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ABSTRACT:

!!!! This paper investigates the local influence assessment in Poisson generalized linear
models. The assessment of local influence in generalized linear models is studied
by the approach of Cook (1986). So he only deals with the local influence on the
regression coefficients which are not resistant to masking and swamping effects.
Suárez and González (2000) propose a new measure to detect locally influential
data under perturbations to variance. Based on this measure, in this paper we
propose a  locally influential measure to mitigate these difficulties. We demonstrate
the need of this measure. An  example  shows the effectiveness of the proposed
method.
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RESUMO:

!!!! Este artigo procede à avaliação da influência local em modelos lineares
generalizados de Poisson. A avaliação da influência local em modelos lineares
generalizados é estudada pela abordagem de Cook (1986). Este autor lida apenas
com o caso da influência local em coeficientes de regressão que não são robustos a
efeitos masking e swamping. Suárez and González (2000) propõem uma nova
medida para detectar dados localmente influentes sob perturbações da variância.
Neste artigo, propomos uma medida de influência local baseada nessa medida, que
minora estas dificuldades e demonstramos a necessidade de tal medida. Um
exemplo ilustra a eficácia do método proposto.

PALAVRAS-CHAVE:

!!!! Modelos Lineares Generalizados, Masking e Swamping, influência local.
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1. INTRODUCTION

We assume the observations consist of a vector y of n independent responses
from the exponential family. We study a Poisson generalized linear model, which is a
particularly case of this family.

The idea of influence assessment is to monitor the sensitivity of statistical
analysis subject to minor changes in the model. The works of some authors
(Lawrence, 1988, Peña and Yohai, 1995) indicate that one of the attractions of the
local influence concept is that it assesses the effect of joint perturbations on the data
cases more easily than global influence measures Suárez and González (2000). Thus
in a local sense, frequently, the results are free from masking effects that present
difficulties for individual case-deletion methods.

The purpose of this study is to gain additional insight on global influence
regarding the local influence analysis and its implications.

In the next section we give the general idea of generalized linear models.
Section 3 we describe a general idea of local influence. Section 4 shows that local–
influence analysis of perturbations of the variance is similar to the usual regression
diagnostic based on Hadi’s measure for detecting an influential subset. In Section 5 we
extend the ‘Suárez and Glez’ measure to Poisson generalized linear model. In Section
6 we give a Lawrence’s transformation measure. And Section 6 provides an
illustrative example.

2. A POISSON GENERALIZED LINEAR MODEL

2.1. RESPONSE DISTRIBUTION

We assume the observations consist of a vector y  of n independent responses
from the exponential  family

] ,...2,1,0)};()(/)(exp{[);;( =+−= yycabyyf φφθθφθ

with θ i = g(ηi), ηi = xi'β, where x is an n×p matrix of covariates, is a p-dimensional
column vector of unknown parameters, and a(.),b(.),c(.) are known functions. The
dispersion parameter φ is usually regarded as nuisance parameter.
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Then the mean and variance of y can be written by:

E[y]= b’(θ) = µ

Var[y]= b´´(θ)a(φ) = b´´(θ ) φ / w,

where the primes denote derivates with respect to θ.

Applying  this in Poisson distribution we have:

,...2,1,0}!ln)lnexp{();;( =−−= yyyyf λλφθ (1)

φ = 1, b(θ) = λ , c(y, φ) = -lny!

E[Y]= λ

Var[Y]= λ

2.2. LINK FUNCTION

The mean µi of the response  in the i-th observation is related to a linear
predictor through a monotonic differentiable link function g

ηi = g(µi) = xi’β

Here, x i is a fixed known vector of explanatory variables, and β is a vector of
unknown parameters.

In classical linear models they are identical, and the identity link is sensible in
the sense that both η and µ can take any value on the real line. However, when are
dealing with counts and the distribution is Poisson, we must have µ>0, so that the
identity link is less attractive in part because may then be negative. Models based on
independence of  probabilities associated with the different classifications of cross-
classified data lead naturally to considering multiplicative effects, and this is
expressed by the log link, η = log µ  with its inverse µ =  eη .Therefore the link
function for Poisson (λ) models is the log link η= log λ.
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2.3. MAXIMUM LIKELIHOOD FITTING

An iterative methods are required  to solve the normals equations:

Xts= Xt ( yy ˆ− ) = 0,

And these lead to the iterative scheme:

βt+1= βt-H-1s,

where H is the hessian matrix and s is the gradient vector of the log-likelihood
function. That is:

s=[sj]=[∂L/∂βj] and H=[hij]= [∂2L/∂βi∂βj].

The estimated covariance matrix of the parameter estimator is given by

Σ= -H-1

In our case, Σ= (XtVX) –1, where V is a diagonal matrix with the  variance λ i of
the response Y(∼  Poisson(λ)) in the i-th observation.

2.4. GOODNESS OF FIT

Two statistics that are helpful in assesing the goodness of fit of a given
generalized linear model are the scaled deviance and Pearson’s chi-square statistic.

The scaled deviance is defined by

where );ˆ( yl θ  refers to the maximum of the log-likelihood function based on fitting
each exactly. Therefore, the deviance in Poisson models can be written as:

2{ ∑ yln(y/λ) +∑ (y-λ)}

)},;ˆ();ˆ({2),( ylyXlyD θβµ −=
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And finally, the Pearson’chi-square statistic is defined as:

χ2 = ∑(yi-µi) 2 /V(µi)

where ( ) ( )( )βµ ˆˆ 1
ii xgb=  and ( ) ( ) ( )( )βµ ˆˆ 2

ii xgbVar = .is the estimated variance
function for the distribution concerned..

3. LOCAL AND DELETION INFLUENCE

We shall give a brief review of Cook’s local influence approach in this section
to provide some help for understanding the new formulation which will be defined in
Section4.

Consider the Poisson generalized linear model defined in Section 1

,...2,1,0}!ln)lnexp{();;( =−−= yyyyf λλφθ

with θ i = ln λ , ηi = Xiβ. Let β̂  be the estimated parameter vector of β (MLE).

Many measures have been suggested to assess the influence of observations.
Cook(1986) considers a general version of Cook’s distance

,||ˆˆ||
2

2
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i
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where )(ˆ,ˆ iYY  are the n×1 vectors of the fitted values based on the full data and the
data without i-th case, respectively, and k is the dimension of  β.

He investigated
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where )(ˆ wY  is the vector of fitted values when the i-th case has weight w and the
remaining cases have weight 1.
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These ideas have been extended to general cases . In generalized linear models
the generalized Cook’s distance(McCullagh and Nelder(1989)) is defined by

( )( )( ) ( )( ) φββββ ˆˆˆ'ˆˆ '
−−= iii WxxLD

as a measure of the effect of the i-th datum point on the parameter estimates, where
{ }iWdiagW = , ( ) ( ) ( )( )[ ] 212 ˆˆ

iii gbW ηθ= , iβ̂  denotes the estimates when that point is
omitted and the superscript (2) denotes the 2nd derivative of the function.

An approximate measure of leverage is given by the diagonal element hi of the
projection matrix

H= W1/2x(x’Wx)-1x’ W1/2

Cook(1986) developed a general technique for the assement of local influence.
Sensivity of the analysis was assesed though the normal curvature of the likelihood
displacement surface  when minor perturbations were introduced in the postulated
model. Further extentions to generalized linear model were given by Thomas and
Cook(1989). The likelihood displacement takes the form





 −=

∧
)()ˆ(2)( wLLwLD ββ   ,

where )ˆ(βL  is the likelihood for β and write w

∧
β   for the MLE from the perturbed

model. The vector of the values w and LD(w) from the surface of interest as w varies.
The direction hmax of the maximum curvature of the likelihood displacement surface in
the postulated model( where w= w0) indicates the greatest local sensitivity against
perturbations. The direction of maximum curvature is used as the main diagnostic tool
in the local influence method. But this measure has some practical and theoretical
difficulties. For example, computability of the maximum curvature is restricted to the
linear regression model; there is also a lack of invariance of the curvature under
reparametrisation of the perturbation scheme; and lack of definition of the parameters.

4. DIAGNOSTIC IN POISSON GENERALIZED LINEAR MODEL

We show that local-influence analysis of perturbations of the variance is similar
to Hadi’s measure for detecting an influential subset. To avoid the difficulties defined
in Section 3, Suárez and González(2000) suggest an alternative likelihood
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displacement. Based on this likelihood displacement, we propose a quasilikelihood
displacement to mitigate the swamping and masking effect:












−





+



 −−=

∧∧∧∧

iwiwii wLLwLD µµββ varvar)|()(2)()(

where ( ) ( )( )βµ ˆˆ 1
ii xgb=  and ( ) ( ) ( )( )βµ ˆˆ 2

ii xgbVar = .

Therefore , the aim of the present paper is  give a  measure to mitigate these
difficulties  in Poisson generalized linear model.

Applying this displacement  to Poisson model  we obtain the slope:

LD**
i(w i)= ,ˆ

ˆ
2

ii

i
ii

m
hyy

λ
−−

Where h i are the diagonal elements of the projection matrix H defined is section
2, iŷ   are the predicted values of response variable, m i  is the number of observations
in the i-th covariate  and λ i are the diagonal element of the variance matrix V.

However, in Poisson generalized linear model we have no constant variance,
therefore we use Box and Cox (1964) transformation in model (1) to mitigate this
problem.

Then, we have:

LD**
i(w i)= ,ˆ

ˆ
2
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i
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5. TRASFORMATION DIAGNOSTIC IN POISSON MODEL.

The aim of diagnostic in regression analysis is to appropriateness of the
assumptions made in fitting a regression model to the data. Lawrence(1988) obtains
diagnostics for the estimated regression parameter of the Box and Cox transformation
of the response variable in the linear model:

Let Y(λ) (Poisson model defined in section1) be :

,...2,1,0}!ln)lnexp{();;( =−−= yyyyf λλφθ



3º  QU A D R IM E S TR E  D E  2001

R E V I S T A  D E
E S T A T Í S T I C A

z(λ) = y(λ)/ J(λ )1/n, where

and we define z’ as the derivate of z(λ) with respect to λ.

For the Box-Cox power family .transformation we have:

λ

λ
λ 1)( −= yy  and 

λλ

λ
λ

1
)( 1

−

−=
y
yz
"

, where y"  is the geometric mean of (y1 ,y2 , ... ,yn).

The variance in the transformed model is slightly perturbed, in particular, it
provides to determining those cases of the data that have strongest general influence
on the estimated transformations parameters.

Now the variance of the model become:

Var(e)= σ2W-1,

where W is a diagonal matrix of perturbations.

Lawrence proposes a measure to assess the effect of joint perturbations on the
data cases:

i= 1,...,n; where ri and ri’ are the ith residuals from the regression of z and z’ on the
column of X, respectively.

The diagnostic then arises from local changes to the transformation parameter
estimate caused by small perturbations; the case direction in which small perturbations
have the greatest effect is the main diagnostic quantity.

6. COMPARISIONS OF LOCAL INFLUENCE MEASURES WITH A POISSON
DATA.

We now compare the various local influence in the contex of a  Poisson data
set.

,/)(
1

)(∏
=

=
n

i

ii dydyJ λλ

2/12]}'[{/'* ∑+==
n

jjiimax rrrrlLD i



3º  QU A D R IM E S TR E  D E  2001

R E V I S T A  D E
E S T A T Í S T I C A

The data arise from a 5*4 factorial design (Maxwell 1961) with four
replications at each factor level. The responses are the number of boys with disturbed
dreams, and the factors are Rating (four levels) and Age groups (five levels).

The following model is fit to the data.

Ln Dream =  β0 + β1  Rating+ β2  Age+∈ ,

we have n=20 and k=3 in these data. On one hand, we apply LD,LD*,LD** and the
five largest values are in Table 1.

Table 1. Maxwell(1961) data: Five largest values based on LD(Cook’s
distance), and LD*  (Lawrance’s measure), LD* * ( New measure)

Case       LD Case      LD* Case          LD**

20          4.031 15        0.379 20           19.927

15          1.920 20        0.339 19           17.378

2            1.649 2          0.3153 18           15.152

16          1.486 19        0.304 15           13.982

19          1.078 10        0.301 17           13.392

As can be seen from Table1, observations 20 is more local influential according
to LD and LD**.

FIG. 1: A plot of Residuals versus Predicted values.

Cases 18,19,20 seem out of line with the rest of the plot.As we can see that  LD,
LD*  provide a useful method for investigating influence but they have some therorical
and practical difficulties like  swamping and masking effects.As we can observe in
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table 1 they  are no resistant to these effects.Also,we can observe that the stranges
observations (cases:20,18,19) are detected by LD** and this measure hasn’t these
problems .

REFERENCES

BILLOR and LOYNES, R. M. (1993), Local influence:A new approach, Communication.Stat.Theory
Methods,22,1595-1611.

BOX, G. E. P. and COX, D. R. (1964). An analysis of transformations,J_R.Stat Soc B,26,211-246.

COOK, R. D. (1977). Detection of influential observations in linear regression.Technometrics,19,15-18.

COOK, R. D. (1986).Assement of local influence,Journal of the Royal Statistical Society SeriesB-
Methodological,48,133-169.

HADI, A. S. (1992).A new measure of overall potential influence in linear regression.computational
Statistics&Data Analysis 14,1-27.

LAWRENCE, A. J. (1988),Regression transformation diagnostic using local influence, Journal of the
American Statistical Association,86,1067-1072.

MAXWELL, J. A. (1961).Analysing qualitative data.London:Methuen.

MACCULLAGH, P., and NELDER, J. A. (1989),Generalized linar models.London:Chapman and
Hall.J.A

NELDER, J. A. and WEDDERBURN, W. M. (1972).Generalized linear model, Journal of the Royal
Statistical Society,A135,370-384.

PEÑA, D. and YOHAI, V. J. (1995).The detection of influential subsets in linear regression by using an
influence matriz, Journal of the Royal Statistical Society SeriesB-
Methodological,57,145-156.

SUÁREZ, M. .M. and GONZÁLEZ, M. A. (1996).Medidas basadas en influencia local.Cuadernos de
Bioestadística y sus aplicaciones Informáticas, vol 14,5-17.

SUÁREZ, M. .M. and GONZÁLEZ, M. A. (2000).A connection between local and deletion influence,
Sankhya:The Indian Journal of Statistics 2000, 62,series A,pt1,144-149.

SUÁREZ, M. .M. and GONZÁLEZ, M. A. (2000).Local and deletion diagnostic, Test, vol 9, No 2,345-
352.

THOMAS, W and COOK, R. D. (1989). Assesing influence on regression-coefficients in generalized
linear models, Biometrika,76,741-749.


