron [7] and Davison et al. [6].

These papers provide bootstrap and jackknife methods of an order of magnitude

less efficient computationally than the Taylor series method (also called the delta

method or the infinitesimal jackknife when p = 2) used here.

Suppose then T(F) is a q×1 functional. Note that T(̂F) has bias n−1B(F)/2

+ O(n−2
), where B(F ) = |2| =

∑

λaT (a2
). Its estimate n−1B( ̂F )/2 has covari-

ance n−2V(F )/4 + O(n−3
), where

V α,β
(F ) =

∑

λa

∫

Bα
F

(

a
x

)

Bβ
F

(

a
x

)

dFa(x) =
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=

∑

λ3
a

{

∫

Tα
(

a,a
x,x

)

T β
(

a,a
x,x

)

− Tα
(a2

)T β
(a2

)

+

2
∑

∫∫

Tα
(

a,a,a
x,x,y

)

T β
(

a,a
y,y

)

+

∫∫∫

Tα
(

a,a,a
x,x,z

)

T β
(

a,a,a
y,y,z

)

}

and dFa(x), dFa(y), dFa(z) are implicit in the integrals. Finally, n−2V( ̂F )/4

estimates covar
{

n−1B( ̂F )/2
}

with bias O(n−3
).

The same is true if we replace B( ̂F ) by Bn,p(
̂F ). If desired, one could apply

Section 6 to reduce this bias to O(n−4
).

In equation (2.6) of Davison et al. [6] and the following line a factor 1/2

should be inserted. So, the usual bootstrap and the usual jackknife estimates of

bias as well as our estimate n−1B(F )/2, all have bias O(n−2
).

APPENDIX A

Here, we note and illustrate the following chain rule for the partial deriva-

tives of

T (F ) = g
(

S(F )
)

,(A.1)

where S(F ) is q×1 and g : R
q → R.

First, suppose k =1, that is, F is a single d.f. Given r ≥1, let s(y) : R
r→R

q

be an arbitrary function. Set ∂i = ∂/∂yi. Then

TF (x1, ...,xr) = ∂1···∂r g
(

s(y)
)

,(A.2)

evaluated with s(y) replaced by S(F ), and ∂1···∂r s(y) replaced by SF (x1, ...,xr).

So, setting

T1,...,r = TF (x1, ...,xr) ,

Si,1,...,r = Si,F (x1, ...,xr) ,

gi,j,... = ∂i∂j ··· g(s)

with ∂i = ∂/∂si at s = S(F ), we have

T1 = gi Si,1 , T1,2 = gi,j Si,1Sj,2 + gi Si,1,2 ,(A.3)

T1,2,3 = gi,j,k Si,1Sj,2Sk,3 + gi,j

3
∑

Si,1,2Sj,3 + gi Si,1,2,3 ,(A.4)

T1,2,3,4 = gi,j,k,l Si,1Sj,2Sk,3Sl,4 + gi,j,k

6
∑

Si,1Sj,2Sk,3,4

(A.5)

+ gi,j

(

4
∑

Si,1Sj,2,3,4 +

3
∑

Si,1,2Sj,3,4

)

+ gi Si,1,2,3,4 ,
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where summation over repeated suffixes i, j, ... is implicit, and by the multivariate

version of Faa de Bruno’s chain rule given in Withers [26], for r ≥ 1,

T1,...,r =

r
∑

k=1

gi1,...,ik

(

S(F )
)

∑

n

m(n)
∑

Si1,π1
···Sik,πk

,(A.6)

where
∑m(n)

sums over all m(n) = r!/
∏r

i=1(i!
ni ni!) partitions (π1, ..., πk) of

1, ..., r giving distinct terms with ni of the π’s of length i, and
∑

n sums over
{

n ∈ N r,
∑r

i=1 ni = k,
∑r

i=1 ini = r
}

. For example,

3
∑

Si,1,2Sj,3,4 = Si,1,2Sj,3,4 + Si,1,3Sj,2,4 + Si,1,4Sj,2,3 .

The reader can derive T1,2,3 from T1,2 using equation (2.6) of Withers [25] to

appreciate the labor-saving this rule gives.

By equation [4c] of Comtet [5] the general term can be written in terms of

the multivariate exponential Bell polynomials, {Br,k(S)i1,...,ik}:

T1,...,r =

r
∑

k=1

gi1,...,ik Br,k(S)i1,...,ik .(A.7)

This is a much easier form to use than (A.6) as these polynomials are immedi-

ately derived from the univariate polynomials Brk
(S) tabled on pages 307–308 of

Comtet [5]. For example, the table gives

B4,1(S) = S4 ,

B4,2(S) = 4S1S3 + 3S2
2 ,

B4,3(S) = 6S2
1S2 ,

B4,4(S) = S4
1 ,

so

B4,1(S)i1 = Si1,1,2,3,4 ,

B4,2(S)i1,i2 =

4
∑

Si1,1Si2,2,3,4 +

3
∑

Si1,1,2Si2,3,4 ,

B4,3(S)i1,i2,i3 =

6
∑

Si1,1Si2,2Si3,3,4 ,

B4,4(S)i1,...,i4 = Si1,1 ···Si4,4 ,

and (A.7) for r ≤ 4 reduces to (A.3)–(A.5).

Now suppose F consists of k d.f.s: the only change is to replace (x1, ...,xr)

by
( a1,...,ar

x1,...,xr

)

wherever it occurs. So, in the notation of (3.1), (A.3)–(A.5) imply

T (a2
) = gi,j Si,j(a, a) + giSi(a

2
) ,(A.8)

T (a3
) = gi,j,k Si,j,k(a, a, a) + 3 gi,j Si,j(a, a2

) + giSi(a
3
) ,(A.9)
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T (a4
) = gi,j,k,l Si,j,k,l(a, a, a, a) + 6 gi,j,k Si,j,k(a, a, a2

)
(A.10)

+ gi,j

{

4 Si,j(a, a3
) + 3Si,j(a

2, a2
)

}

+ giSi(a
4
),

T (a2, b2
) = gi,j,k,l Si,j(a, a)Sk,l(b, b)

+ gi,j,k

{

Si,j(a, a)Sk(b
2
) + Si,j(b, b)Sk(a

2
) + 4Si,j,k(ab, a, b)

}

(A.11)

+ gi,j

{

2 Si,j(a, ab2
) + 2Si,j(b, a

2b)

+ Si(a
2
)Sj(b

2
) + 2Si,j(ab, ab)

}

+ gi Si(a
2b2

) ,

where

Si,j,...

(

aI , aJ , ...
)

=

∫

SiF

(

aI

xI

)

SjF

(

aJ

xJ

)

··· dFa(x) ,(A.12)

(

aI

xI

)

=
a,...,a
x,...,x with I columns ,(A.13)

Si,j

(

aI , bJ , ..., aK , bL, ...
)

=
(A.14)

=

∫

···

∫

Si,F

(

aI

xI ,
bJ

yJ , ...
)

Sj,F

(

aK

xK , bL

yL , ...
)

dFa(x) dFb(y) ,

and so on. Similarly, from (A.7) at r = 5 we obtain

T (a2, b3
) =

5
∑

k=1

gi1,...,ik Ai1,...,ik ,(A.15)

where

Ai
= Si(a

2b3
) ,

Ai,j
= 2Si,j(a, ab3

) + 3Si,j(b, a
2b2

) + Si(a
2
)Sj(b

3
)

+ 6Si,j(ab, ab2
) + 3Si,j(b

2, a2b) ,

Ai,j,k
= Si,j(a, a)Sk(b

3
) + 3Si,j,k(b, b, a

2b)

+ 6Si,j,k(a, b, ab2
) + 6Si,j,k(a, ab, b2

)

+ 3Si,k(b, b
2
)Sj(a

2
) + 6Si,j,k(b, ab, ab) ,

Ai,j,k,l
= Si(a

2
)Sj,k,l(b, b, b) + 6Si,j,k,l(ab, a, b, b) + 3Si,l(b

2, b)Sj,k(a, a) ,

Ai1,...,i5 = Si1,i2(a, a)Si3,i4,i5(b, b, b) ,

and from (A.7) at r = 6 we obtain

T (a2, b2, c2
) =

6
∑

k=1

gi1,...,ik Bi1,...,ik ,(A.16)
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where

Bi
= Si(a

2b2c2
) ,

Bi,j
= Bi,j

1 + Bi,j
2 + Bi,j

3 ,

Bi,j
1 = 2

3
∑

Si,j(a, ab2c2
) ,

Bi,j
2 =

3
∑

Si(a
2
)Sj(b

2c2
) + 4

3
∑

Si,j(ab, abc2
) ,

Bi,j
3 = 2

3
∑

Si,j(a
2b, bc2

) + 4Si,j(abc, abc) ,

Bi,j,k
= Bi,j,k

1 + Bi,j,k
2 + Bi,j,k

3 ,

Bi,j,k
1 =

3
∑

Si,j(a, a)Sk(b
2c2

) + 4

3
∑

Si,j,k(a, b, abc2
) ,

Bi,j,k
2 = 2

6
∑

Si,k(a, ac2
)Sj(b

2
) + 4

6
∑

Si,j,k(a, ab, bc2
)

+ 8

3
∑

Si,j,k(a, bc, abc) ,

Bi,j,k
3 = Si(a

2
)Sj(b

2
) Sk(c

2
) + 2

3
∑

Si(a
2
)Sj,k(bc, bc) + 8Si,j,k(ab, bc, ca) ,

Bi,j,k,l
= Bi,j,k,l

1 + Bi,j,k,l
2 ,

Bi,j,k,l
1 = 2

6
∑

Si,j(a
2b, b)Sk,l(c, c) + 8Si,j,k,l(abc, a, b, c) ,

Bi,j,k,l
2 =

3
∑

{

Si,j(a, a)Sk(b
2
)Sl(c

2
) + 2Si,j(a, a)Sk,l(bc, bc)

+ 4Si,j,k(a, b, ab)Sl(c
2
) + 8Si,j,k,l(a, b, ac, bc)

}

,

Bi1,...,i5 =

3
∑

{

Si1(a
2
)Si2,i3(b, b)Si4,i5(c, c) + Si1,i2,i3(ab, a, b)Si4,i5(c, c)

}

,

Bi1,...,i6 = Si1,i2(a, a)Si3,i4(b, b)Si5,i6(c, c) ,

and
∑m

is interpreted in the obvious manner by permuting a, b, c. For example,

3
∑

Si,j(a, ab2c2
) = Si,j(a, ab2c2

) + Si,j(b, bc
2a2

) + Si,j(c, ca
2b2

) .

Similarly, if we now allow T and g to be r-vectors with components {Tα} and

{gα}, then by (A.3), Tα,β
(a, a) of (6.2) is given by

Tα,β,...
(a, a, ...) = gα

i gβ
i ··· Si,j,...(a, a, ...)(A.17)

and Tα,β
(ab, ab) of (6.6) satisfies

Tα,β
(ab, ab) = gα

i,j gβ
k,l Si,k(a, a)Sj,l(b, b) +

2
∑

α,β

gα
i gβ

j,k Si,j,k(ab, a, b)

(A.18)
+ gα

i gβ
j Si,j(ab, ab) ,
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where

Si,j,k(ab, a, b) =

∫∫

Si,F

(

a,b
x,y

)

Sj,F

(

a
x

)

Sk,F

(

b
y

)

dFa(x) dFb(y) .

Similarly, (6.4), (6.5) yield

Tα,β
(a2, a) =

{

gα
i,j Si,j,k(a, a, a) + gα

i Si,k(a
2, a)

}

gβ
k ,(A.19)

and

Tα,β
(a2b, b) =

{

gα
i,j,k Si,j(a, a)Sk,l(b, b) + gα

i,j

[

Si(a
2
)Sj,l(b, b) + 2Si,j,l(ab, a, b)

]

(A.20)

+ gα
i Si,l(a

2b, b)
}

gβ
l .

Similarly,

Tα,β,δ
(ab, a, b) =

{

gα
i,j Si,j,k,l(a, b, a, b) + gα

i Si,k,l(ab, a, b)
}

gβ
k gδ

l .

We now consider the case, where S(F ) is bivariate, that is q =2. Since Si,j(a
I, aJ

)=

Sj,i(a
J, aI

), (A.8)–(A.11) can be written as

T (a2
) =

{

g1,1S1,1 + 2 g1,2 S1,2 + g2,2 S2,2

}

(a,a) +

{

g1S1 + g2S2

}

(a2
) ,(A.21)

T (a3
) =

{

g1,1,1S1,1,1 +3 g1,1,2 S1,1,2 +3 g1,2,2 S1,2,2 +g2,2,2 S2,2,2

}

(a,a,a)

+ 3

{

g1,1S1,1 + g1,2

(

S1,2 + S2,1

)

+ g2,2 S2,2

}

(a, a2
)(A.22)

+

{

g1S1 + g2S2

}

(a3
) ,

T (a4
) =

{

g1,1,1,1S1,1,1,1 + 4 g1,1,1,2 S1,1,1,2 + 6 g1,1,2,2 S1,1,2,2

+ 4 g1,2,2,2 S1,2,2,2 + g2,2,2,2 S2,2,2,2

}

(a, a, a, a)

+ 6

{

g1,1,1S1,1,1 + g1,1,2 S1,1,2 + 2 g1,2,1S1,2,1

+ g2,2,1S2,2,1 + 2 g1,2,2 S1,2,2 + g2,2,2 S2,2,2

}

(a, a, a2
)(A.23)

+ 4

{

g1,1S1,1 + g1,2

(

S1,2 + S2,1

)

+ g2,2 S2,2

}

(a, a3
)

+ 3

{

g1,1S1,1 + 2 g1,2 S1,2 + g2,2 S2,2

}

(a2, a2
)

+

{

g1S1 + g2S2

}

(a4
) ,
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T (a2,b2
) =

{

g1,1,1,1S1,1S1,1 + 2 g1,1,1,2 S1,1S1,2 + g1,1,2,2 S1,1S2,2

+ 2 g1,2,1,1S1,2 S1,1 + 4 g1,2,1,2 S1,2 S1,2 + 2 g1,2,2,2 S1,2 S2,2

+ g2,2,1,1S2,2 S1,1 +2 g2,2,1,2 S2,2 S1,2 +g2,2,2,2 S2,2 S2,2

}

(a,a)(b,b)

+

{

g1,1,1S1,1S1 + 2 g1,2,1S1,2 S1 + g2,2,1S2,2 S1 + g1,1,2 S1,1S2

+ 2 g1,2,2 S1,2 S2 + g2,2,2 S2,2 S2

}{

(a, a)(b2
) + (b, b)(a2

)

}

(A.24)

+ 4

{

g1,1,1S1,1,1 +3 g1,1,2 S1,1,2 +3 g1,2,2 S1,2,2 +g2,2,2 S2,2,2

}

(ab,a,b)

+ 2

{

g1,1S1,1 + g1,2

(

S1,2 +S2,1

)

+ g2,2 S2,2

}{

(a,ab2
)+(b,a2b)

}

+

{

g1,1S1S1 + g1,2

(

S1S2 +S2S1

)

+ g2,2 S2S2

}

(a2
)(b2

)

+ 2

{

g1,1S1,1 + 2 g1,2 S1,2 + g2,2 S2,2

}

(ab, ab)

+

{

g1S1 + g2S2

}

(a2b2
) .

The convention here is that

(

gπ1
Sπ2

+ ···
)(

aI , ...
)

= gπ1
Sπ2

(

aI , ...
)

,
(

gπ1
Sπ2

Sπ3
+ ···

)(

aI , ...
)(

bJ , ...
)

= gπ1
Sπ2

(

aI , ...
)

Sπ3

(

bJ , ...
)

.

Similarly, for q = 2, splitting the third term in (A.15), gi,j,k Ai,j,k
, into the six

components corresponding to Ai,j,k
, the first is

gi,j,k Si,j,k =

{

g1,1,k S1,1,k + 2 g1,2,k S1,2,k + g2,2,k S2,2,k

}

at (a, a, b3
) and similarly for the second and sixth components. Similarly, for the

three components of the fourth term, the first being

gi,...,l Si,...,l =

{

2
∑

j=1

gi,j,j,j Si,j,j,j + 3 gi,1,1,2 Si,1,1,2 + gi,1,2,2 Si,1,2,2

}

at (a2, b, b, b), and for the fifth term

gi1,...,i5 Si1,...,i5 =

=
(

g1,1−S1,1− + 2 g1,2−S1,2− + g2,2−S2,2−

)

×
(

g−1,1,1S−1,1,1 + 3 g−1,1,2 S−1,1,2 + 3 g−1,2,2 S−1,2,2 + g−2,2,2 S−2,2,2

)

at (a, a, b, b, b), where gπ− Sπ− g−π′ S−π′ is interpreted as gπ,π′Sπ,π′ .

Similarly, for q = 2, the term Bi
3 in (A.16) has the component

4 gi,j Si,j = 4

2
∑

i=1

gi,iSi,i + 8 g1,2 S1,2
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at (abc, abc). The sixth component is

(

g1,1−S1,1− + 2 g1,2−S1,2− + g2,2−S2,2−

)

×

×
(

g−1,1−S−1,1− + 2 g−1,2−S−1,2− + g−2,2−S−2,2−

)

×

×
(

g−1,1S−1,1 + 2 g−1,2 S−1,2 + g−2,2 S−2,2

)

at (a, a, b, b, c, c), where gπ1−
Sπ1−

g−π2−
S−π2−

g−π3
S−π3

interpreted as gπ1,π2,π3

Sπ1,π2,π3
, and so on.

APPENDIX B

The nonparametric analogs of the terms for t2 and equation (D.1) of With-

ers [27] needed for T2 and T3 — apart from those given in (3.3)–(3.5) are as

follows. Summation over a, b, c is implicit, where they occur. These terms are

listed both for the purpose of checking and for application to other problems.

Note that T2 requires

∣
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= |3| and

∣
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∣
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∣

∣

= −2 λ2
a |2|a

and that T3 requires
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∣

222
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∣

∣

∣

∣

= λ3
a

{

T (a4
) − T (a2, a2

)

}

,

∣

∣

∣
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23

20

∣

∣

∣

∣

= −2 λ3
a T (a3

) ,

∣
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2 2 2

1 0 0
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∣

∣
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= |23| ,
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∣
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2 2 2

2 0 0

∣

∣

∣

∣

∣

∣

2

= −2 λ2
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) ,
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∣
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i
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2 2 2

2 1 0

∣
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∣
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− 2 λ3
a T (a3
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= λ3
a

{

T (a4
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since κa(x1, x2), being quadratic in Fa, has functional derivatives higher than two

equal to zero. To illustrate the proof,

∣

∣

∣

∣

222

210

∣

∣

∣

∣

1

= κx1,x2

y1,z1
κy1,y2

z2
κz1,z2 tx1,x2,y2

=

∫ 6

λaλbλc dxUF

(

b,c
y1,z1

)

dyVF

(

c
z2

)

dκc(z1, z2)TF

(

a,a,b
x1,x2,y2

)

,

where U(F ) = κx1,x2 = κa(x1, x2) and V (F ) = κy1,y2 = κb(y1, y2). Note that

VF

(

c
z2

)

= 0

unless c = b and

UF

(

b,c
y1,z1

)

= 0

unless b = c = a. Also

UF

(

a,a
y1,z1

)

= −
2
∑

x1,x2

△y1
(x1) △z1

(x2) ,

and

VF

(

a
z

)

= △z(y1 ∧ y2) −
2
∑

y1,y2

△z(y1)Fa(y2) ,

where △y(x) = (Fa(x))y = I(y ≤ x) − Fa(x). Integrate first with respect to x =

(x1, x2): since columns in TF

(

·,·,·
·,·,·

)

are interchangeable we may replace
∑2

x1,x2
by 2.

Since

∫

TF

(

a,a,a
x1,x2,y2

)

dFa(xi) = 0(B.1)

for i = 1, 2, and

dx

{

I(y1≤ x1) I(z1≤ x2)

}

= δ(x1 − y1) δ(x2 − z1) dx1 dx2

with δ the Dirac delta function,

∫ 2

dx UF

(

a,a
y1,z1

)

TF

(

a,a,a
x1,x2,y2

)

= −2 TF

(

a,a,a
y1,z1,y2

)

.

So,

∣

∣

∣

∣

222

210

∣

∣

∣

∣

1

= −2 λ3
a

∫ 4

dκa(z1, z2)TF

(

a,a,a
y1,y2,z1

)

dyVF

(

a
z2

)

.

Integrate with respect to y = (y1, y2): (B.1) implies the contribution from the

last two out of the three terms in VF

(

a
z

)

is zero. Also,

△z(y1∧ y2) = I(z ≤ y1) I(z ≤ y2) − Fa(y1∧ y2) ,
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so

dy△z(y1∧ y2) = δ(y1− z) δ(y2 − z) dy1 dy2 − δ(y1− y2) dy2 dFa(y2) .

So,

∫ 2

TF

(

a,a,a
y1,y2,z1

)

dyVF

(

a
z2

)

= TF

(

a,a,a
z2,z2,z1

)

−

∫

TF

(

a,a,a
y1,y1,z1

)

dFa(y1) .

Now integrate with respect to z = (z1, z2): by (B.1) the second out of two terms

from dκa(z1, z2) contributes zero. So, putting

L =

∫

dFa(z2)TF

(

a,a,a
y1,y1,z2

)

= 0 ,

we obtain

∣

∣

∣

∣

222

210

∣

∣

∣

∣

1

= −2 λ3
a

∫ 2

dFa(z1∧ z2)

{

TF

(

a,a,a
z2,z2,z1

)

−

∫

TF

(

a,a,a
y1,y1,z1

)

dFa(y1)

}

= −2 λ3
a

{
∫

TF

(

a,a,a
z,z,z

)

dFa(z) −

∫

dFa(y1)L

}

= −2 λ3
a T (a3

) .

APPENDIX C

Here, we show how to estimate N , the number of simulated samples needed

to estimate the bias to within a given relative error ǫ.

Note that Tn,p(
̂F ) has bias −n−p Tp(F ) + O(n−p−1

) and that Sn,p(
̂F ) has

bias −(n−1)
−1
p Sp(F )+O(n−p−1

) =−n−pSp(F )+O(n−p−1
). Suppose we estimate

the bias of Y = Sn,p(
̂F ) by Z = Y −T (F ), where Y = N−1

∑N
j=1Yj , Yj = Sn,p(

̂Fj)

and ̂Fj is the empirical d.f. of the j th
simulated sample. Then EZ = ESn,p(

̂F )−

T (F ) is the true bias of Y and we can write Z = EZ+(vn/N)
1/2{N (0, 1)+op(1))}

as N →∞, where vn = varY1 = VT n−1
+ O(n−2

) as n → ∞, and VT = VT (F ) =
∑

λaT (a, a) with T (a, a) =
∫

TF (
a
x)

2dFa(x). So, if Sp = Sp(F ) 6= 0, the relative

error in the estimate of bias,

(bias estimate − bias)/bias ≈ −(vn/N)
1/2N (0, 1)npSp(F )

≈ −VT (F )
1/2Sp(F )

−1np−1/2N−1/2N (0, 1)

is bounded by a given number ǫ with probability greater than 0.975 + Op(n
−1/2

)

if

2 VT (F )
1/2Sp(F )

−1np−1/2N−1/2 ≤ ǫ ,
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that is, if

N ≥ Nǫ,p,n = ǫ−2 n2p−1φp ,

where φp = 4VT (F )Sp(F )
−2

. This implies that for ǫ = 0.1 and n large, say

n = 100, it is not practical to carry out enough simulations to give meaning-

ful estimates of bias unless p = 1. This is reflected by the poor estimates of bias

in the tables for the case p = 2 obtained for n = 100 using N = 10,000.

Consider the following one sample examples. Set βr = µr µ
−2/2
2 . For F =

N (0, 1), µ4 = 3, µ6 = 15, µ8 = 105 and for F = exp(1), µ2 = 1, µ3 = 2, µ4 = 9,

µ5 = 44, µ6 = 305, µ8 = 14,833.

Example C.1. Consider T (F ) = µ2. Then VT = µ4 − µ2
2, S1 = µ2, φ1 =

4(β4 − 1). So, for a normal sample φ1 = 8 and µ̂2 = µ2(
̂F ) needs

N ≥ Nǫ,1,n = 8 ǫ−2 n =

{

80,000 n simulations for ǫ = 0.01 ,

800 n simulations for ǫ = 0.1 .

For an exponential sample φ1 = 32, so one needs four times as many simulations.

Since S2(F ) = 0, φ2 is not defined.

Example C.2. Consider T (F ) = µ2
2. Then VT = 4µ2

2 (µ4 − µ2
2) and by

Example 5.8, S1 = −µ4 + µ2
2, S2 = −4 µ4 + 7µ2

2 so for a unit normal, VT = 8,

S1 = −2, φ1 = 8, S2 = −29, φ2 = 0.1522 so N0.1,1,n = 800n and N0.1,2,n = 152n3

and for exp(1), VT = 14, 048, S1 = 30, φ1 = 62.44, S2 = 87, φ2 = 7.424, so N0.1,1,n

= 6,244 n and N0.1,2,n = 74.24 n3
.

Example C.3. Consider T (F ) = µ4. Then VT = µ8 − µ2
4 − 8 µ5µ3, and

by Example 5.6 or 5.10, S1 = 2(2µ4 − 3 µ2
2), S2 = 3(4µ4 − 7µ2

2), so for a unit

normal, VT = 96, S1 = 6, φ1 = 32/3, S2 = 15, φ2 = 128/75, so N0.1,1,n = 1067n

and N0.1,2,n = 171n3
and for exp(1), VT = 14,048, S1 = 30, φ1 = 62.44, S2 = 87,

φ2 = 7.424, so N0.1,1,n = 6,244 n and N0.1,2,n = 74.24 n3
.

Example C.4. Consider T (F ) = σ = µ
1/2
2 . Then VT = µ2(β4 − 1)/4, so

by Example 5.15, for a unit normal, VT = 1/2, S1 = 3/4, φ1 = 32/9, S2 = 1/32,

φ2 = 2048, so N0.1,1,n = 356n and N0.1,2,n = 204,800 n3
and for exp(1), VT = 2,

S1 = 3/2, φ1 = 32/9, S2 = 213/8 = 26.625, φ2 = 0.01129, so N0.1,1,n = 356n and

N0.1,2,n = 1.129 n3
.
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APPENDIX D

Here, we list the non-zero derivatives µr·1,2,...,p = µr,F (x1, ..., xp) for 2≤ p≤

r ≤ 6. They are obtained from (5.4) in terms of hi = µxi
, where µx = x − µ, the

first derivative of µ:

µ2·1 = h2
1 − µ2 ,

µ2·1,2 = −2 h1h2 ,

µ3·1 = h3
1 − µ3 − 3h1µ2 ,

µ3·1,2 = −3(h2
1−µ2)h2 − 3h1(h

2
2−µ2) ,

µ3·1,2,3 = 12h1h2h3 ,

µ4·1 = h4
1 − µ4 − 4h1µ3 ,

µ4·1,2 = 12h1h2µ2 − 4(h3
1−µ3)h2 − 4h1(h

3
2−µ3) ,

µ4·1,2,3 = 12(h2
1−µ2)h2h3 + 12h1(h

2
2−µ2)h3 + 12h1h2(h

2
3−µ2) ,

µ4·1,2,3,4 = −72 h1h2h3h4 ,

µ5·1 = h5
1 − µ5 − 5h1µ4 ,

µ5·1,2 = 20h1h2µ3 − 5(h4
1−µ4)h2 − 5h1(h

4
2−µ4) ,

µ5·1,2,3 = −60h1h2h3µ2 + 20(h3
1−µ3)h2h3 + 20h1(h

3
2−µ3)h3

+ 20h1h2(h3
3−µ3) ,

µ5·1,2,3,4 = −60(h2
1−µ2)h2h3h4 − 60h1(h

2
2−µ2)h3h4 − 60h1h2(h

2
3−µ2)h4

− 60h1h2h3(h
2
4−µ2) ,

µ5·1,2,3,4,5 = 480h1h2h3h4h5 ,

µ6·1 = h6
1 − µ6 − 6h1µ5 ,

µ6·1,2 = 30h1h2µ4 − 6(h5
1−µ5)h2 − 6h1(h

5
2−µ5) ,

µ6·1,2,3 = −120h1h2h3µ3 + 30(h4
1−µ4)h2h3 + 30h1(h

4
2−µ4)h3

+ 30h1h2(h
4
3−µ4) ,

µ6·1,2,3,4/120 = 3h1h2h3h4µ2 − (h3
1−µ3)h2h3h4 − h1(h

3
2−µ3)h3h4

−h1h2(h
3
3−µ3)h4 − h1h2h3(h3

4−µ3) ,

µ6·1,2,3,4,5/360 = (h2
1−µ2)h2h3h4h5 + h1(h

2
2−µ2)h3h4h5 + h1h2(h

2
3−µ2)h4h5

+ h1h2h3(h
2
4−µ2)h5 + h1h2h3h4(h

2
5−µ2) .

Note that

µr·1,2,...,r = (−1)
r−1

(r − 1) r!
r
∏

j=1

hj ,

and

µr·1,2,...,r−1 = (−1)
r
(r!/2)

r−1
∑

(h2
1 − µ2)h2 ···hr−1 ,

where
∑r−1

sums over all r − 1 like terms.



282 C.S. Withers and S. Nadarajah

ACKNOWLEDGMENTS

The authors would like to thank the Editor and the referee for careful

reading and for their comments which improved the paper.

REFERENCES

[1] Anderson, S.; Auquier, A.; Hauck, W.W.; Oakes, D.; Vandaele, W. and

Weisberg, H.I. (1980). Statistical Methods for Comparative Studies: Techniques

for Bias Reduction, John Wiley and Sons, New York.

[2] Beirlant, J.; Goegebeur, Y.; Teugels, J. and Segers, J. (2004). Statistics

of Extremes: Theory and Applications, John Wiley and Sons, Chichester.

[3] Cabrera, J. and Fernholz, L.T. (1999). Target estimation for bias and mean

square error reduction, Annals of Statistics, 27, 1080–1104.

[4] Cabrera, J. and Fernholz, L.T. (2004). Multivariate targeting with appli-

cations to ellipse estimation. Contemporary data analysis: theory and methods,

Journal of Statistical Planning and Inference, 122, 79–94.

[5] Comtet, L. (1974). Advanced Combinatorics, Reidel, Dordrecht.

[6] Davison, A.C.; Hinkley, D.V. and Schechtman, E. (1986). Efficient boot-

strap simulation, Biometrika, 73, 555–566.

[7] Efron, B. (1981). Nonparametric estimates of standard errors: The jackknife,

the bootstrap and other methods, Biometrika, 68, 589–599.

[8] Efron, B. (1982). The Jackknife, the Bootstrap and Other Resampling Plans,

Society for Industrial and Applied Mathematics, Philadelphia.

[9] Fernholz, L.T. (2001). On multivariate higher order von Mises expansions,

Metrika, 53, 123–140.

[10] Fisher, R.A. (1929). Moments and product moments of sampling distributions,

Proceedings of the London Mathematical Society, 2, 30, 199–238.

[11] Gray, H.L. and Schucany, W.R. (1972). The Generalized Jackknife Statistic,

Marcel Dekker, New York.

[12] Hall, P. (1992). The Bootstrap and Edgeworth Expansion, Springer Verlag, New

York.

[13] Jaeckel, L.A. (1972). The infinitesimal jackknife, Bell Laboratories Technical

Report MM 72-1215-11, June 30, 1972, New Jersey.

[14] James, G.S. (1958). On moments and cumulants of systems of statistics,
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