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ABSTRACT:

!!!! In this paper, we propose a recursive algorithm to obtain estimations of the false
alarm probability in discrete linear systems with uncertain observations. We use a
Bayesian approach, by specifying a Beta prior distribution for the unknown
parameter and considering a quadratic loss function. By means of successive
approximations of mixture distributions, we obtain a recursive algorithm which
provides approximations for the Bayes estimators of the false alarm probability.
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RESUMO:

!!!! Neste artigo, propomos um algoritmo que estima de forma recursiva a
probabilidade de falso alarme em sistemas lineares discretos com observações
incertas. Utilizamos uma abordagem Bayesiana, em que se especifica uma
distribuição a priori Beta para o parâmetro desconhecido e se considera uma
função perda quadrática. A estimação é feita através de aproximações sucessivas de
distribuições mistura, obtendo-se aproximações para os estimadores de Bayes para
a probabilidade de falso alarme.
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!!!! Observações Incertas, Probabilidade de falso alarme.
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1. INTRODUCTION

In many practical situations, such as communication systems, there may be a
nonzero probability (false alarm probability) that any observation consists of noise
alone; this may be caused by an intermittent failure in the observation mechanisms.
These situations can be described by an observation equation including not only an
additive noise, but also a multiplicative noise component, modelled by a sequence of
Bernoulli random variables; such systems are called Systems with Uncertain
Observations.

The linear state estimation problem in linear systems with uncertain observations,
under the hypotheses of mutual independence of the noises and the initial state and
independence of the Bernoulli random variables, was treated by Nahi (1969). Later on,
García-Ligero et al. (1997) and Caballero et al. (2000) obtained the quadratic and
polynomial filters, respectively. In all these works it is assumed that, at any time, the
false alarm probability or, equivalently, the probability that the signal exists in the
observations, is known.

In this paper, we consider a linear discrete-time system with uncertain
observations in which the uncertainties are governed by a sequence  of independent
Bernoulli random variables, and we assume that the probability that the observations
contain the state process is unknown, but fixed throughout the time. We assume that
the initial state and the additive noises of the system are gaussian and, also, that the
initial state and all the noises are mutually independent.

Our aim is to obtain a recursive algorithm to estimate the false alarm probability,
based on the successive observations of the system. For our purpose, we use a
Bayesian approach; due to an ever-increasing computational complexity as a result of
the uncertainty in the observations, the Bayes estimators of the probability are
unfeasible in practice. For this reason, it becomes necessary to find approximations
which are viable from a computational viewpoint.

Firstly, by using successive approximations of  gaussian mixtures, we propose a
method to compute approximations for the posterior densities of the unknown
probability, given the observations. These approximations have also a mixture form
and, hence, their computation involves an additional complexity which depends on the
selected prior density. Then, we consider a Beta as the prior density and, by means of
the   new approximations of mixture distributions, we propose a recursive algorithm
which allows us to obtain estimations of the unknown probability.

The proposed estimators of the unknown false alarm probability can be used for
adapting the linear, quadratic and polynomial filtering algorithms established in Nahi
(1969), Garcia-Ligero et al. (1997) and Caballero et al. (2000), respectively.
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2. PROBLEM STATEMENT

Consider a discrete-time linear system with uncertain observations

0   ,1 ≥+=+ kwxAx kkkk

0   , ≥+= kvxCuz kkkkk

where kx  is the 1×n state vector, kz  is the 1×m  observation vector at time k ,
and kA , kC  are known matrices of appropriate dimensions.

The initial state, 0x , and the additive and multiplicative noises, { }0  ; ≥kwk

{ }0  ; ≥kvk  and { }0  ; ≥kuk , satisfy:

# 0x  is a gaussian vector with zero mean and covariance matrix 0Σ .

# { }0 ; ≥kwk  is a gaussian white sequence with zero means and
covariance matrices kQ .

# { }0 ; ≥kvk  is a gaussian white sequence with zero means and covariance
matrices kR .

# { }0 ; ≥kuk  is a sequence of independent Bernoulli random variables
with [ ] ,1 puP k ==  for all ,0≥k  being p  an unknown parameter.

# The initial state 0x and the noises { }0  ; ≥kwk ,  { }0  ; ≥kvk  and
{ }0  ; ≥kuk  are mutually independent.

Our aim is to obtain estimators for the probability p , based on the successive
observations, ,,,0 kzz !  of the system, that can be obtained recursively.  For this
purpose, we use a Bayesian approach and, so, the problem is to obtain

{ },/ k
k ZpEp =  the Bayes estimator of the probability p  given the observations

{ }kk zzZ ,,0 != , for a specific prior density and assuming a quadratic loss function.

To solve this problem we need to obtain the posterior density given the
observations, for the selected prior density. Denoting by )/( 1−Zpf  the prior density

for ,p  the posterior density, ),/( kZpf  can be obtained from the Bayes theorem,

and it becomes
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Accordingly, the computation of the posterior densities ( )kZpf /  requires that
the densities ( )1/ −k

ki Zzf ,  for ,1 ,0 =i  should be calculated. From  the

independence hypotheses on the system, the density ( )1
0 / −k

k Zzf  agrees with that of
the observation noise vector kv , that is, it is the density of the gaussian distribution

( )kRN ,0 .  However, as a result of the uncertainty in the observations, the

determination of ( )1
1 / −k

k Zzf   is not simple and its computation grows in complexity
as k  increases. To avoid this difficulty, it seems natural to consider approximations
for these densities. So, approximations for the posterior densities and, consequently,
for the Bayes estimators of the parameter p are obtained.

We propose to approach this problem by approximating mixtures of gaussian
distributions by gaussian distributions with their corresponding parameters. This task
will be carried out in the next section.

3. ESTIMATION OF THE FALSE ALARM PROBABILITY

As we have commented in the above section, our first aim will be to obtain
approximations, ( )1

1 /~ −k
k Zzf , which avoid the ever-increasing computational

complexity of the density ( )1
1 / −k

k Zzf . These approximations will provide, in their

turn, approximations for the posterior density, ( )kZpf /~
, and for the Bayes

estimators of ,p   ( )∫= ./~~ dpZpfpp k
k

At the  first step, since ( )1
01 / −Zzf  corresponds to the gaussian distribution

( )0000,0 RCCN T +Σ ,  the density ( )0/ Zpf  can be easily computed, providing the
estimator  0p .
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Next, we observe that   ( )0
11 / Zzf  is determined by  ( )1

000 /,, −Zzwxf  and

( ) ( ) ( ) ( )1
00001

1
00011

1
000 /,,1/,,/,, −

−
−

−
− −+= ZzwxfpZzwxfpZzwxf

where  ( ) ( ),/,,/,, 0000
1

000 iuzwxfZzwxfi ==−  for ,1 ,0=i  is the density of the
gaussian  distribution
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Then, we  approximate ( )1
000 /,, −Zzwxf  by the density of the gaussian

distribution
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From this distribution, using the system equations, we obtain that ( )0
11 /~ Zzf  is

the density of the distribution ( ),  ,ˆ 110/110/11 RCCxCN T +Σ  where

000010

00010

0000/1
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=
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−

and

000/000/1 QAA T +Σ=Σ

.00000/0
TKK Π−Σ=Σ

Finally, the replacement of ( )0
11 /~ Zzf  in the  expression of ( )1/ Zpf ,

together with ( )0/ Zpf , provides an  approximation, ( )1/~ Zpf , and, from it, we
obtain .~

1p
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The proposed  procedure provides a recursive method for obtaining the densities
( )k

k Zzf /~
11 + . In fact, let us assume that, for an arbitrary 1≥k , the following

approximation holds
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k
kkki ZiuzwxfZzwxf  for ,1 ,0=i  is the density
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As in the first step, we approximate this  mixture by the density of the gaussian
distribution
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The approximation ( )k
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obtain the estimators 1
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+kp .
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This procedure  provides a method for the computation of ( )kZpf /~
 and the

estimators kp~ . However, its application  presents an additional difficulty, due to the
fact that this posterior density also has a mixture form. Obviously, the difficulty at the
computation depends on the selected prior distribution. In the following section, we
consider a Beta as the prior distribution,  and we propose  a new approximation for the
Bayes estimators of  p .

4. ESTIMATORS APPROXIMATION

Since p  is the parameter of the Bernoulli random variables{ }0  ; ≥kuk , and
the Beta family is conjugated for the sampling of that distribution, let us specify

( ) ( )00
1 ,/ βαβ≡−Zpf . Then ( ) 1

0001
−

− += βααp , and

( ) ( ) ( ) ( )1,1,1/ 000000
0 +−++= βαβδβαβδZpf
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So, as a result of the mixture form of ( )0/ Zpf , and since each posterior

density is mixture of two distributions,  ( )kZpf /~
 will be a mixture of 12 +k

distributions.

In order to avoid the computational complexity, we propose to approximate
( )0/ Zpf  by ( )0/ˆ Zpf , the density of the distribution ( )0000 1, δβδαβ −++ ,

and for the subsequent steps we proceed in an analogous way. So,  if
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and will be approximated by the distribution
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The main advantage of these approximations is that the estimators can be
obtained by the following recursive relation

[ ] 0  ,ˆˆ
1

1ˆˆ 1
00

1 ≥−
+++

−= −− kp
k

pp kkkk δ
βα

     
00

0
1ˆ

βα
α
+

=−p .

5. NUMERICAL EXAMPLE

To test the effectiveness of the proposed estimators, we have considered the
following scalar system

0  ,5.01 ≥+=+ kwxx kkk

  0  , ≥+= kvxuz kkkk

where the initial state, 0x , is a random variable with distribution ( )1,0N , and  the
noises { }0  ; ≥kwk  and { }0  ; ≥kvk are gaussian white sequences with zero means

and variances { } { } 3/1922 == kk vEwE . The multiplicative noise { }0  ; ≥kuk  is a
sequence of independent Bernoulli variables with unknown parameter p .

We have obtained numerical simulations for the observations of this system,
considering different values of the parameter p  ( 5.0  ,25.0 == pp  and 75.0=p )
and, in each case, we have performed one hundred iterations of the proposed
algorithm by assuming as prior distribution a Beta, ( )3/19,3/191+β ; the
parameters of this prior distribution specify the standard deviation of the first
observation when the false alarm probability is zero and one, respectively.

The successive estimations of p , obtained by using the observations simulated
with each value of the false alarm probability, are displayed in the below table and
figures. A slow but clear decreasing and increasing tendency of the estimations can be
noticed in the extreme cases, 25.0=p  and 75.0=p , respectively. In the case

5.0=p , since the prior estimation is very close to this value, we observe that the
estimations are stabilised about it.
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25.0=p 5.0=p 75.0=p

0.51831723324638
0.51692290437721
0.51008203131525
0.49792392924330
0.48977821354975
0.48294188029693
0.47418586368559
0.47084120586004
0.46703800606882
0.46099993258587
0.46107784505358
0.45472842375341
0.46955780885823
0.46317466717575
0.45796823523771
0.46199153354518
0.45736902312049
0.45352496399865
0.45226902640002
0.44815155826277
0.44654690067308
0.44582606943595
0.44250351452456
0.43905692380759
0.43942617880233
0.43797274378768
0.43483985819290
0.43183861756302
0.43078886751338
0.42960746395327
0.42676231716834
0.42415405937514
0.42164440242958
0.42096808050841
0.42118136551663
0.42178006540035
0.42183229484749
0.41983587045855
0.41829142946926
0.41694097593400
0.41906590950883
0.41793395897366
0.41593875592986
0.41486127448008
0.41800730267086
0.41980836763697
0.42728667798995
0.42538764641818
0.42347656534294
0.42444278421478
0.42333939490793

0.42251511734729
0.42123250358735
0.42067813657507
0.42059293230680
0.42003494831626
0.41851909475381
0.42137809765677
0.42241612164985
0.42163454979915
0.42441856302212
0.42319650016718
0.42171651899885
0.42032478224086
0.41897627158681
0.41786976437692
0.41863358999901
0.41765313244278
0.41643917322505
0.41576622143065
0.42115710574440
0.42020790947848
0.41917971201091
0.41845648688386
0.41724143885485
0.41625511874150
0.42031315704781
0.41916582236500
0.41854231044352
0.41895171813775
0.42132040401052
0.42030220538901
0.41987540671512
0.41927982374542
0.41914710004728
0.41817617569893
0.41838206124766
0.41737067649262
0.41643181688604
0.41605100798565
0.41691107656105
0.41947601859812
0.41828570969286
0.41771687302669
0.41769621688851
0.42030717424191
0.41993716379386
0.41891917157318
0.41846015479370
0.41829165612604
0.41734900510805
0.41726390448502

0.51831723324638
0.51624961308656
0.50790711705153
0.49635647191756
0.48609452342568
0.47725348546051
0.47040435212003
0.47476570826775
0.46727768368744
0.46089249551017
0.46641594336362
0.46605779494621
0.48127877160113
0.47522552414406
0.47011565780925
0.46886835871281
0.46405540469460
0.45960355419658
0.45557175786672
0.45199695325787
0.46194253289223
0.46082917707688
0.48035411576262
0.47589204492577
0.47941416453953
0.47588312075814
0.48041776533840
0.47720970078000
0.48551738946555
0.48233856475159
0.47945579743599
0.49102973294518
0.50361296866707
0.51164214977775
0.50841302267218
0.51327852682774
0.51048666936469
0.50952907178538
0.50885414141747
0.50646092083373
0.50431026074839
0.50628176563788
0.50472521056793
0.50970265338092
0.50773531588242
0.50825266187492
0.50670755978178
0.50701107913350
0.50708962191031
0.51218307264665
0.50991528635783

0.50839443315680
0.50881219639288
0.50746135975527
0.50576474230569
0.50421881359340
0.50328468346594
0.50309212789447
0.50196950260317
0.50453183456854
0.50646294790495
0.50543740162250
0.50449306147154
0.50327494332868
0.50186756253584
0.50160779961060
0.50071859294673
0.50112565888034
0.50208466880606
0.50056858441507
0.50238433665269
0.50090055646227
0.49969650500197
0.49887014604613
0.49984751318801
0.49973114043850
0.49846933766466
0.49772900506546
0.49752264538021
0.49820647399445
0.50334908657268
0.50251814524632
0.50127955271572
0.50020913912989
0.49915619699071
0.49916769902649
0.49844655227867
0.50067435077089
0.49982395153334
0.49933598718989
0.49825175922758
0.49756009255887
0.49778010837073
0.49719737098230
0.49705731813328
0.49744963824493
0.50067156353097
0.49943897568785
0.50076677831059
0.49973329741485
0.49894997686286
0.49800126976457

0.51831723324638
0.51780346913122
0.57376233220683
0.55830090888667
0.55280550095145
0.56874950435060
0.56020695149390
0.55204606851969
0.54701650238569
0.54049551891840
0.54663850631360
0.56270817235801
0.55853522670033
0.56564225256456
0.57599774731777
0.58469305260024
0.58438413276868
0.58851501593358
0.58584963283698
0.59307360811065
0.59762970227892
0.60460406963169
0.60603871931980
0.60825022581519
0.60500353419828
0.61421042422349
0.62385703099807
0.62444651964067
0.62398040402280
0.62438833657372
0.62260359429456
0.62387691282616
0.62129214720905
0.61880303725354
0.61637775459192
0.61474547676763
0.61305369487088
0.61155840092122
0.61752688293941
0.61813380060184
0.61634372027683
0.61466947929366
0.61281501490532
0.61092169420173
0.61597628271750
0.61392214854909
0.61284796987762
0.61187769334657
0.61211890302355
0.61206970263562
0.61065995693767

0.61270200596641
0.61255257876996
0.61854195262212
0.62076022231370
0.61872533935391
0.61721285895589
0.61621926555911
0.61668642159040
0.61767842465579
0.61597573738515
0.61480463031140
0.61488946941091
0.61456731903296
0.61470061295716
0.61348414584386
0.61213360387475
0.61138454485833
0.61017427956407
0.61257072600714
0.61095565602835
0.60986274975476
0.60983527075147
0.60887998250087
0.60944778589369
0.61027094601079
0.61050294881053
0.61110230710716
0.61347090918771
0.61196680772215
0.61105790539918
0.60990614249121
0.61016437140367
0.61008743230091
0.61443360282785
0.61667971271557
0.61942384653282
0.61882321966852
0.61791817230560
0.61705231344732
0.61612449467778
0.61780790385322
0.61669583416555
0.61643038684791
0.61754234657963
0.62054625633693
0.61934401777018
0.61846077869030
0.61763840968242
0.61878927763336
0.62039930264733
0.62250188891052

Table: Estimations of p with prior distribution ( )3/19,3/191+β
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Figure 1. Estimations of 25.0=p

Figure 2. Estimations of 5.0=p

Figure 3. Estimations of 75.0=p
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6. CONCLUSIONS

In this paper, we consider a system with uncertain observations in which the
initial state and  noises are mutually independent and  the probability that the
observations contain the state process is unknown, but fixed throughout the time. We
propose a recursive estimation algorithm for that probability, based on the successive
observations of the system.

The estimators obtained with this algorithm are approximations to the Bayes
estimators of the false alarm probability when a Beta prior distribution is specified and
a quadratic loss function is considered. These approximations are obtained by means
of successive approximations of mixture distributions.

ACKNOWLEDGEMENTS

This work has been partially supported by the “Ministerio de Ciencia y
Tecnología” under contract BFM2000-0602.

REFERENCES

CABALLERO, R., HERMOSO, A. and LINARES, J., “Least Mean-Squared Error Polynomial
Estimation in Systems with Uncertain Observations”. Proceedings of the 2000
IEEE International Symposium on Information Theory, 110. Sorrento, Italy. 2000.

GARCÍA-LIGERO, M. J., HERMOSO, A. and LINARES, J., “Second Order Polynomial Filtering for
Discrete Systems with Uncertain Observation”. Proceedings of the VIII
International Symposium on Applied Stochastic Models and Data Analysis, 157-
162. Anacapri, Italy. 1997.

NAHI, N. E., “Optimal Recursive Estimation with Uncertain Observation”. IEEE Transactions on
Information Theory. IT-15, 457-462. 1969.


