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Abstract:

• In several applications data are grouped and there are within-group correlations.
With continuous data, there are several available models that are often used; with
counting data, the Poisson distribution is the natural choice. In this paper a mixed
log-linear model based on a Poisson–Poisson conditional distribution is presented.
The initial model is a conditional model for the mean of the response variable, and
the marginal model is formed thereafter. Random effects with Poisson distribution
are introduced and a variance-covariance matrix for the response vector is formed
embodying the covariance structure induced by the grouping of the data.
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1. INTRODUCTION

In many applications in biology, agriculture, engineering and economics,
for instance, grouped data reveal within-group correlation. For continuous data
there are several available models which are used. These include Variance Com-
ponent Models and Mixed Models (Laird and Ware [2], Pinheiro and Bates [6])
which embody fixed and random effects. Both models are based on the Multi-
variate Normal distribution, which has friendly properties, as the marginal and
conditional distributions are still Normal.

Goldstein [1] gives several examples where ignoring the group structure can
lead to imprecise estimates, confidence intervals and significant tests. He alerts
that grouped data should be modelled respecting its particular structure.

A mixed log-linear model based on the Poisson–Poisson hierarchical distri-
bution will be presented for grouped count data. The initial model is a conditional
model for the mean of Y , and the marginal model is derived afterwards. It will be
shown that building the model this way and introducing random Poisson effects, is
a means of introducing overdispersion in a pseudo-Poisson model (overdispersion
is said to exist when var(Y ) = φE(Y ), φ>1). Moreover, the variance-covariance
matrix is built for the response vector Y, which embodies the covariance structure
induced by the grouping of the data.

Several authors (McCulloch and Searle [5], Vonesh and Chinchilli [7]) have
made references to some mixed models based on Poisson–Gamma or Bernoulli–
Beta distributions as they are conjugate families. Starting from a model where
Yij |bi follows a Poisson law and bi a Gamma one, and as the Yij |bi are con-
ditionally independent, the derived density function for Yi, a density product,
is computationally unfriendly. In this paper a practical and simpler approach
is proposed, that starts from a Poisson–Poisson model and uses the marginal
moments of the response variable. The parameters are then estimated, with the
iterative, non-linear, generalized least squares method.

In this presentation, attention is given to the simplest case of a single
random effect. This is not as restrictive as it seems because, as was referred
above, it portrays a situation of overdispersion with within-group correlation.

2. THE LOG-LINEAR CONDITIONAL MODEL

Consider M groups, with ni observations per group (counts), where a
within-group correlation structure is expected. Define the mixed log-linear model

log [E(Yi|bi)] = Xiβ + 1nibi , i = 1, ..., M, j = 1, ..., ni .(2.1)
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Here Yi = [Yi1 ... Yini ]
T is a random vector ni×1, bi is a random variable

(1×1), Xi is a known model matrix of order ni×p, β is a p×1 vector of unknown
fixed parameters and 1ni is a vector ni×1 of ones. Yi and bi are independent for
different i’s.

Consider that each Yij |bi is a random variable conditionally independent
for different j’s following the Poisson law

Yij |bi ∼ P
(
exp
{
xT

j β + bi

})
, i = 1, ..., M, j = 1, ..., ni ,

where xT
j is row j of the model matrix Xi and β is the same as before. Let

bi ∼ P (θi) ,

θi > 0 ,

independent for different i’s.

Hence E(bi) = var(bi) = θi, i = 1, ..., M.

Note that Y, the vector of all the random variables, is an N×1 vector
which is partioned as M components Yi, each of which is a random ni-vector,
i = 1..., M ,

Y =

⎡⎢⎢⎢⎣
Y1

Y2
...

YM

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y11

Y12
...

Y1n1

Y21
...

YMnM

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

N is the total number of observations, N =
∑M

i=1 ni. Note that cov(Yij , Yik) �= 0,
j �= k, i.e., the Yij for j = 1, .., ni, are not independent as they represent the
same group, but they are independent for different i’s (groups). Each bi random
variable is introduced to portray the situation of within group correlation for
group i, i = 1, ..., M.

3. THE MARGINAL MODEL FOR Y

The parameter estimates are computed from a model based on the marginal
moments of Y. The mean value, variance and covariance of the Y marginals are
then computed.

Let Yij be the variable that corresponds to the j-th observation in group i,

i = 1, ..., M, j = 1, ..., ni. As it is assumed that Yij |bi ∼ P
(
exp
{
xT

j β + bi

})
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and bi ∼ P (θi),

E(Yij) = Ebi

[
E(Yij |bi)

]
= E

(
exp{xT

j β + bi}
)

= exp{xT
j β}Mbi(1) ,

where Mbi(·) is the bi moment generating function. Then

E(Yij) = exp{xT
j β} exp{(e−1) θi}

= exp
{
xT

j β + (e−1) θi

}
,

where e is the Neper number, and

log [E(Yij)] = xT
j β + (e−1) θi .

Note the offset, (e−1) θi, that comes out in the marginal expected value
of Yij , derived from the introduction of the random effect bi in the conditional
model.

For the Yij variance,

var(Yij) = var
[
E(Yij |bi)

]
+ E

[
var(Yij |bi)

]
= var

(
exp{xT

j β + bi}
)

+ E
(
exp{xT

j β + bi}
)

= E
(
exp
{

2(xT
j β + bi)

})
−
[
E
(
exp
{
xT

j β + bi

})]2
+ E

(
exp
{
xT

j β + bi

})
= exp{xT

j β}
[
exp{xT

j β}Mbi(2) − exp{xT
j β}(Mbi(1))2 + Mbi(1)

]
= E(Yij)

[
exp{xT

j β}Mbi(2)
Mbi(1)

− exp{xT
j β}Mbi(1) + 1

]
.

It is known that the distribution of Yij is not Poisson, but it may be called
pseudo-Poisson with overdispersion. Note that

var(Yij) = ϕE(Yij) ,

where the contribution of bi for the “overdispersion component” is highlighted,

ϕ = exp{xT
j β}Mbi(2)

Mbi(1)
− exp{xT

j β}Mbi(1) + 1 .
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Finally,

var(Yij) = exp{xT
j β} exp{(e−1) θi} ×

×
[
exp{xT

j β} exp{(e2−1) θi}
exp{(e−1) θi} − exp{xT

j β} exp{(e−1) θi} + 1

]
= exp{2xT

j β}
[
exp{(e2−1) θi} − exp{2 (e−1) θi}

]
+ exp{xT

j β} exp{(e−1) θi}

= C(θi) exp{2xT
j β} + K(θi) exp{xT

j β} ,

where

C(θi) = exp{(e2−1) θi} − exp{2(e−1) θi} ,

and

K(θi) = exp{(e−1) θi} .(3.1)

For the covariance, with j �= k, and for the i group,

cov(Yij , Yik) = cov
[
E(Yij |bi), E(Yik|bi)

]
+ E

[
cov(Yij , Yik|bi)

]
= cov

[
E(Yij |bi), E(Yik|bi)

]
+ E(0)

= exp{xT
j β + xT

k β} var[exp{bi}]
= exp{xT

j β + xT
k β}

[
Mbi(2) − (Mbi(1))2

]
= exp{xT

j β + xT
k β}

[
exp{(e2−1) θi} − exp{2(e−1) θi}

]
= C(θi) exp{xT

j β + xT
k β} .

3.1. Parameter estimation

The parameter estimates are obtain minimizing

M∑
i=1

(
yi − K(θi) exp{Xi β}

)T
V−1

i

(
yi − K(θi) exp{Xiβ}

)
(3.2)

where yi is a ni-dimension vector of responses and K(θi) = exp{(e−1) θi},
i = 1, ..., M . Matrix Vi, the variance-covariance matrix of Yi, is symmetric
of order ni × ni, with generic element υjk:

Vi = [υjk]j,k=1,...,ni
, i = 1, ..., M ,

υjj = C(θi) exp{2xT
j β} + K(θi) exp{xT

j β} ,

υjk = C(θi) exp{xT
j β + xT

k β} , j �= k .
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As Vi depends on β and θi it becomes necessary to apply an iterative
method. It is possible to apply the IRGLS — Iterative Reweighted Generalized
Least Squares method. This is an improvement of the Estimated Generalized
Least Squares (EGLS) procedure which iterates using updated values of Vi(β̂, θ̂i)
to wash out any inefficiency associated with the initial estimates of β and θi.
At each iteration Vi is updated using current estimates of the parameters. IRGLS
may be applied to small or moderate samples (Vonesh and Chinchilli [7]).

Let θ = (θ1, ..., θM ) and τ = (β, θ). IRGLS corresponds to solving a set of
generalized estimating equations (Liang and Zeger [3]):

U(τ ) =
M∑
i=1

Ui(β, θi) = 0 ,

or

M∑
i=1

{
DT

i (β, θi)V−1
i (β, θi)

(
yi − μi(β, θi)

)}
= 0 ,(3.3)

where Di(β, θi)=
∂μi(β, θi)
∂(β, θi)T

and μi =E(Yi). A solution to (3.3) can be obtained

using the Gauss–Newton algorithm whereby estimates of τ are updated as

τ̂ (t+1) = τ̂ (t) + Ω(τ̂ (t))U(τ̂ (t)) ,

with

Ω(τ̂ (t)) =

[
M∑
i=1

DT
i (β̂

(t)
, θ̂

(t)
i ) V−1

i (β̂
(t)

,θ̂
(t)
i ) Di(β̂

(t)
, θ̂

(t)
i )

]−1

.

3.2. Inference and asymptotic properties

It is known (Vonesh and Chinchilli [7]) that the τ IRGLS estimator, under
regularity conditions that are usually satisfied, is asymptotically strongly con-
sistent and has a Normal asymptotic distribution with mean zero and variance
matrix given by:

Ω(τ̂ ) = var(τ̂ ) =

[
M∑
i=1

DT
i (β, θi)V−1

i (β, θi)Di(β, θi)

]−1

.

In terms of inference var(τ̂ ) is replaced by

Ω̂(τ̂ ) =

[
M∑
i=1

DT
i (β̂, θ̂i)V−1

i (β̂, θ̂i)Di(β̂, θ̂i)

]−1

.
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To protect against possible misspecification of Vi(β, θi) one can use, if
necessary, robust inference based on the robust estimator suggested by Liang
and Zeger [3],

Ω̂R(τ̂ ) = Ω̂(τ̂ )

[
M∑
i=1

Ui(β̂, θ̂i)UT
i (β̂, θ̂i)

]
Ω̂(τ̂ ) ,

where
Ui(β̂, θ̂i) = DT

i (β̂, θ̂i)V−1
i (β̂, θ̂i)

(
yi − μi(β̂, θ̂i)

)
.

3.3. Computational issues and model linearization

To optimize the objective function (3.2), it is advisable, in practical and
computational terms, to find a linearization of the model that transforms the
expected value of the variable in a linear function of the parameters β, as it
simplifies the objective function and the variance-covariance matrix considered
in it.

Let μij = E(Yij) = K(θi) exp{xT
j β} and ηij = log(μij). Consider the new

random variable

ζij = ηij − log [K(θi)] + (Yij − μij)
dηij

dμij
;

then
E(ζij) = ηij − log [K(θi)] = xT

j β ,

which is linear in β.

Or

ζij = xT
j β + (Yij − μij)× 1

μij

= xT
j β +

Yij

K(θi) exp{xT
j β} − 1 .

Let ζ be the N×1 vector, ζ =
[
ζT

1 ζT
2 ... ζT

M

]T
, ζi = [ζi1 ζi2 ... ζini ]

T ,
i = 1, ..., M and W the block diagonal variance-covariance matrix in ζ,
W =

⊕M
i=1 Wi, where Wi is a matrix ni×ni, symmetric, with generic element

wjk. For each group i, i = 1, ..., M and j = 1, ..., ni,

wjj = var(ζij)

=

[
1

K(θi) exp{xT
j β}

]2

var(Yij)

=
C(θi)

[K(θi)]
2 +

1
K(θi) exp{xT

j β} .
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On the other hand, for j �= k in the i group,

wjk = cov(ζij , ζik)

=
cov(Yij , Yik)[

K(θi) exp{xT
j β}

] [
K(θi) exp{xT

k β}
]

=
C(θi)

[K(θi)]
2 .

The minimization problem (3.2) becomes equivalent to,

min(ζ − Xβ)T W−1(ζ − Xβ) ,(3.4)

where X is a model matrix of order N×p, ζ is a N×1 vector, ζ = [ζT
1 ζT

2 ... ζT
M ]T ,

ζi = [ζi1 ζi2 ... ζini ]
T , i = 1, ..., M and W =

M⊕
i=1

Wi, Wi = [wjk]j,k=1,...,ni
, with

wjj =
C(θi)

[K(θi)]
2 +

1
K(θi) exp{xT

j β} ,

wjk =
C(θi)

[K(θi)]
2 , j �= k .

The following algorithm is proposed.

Algorithm:

1. Let t = 0. Obtain initial estimates for β, β̂
(0)

.

A log-linear model considering all variables as independent can be used, so
that,

log μ = Xβ ,

where μ = E(Y), Y is the N×1 vector of all variables, each obeying a
Poisson law with mean μij , i=1, ..., M, j=1, ..., ni, X is a model matrix of
order N×p, and β is a p×1 vector of unknown parameters to be estimated,
considering in β all the main effects of the model. Thereby β̂

(0)
is found

and it will be used in 4.

2. Obtain initial estimates for θi, θ̂
(0)
i , i=1, ..., M.

The estimates can be initialized near zero, or can be obtained by finding the
Ordinary Least Squares estimates θ̂i, that minimizes the objective function

M∑
i=1

(
yi − K(θi) exp{Xiβ̂

(0)}
)T (

yi − K(θi) exp{Xiβ̂
(0)}
)

,

where β̂
(0)

was found in 1.
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3. Compute K
(t)
i =K(θ̂(t)

i ), C
(t)
i =C(θ̂(t)

i ), following (3.1) and also A
(t)
i = C

(t)
i

(K
(t)
i )2

,

i=1, ..., M.

4. Compute

ζ̂
(t)
ij = xT

j β̂
(t)

+
yij

K
(t)
i exp{xT

j β̂
(t)}

− 1 , i = 1, ..., M, j = 1, ..., ni ,

Ŵ(t)
i = JniA

(t)
i + diag

{
1

K
(t)
i exp{Xiβ̂

(t)}

}
, i = 1, ..., M ,

(where Jni is a square ni dimensional matrix of ones and Xiβ is a ni×1
vector with elements xT

j β, j =1, ..., ni),

Ŵ(t) = diag
{
Ŵ(t)

1 , ...,Ŵ(t)
M

}
,

and
Σ̂(t) =

[
Ŵ(t)

]−1
.

5. Update β̂
(t+1)

and θ̂
(t+1)
i that minimize

(ζ − Xβ)T Σ̂(t)(ζ − Xβ) ,

where X is a model matrix of order N × p, ζ is a N × 1 vector,
ζ =

[
ζT

1 ζT
2 ... ζT

M

]T
, ζi= [ζi1 ζi2 ... ζini ]

T , i = 1, ..., M.

6. Let t = t + 1. Iterate steps 3 to 6 until the estimates have all stabilized.

Notice that the algorithm uses the IRGLS estimation.

In the final model the fitted values are given by

ŷij = K(θ̂i) exp{xT
j β̂} , i = 1, ..., M, j = 1, ..., ni .

Note the i-group effect K(θi) present in the fitted values.

In summary, in this proposed modelling strategy, the starting point is
a conditional model in Yi|bi, considering log [E(Yi|bi)] = Xiβ + 1nibi. A distri-
bution for the random variable bi is introduced that allows correlation structure
representation within the groups. The parameters are then estimated using the
IRGLS method, based on Y moments.
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4. A MODELLING EXAMPLE WITH WATER SAMPLES

The total number of coliforms (rod-shaped bacteria) in a water sample
is measured in MPN/100ml, number of coliforms (in thousands) per 100 ml of
water.

A set of grouped data is analyzed here. The number of coliforms in three
collection spouts was registered in Lis river of the Leiria district, Portugal, in 54
occasions [source: INAG, Portugal].

The data is presented in the following graphics by temperature and pH
which are the covariates of the modelling process.
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Figure 1: Number of coliforms by temperature.
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Figure 2: Number of coliforms by pH.
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Observing the earlier graphics no systematic pattern is observed. However,
looking at Figure 3, which represents the same observations per group — Amor,
Milagres and Ponte das Mestras collection spouts, a dependence between the res-
ponse variable and the covariates is highlighted. It may be also noticed that the
response behaves differently for different groups.

5

10

15

20

25

30
AMOR

10 12 14 16 18 20 22

MILAGRES

5

10

15

20

25

30
PONTE MESTRAS

Temperature

N
u
m

b
e
r

o
f
C

o
lif

o
rm

s
(1

0
0
0
M

P
N

/1
0
0
m

l)

Figure 3: Number of coliforms by temperature and captation.
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Figure 4: Number of coliforms by pH and captation.

In fact, at Ponte das Mestras and Milagres, the number of coliforms seems to
follow the temperature and pH increase. However, at Amor, this is not observed.
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The response variable, the number of coliforms, is a discrete variable (count-
ing), suggesting a model based on some Poisson distribution and the method
described earlier was implemented. This was done using S language and a small
program that supports the method.

The modelling process will start with a log-linear Poisson model (point
1 of the proposed algorithm) considering all the variables as independent, and
therefore, β initial values are obtained.

Considering the linear predictor

β0 + β1 temp + β2 pH ,

β̂0 = 1.22, β̂1 = 0.01 and β̂2 = 0.23 are obtained, where temp is the temperature
covariate. Overdispersion is observed in the model.

The θi, i = 1, 2, 3, parameters were initialized near zero.

It was observed that models with an intercept (β0) have worst conver-
gence, so all the models were considered without this parameter. Starting from
β̂

(0)
1 = 0.02 and β̂

(0)
2 = 0.39, which were obtained from a log-linear Poisson model

without intercept, the proposed methodology leads to the estimates

β̂1 = 0.03, β̂2 = 0.14, θ̂1 = 0.77, θ̂2 = 0.98 and θ̂3 = 1.00 ,

where θ1 comes from Amor, θ2 from Milagres and θ3 from Ponte das Mestras.

However the β̂1 and β̂2 standard errors were estimated as 0.02 and 0.09,
respectively, so they are not jointly significant. The θi standard errors were all
significant.

So the models whose linear predictor has only one covariate, temperature
or pH, will be compared.

Model
with linear predictor

Objective function (3.4)
value

β1 temp 78.10
β2 pH, 81.77

The model with the temperature covariate is chosen, as it has a lower value
for function (3.4). The following estimates and standard errors were obtained in
the selected model.

Parameter Referred to Estimate Standard Error
β1 temperature 0.04 0.01
θ1 Amor 1.16 0.16
θ2 Milagres 1.49 0.13
θ3 Ponte das Mestras 1.48 0.14

The normalized residuals are concentrated in [−2.04, 1.16].
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It can be noticed that the water temperature influences the number of
coliforms, because the coefficient of the temperature covariate is significant, al-
though it has a low estimate (β̂1 = 0.04). The number of coliforms increases
with water temperature, but not in the same way in all the spouts. In fact, in
Amor this is not evident, thereby the correspondent θi estimate is the lower one.
Probably, in this group, there are some other factors important to the coliform
concentrations that were not considered here.

The select quasi-log-linear model, based on the quasi-likelihood function
(as overdispersion is present), has linear predictor β0 + β2 pH, considering pH
the most significant covariate, but this model has no better fit than the mixed
Poisson–Poisson considered in this paper.

As a result, clusters in data should not be ignored. It is possible to model
grouped count data with the mixed Poisson–Poisson model and the algorithm
proposed above. This methodology estimates the fixed and covariance parameters
respecting the between groups correlations structure. Using the IRGLS method
it becomes possible to obtain consistent estimates.
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Abstract:

• Let X = {Xn}n≥1 be a T -periodic sequence. We define a family of local dependence
conditions D

(k)
T (u), k ≥ 1, and calculate the extremal index θX from the distributions

of k consecutive variables of X. For a periodic sub-sampled sequence Y = {Xg(n)}n≥1,
where g generates blocks of I1 observations separated by J observations, we present
results on local and long range dependence conditions and compute the extremal index
θY.
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1. INTRODUCTION

In this paper we consider that X = {Xn}n≥1 is a T -periodic sequence of
random variables, i.e., there exists an integer T ≥ 1 such that, for each choice
of integers 1 ≤ i1 < ... < in, (Xi1 , ..., Xin) and (Xi1+T , ..., Xin+T ) have the same
distribution. The period T will be considered the smallest integer satisfying the
above definition.

We say that a T -periodic sequence X has extremal index θX when, ∀ τ > 0,
∃u(τ) = {u(τ)

n }n≥1 such that

lim
n→∞n

1
T

T∑
i=1

P
(
Xi >u(τ)

n

)
= τ

and
lim

n→∞P
(
max{X1, ..., Xn) ≤ u(τ)

n

)
= e−θXτ .

The elements of u(τ) are called normalized levels for X.

Such as happens for stationary sequences, the extremal index of a periodic
sequence (Alpuim ([1]), Ferreira ([4])) enables us to infer the limiting behaviour
of Mn from the limiting behaviour of M̂n = max{X̂1, ..., X̂n}, n ≥ 1, where X̂ =
{X̂n}n≥1 is a periodic sequence of independent variables such that FXi = FX̂i

,
∀ i ≥ 1. Specifically,

lim
n→∞P

(
max{X1, ..., Xn) ≤ u(τ)

n

)
=
(

lim
n→∞P

(
max{X̂1, ..., X̂n) ≤ u(τ)

n

))θX

holds true.

By evaluating its extremal index θX, we describe in section 2 the asymp-
totic behaviour of the partial maximum Mn = max{X1, ..., Xn}, n ≥ 1, under
the condition D(u) of Leadbetter ([5]) and a local dependence condition that
generalizes the D(k)(u) of Chernick et al. ([2]).

In section 3 we give sufficient conditions for the analogous dependence
conditions to hold for a sub-sampled sequence Y={Xg(n)}n≥1 and we relate the
extremal indexes θX and θY.

There are important situations in finance, for instance, where it seems
reasonable to sub-sample the process by blocks matching them with bussiness
periods (Dacorogna et al. ([3])). For a complete description of the extremal
behavior of sub-sampled sequences Y from moving averages X with regularly
varying tails see Scotto and Ferreira ([10]) and references therein.

Robinson and Tawn ([9]) pointed out the importance of the sampling fre-
quency on the extremal properties and they have showed that if the sequence
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X = {Xn}n≥1 and the sub-sampled sequence Y = {XTn}n≥1 have extremal in-
dexes θX and θY, respectively, then

θX ≤ θY ≤ T θX

⎛⎝1 −
T−1∑
j=1

(
1 − j

T

)
Π(j)

⎞⎠ ,

where Π(j), j ≥ 1, are the asymptotic cluster size distributions for X. Moreover,
the upper bound is obtained under the condition D′′(un) from Leadbetter and
Nandagopalan ([6]).

Our results in section 3 enable the computation of the extremal index of
periodic sub-sampled sequences Y={Xg(n)}n≥1 for g such that limn→∞

g(n)
n = G,

under a family of local dependence conditions for T -periodic sequences. They
generalize the main result in Martins and Ferreira ([7]) concerning stationary
sequences satisfying the condition D′′(un) and g defined as g(n) = (n−1) mod I+
T
[

(n−1)
I

]
, n ≥ 1.

2. COMPUTING THE EXTREMAL INDEX UNDER D
(k)
T (u)

We introduce a family of local dependence conditions for T -periodic se-
quences satisfying the long range dependence condition D(u) from Leadbetter
([5]). The sequence of dependence coefficients in this condition will be referred
as α(X,u) = {α(X,u)

n,l }n≥1 and it is such that α
(X,u)
n,ln

= o(1) for some ln = o(n). For
simplicity we omit the sequences X and u in these notations whenever no doubt
is created.

Definition 2.1. Let k ≥ 1 be a fixed integer and X a T -periodic sequence
satisfying D(u). The condition D

(k)
T (u) holds for X when there exists a sequence

of integers k = {kn}n≥1 such that

lim
n→∞ kn = +∞ , lim

n→∞ kn
ln
n

= 0 , lim
n→∞ knαn,ln = 0 ,(2.1)

and
lim

n→∞S
(k)
[ n
knT

] = 0 ,

where

S
(1)
[ n
knT

] = n
1
T

T∑
i=1

[ n
knT

]T∑
j=i+1

P
(
Xi >un, Xj >un

)
and, for k ≥ 2,

S
(k)
[ n
knT

] = n
1
T

T∑
i=1

[ n
knT

]T∑
j=i+k

P
(
Xi >un, Xj−1≤un <Xj

)
.
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The extremal behaviour of X has already been considered in Ferreira ([4])
under the conditions D

(k)
T (u), for k = 1, 2.

If max{Xi, Xi+1, ..., Xj} is denoted by M
(X)
i,j and we put M

(X)
i,j = −∞ for

i > j, then limn→∞ S
(k)
[ n
knT

] = 0 implies

lim
n→∞n

1
T

T∑
i=1

[ n
knT

]T∑
j=i+k

P
(
Xi >un≥Mi+1,i+k−1, Xj >un

)
= 0 ,

which leads to

lim
n→∞n

1
T

T∑
i=1

P
(
Xi >un≥Mi+1,i+k−1, Mi+k,[ n

knT
]T >un

)
= 0 .

This last restriction, when T = 1, is the one considered in D(k)(u) by Chernick
et al. ([2]) for stationary sequences. Under D(k)(u) they compute θX from the dis-
tribution of the first k variables of X and apply the result to several autoregressive
sequences. In the following we will extend their results for periodic sequences.

Proposition 2.1. If the T -periodic sequence X satisfies D(u) and D
(k)
T (u)

then

P
(
Mn≤un

)
− exp

(
n

T

T∑
i=1

P
(
Xi >un≥Mi+1,i+k−1

))
= o(1) .

Proof: Under D(u) we have, for k as in (2.1),

P
(
Mn≤un

)
− P kn

(
M[ n

knT
]T ≤un

)
= o(1) ,

and therefore it is enough to proof that

P
(
M[ n

knT
]T > un

)
−

n

T

T∑
i=1

P
(
Xi > un ≥ Mi+1,i+k−1

)
kn

= o(1) .(2.2)

Since, by applying D
(k)
T (u),

P
(
M[ n

knT
]T > un

)
= P

⎛⎝ [ n
knT

]T⋃
i=1

{
Xi > un ≥ Mi+1,[ n

knT
]T

}⎞⎠
=
[

n

knT

] T∑
i=1

P
(
Xi > un ≥ Mi+1,i+k−1

)
− An ,

holds with knAn ≤ S
(k)
[ n
knT

] = o(1), we conclude (2.2).
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As a consequence of this result we compute the extremal index as follows.

Corollary 2.1. If the T -periodic sequence X satisfies D(u) for all u=u(τ)

and D
(k)
T (v) for some v=v(τ0) then there exists θX if and only if there exists

νX = lim
n→∞n

1
T

T∑
i=1

P
(
Xi > vn ≥ Mi+1,i+k−1

)
,

and in this case it holds
θX =

νX

τ0
.

We can apply this result to calculate the extremal index of a T -periodic
moving average, following the approach of Chernick et al. ([2]) for the stationary
case.

Let Z = {Zn}n≥1 be a T -periodic sequence of independent variables with
regularly varying equivalent tails with exponent −α satisfying

lim
x→∞

P (Zi >x)
P (Zj >x)

= γ
(+)
i,j > 0, lim

x→∞
P (Zi <−x)
P (Zj <−x)

= γ
(−)
i,j > 0 , i, j = 1, ..., T ,

and
lim

x→∞
P (Zi >x)
P (|Zi|>x)

= pi ∈ [0, 1] , i = 1, ..., T .

For τi > 0, i=1, ..., T, and τ = 1
T

∑T
i=1 τi, let u(τ) be defined by

lim
n→∞nP (|Zi|>un) = τi

/⎧⎨⎩pi

T−1∑
s=0

γ
(+)
i−s,i

∞∑
j=−∞

[c+
jT+s]

α + qi

T−1∑
s=0

γ
(−)
i−s,i

∞∑
j=−∞

[c−jT+s]
α

⎫⎬⎭ ,

where qi = 1 − pi, c+
j = max{cj , 0}, c−j = max{−cj , 0} and c={cj} is a sequence

of constants such that
∑+∞

j=−∞ |cj |δ < +∞ for some δ < min{α, 1}.

For the T -periodic moving average Xn =
∑+∞

j=−∞ cjZn−j , n ≥ 1, by apply-

ing our result to the 2m-dependent T -periodic sequence X
(m)
n =

∑m
j=−m cjZn−j

and following in a straighforward way the reasoning of Chernick et al. ([2]), we
find

θ =

T∑
i=1

γi,1

{
pi

T−1∑
s=0

γ
(+)
i−s,i c+

s (α) + qi

T−1∑
s=0

γ
(−)
i−s,i c−s (α)

}
T∑

i=1

γi,1

⎧⎨⎩pi

T−1∑
s=0

γ
(+)
i−s,i

∞∑
j=−∞

[c+
jT+s]

α + qi

T−1∑
s=0

γ
(−)
i−s,i

∞∑
j=−∞

[c−jT+s]
α

⎫⎬⎭
,

where

c+
s (α) =

∞∑
j=−∞

(
[c+

jT+s]
α− max

r>jT+s
{c+

r }α
)+

, c−s (α) =
∞∑

j=−∞

(
[c−jT+s]

α− max
r>jT+s

{c−r }α
)+

.

For details on the proofs of this example see Martins and Ferreira ([8]).
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3. PERIODIC SUB-SAMPLED SEQUENCE

We first set sufficient conditions for the previous results to hold for Y =
{Xg(n)}n≥1. Let g : N→N be a strictly increasing function for which there exists
positive integers I1 and I2 such that, ∀n, k ∈ N, it holds g(n+ kI1) = g(n)+ kI2.
We will refer such g as an I1, I2-periodic function and suppose that I1 and I2 are
the smallest integers satisfying the definition.

Therefore Y={Xg(n)}n≥1 is obtained from X by sub-sampling blocks of I1

variables separated by J = I2 − (g(I1)−g(1)) − 1 ≥ 1 variables.

In a particular case considered in Scotto and Ferreira ([10]), X is a station-
ary moving average with heavy-tailed innovations and g generates blocks of I1

consecutive observations separated by J ≥ 1 observations.

Proposition 3.1. If X is a T -periodic sequence and g is an I1, I2-periodic
function with I2 a multiple of T , then Y = {Xg(n)} is an I1-periodic sequence.

Proof: For each choice of integers 1 ≤ i1 < ... < in, p ≥ 1, we have

(Yi1+I1 , ..., Yin+I1) = (Xg(i1+I1), ..., Xg(in+I1)) =

= (Xg(i1)+I2 , ..., Xg(in)+I2)
d= (Xg(i1), ..., Xg(in)) = (Yi1 , ..., Yin) .

In the next result, we denote a sequence u such that lim
n→∞nP (Xi >u(τi)

n ) =

τi by u = u(τi,Xi). From the definition of normalized levels and Y ⊂ X we give a

simple procedure to get v=v(τ,Y) with τ = 1
I1

∑I1
i=1 G−1τg(i) and G = lim

n→∞
g(n)
n

.

Proposition 3.2. Let X be a T -periodic sequence and g an I1, I2-periodic

function with I2 a multiple of T . If lim
n→∞

g(n)
n

= G and u = u(τi,Xi), i = 1, ..., T ,

then v = {ug(n)} satisfies:

(i) v = v(G−1τi,Xi), i = 1, ..., T .

(ii) v = v(G−1τg(i),Yi), i = 1, ..., I1, and {τg(1), ..., τg(I1)} ⊂ {τ1, ..., τT }.

For u = u(τ ′
i ,Xi), with τ ′

i = Gτi, i=1, ..., T , we have v = {ug(n)} = v(τi,Yi)

and we can easily get α
(Y,v)

n,l
(X)
g(n)

≤ α
(X,u)

g(n),l
(X)
g(n)

with l
(X)
g(n) = o(n).

Moreover, if v = v(τ0,i,Xi), i=1, ..., T , then w = {v[nI2/I1]} satisfies

w = w(τ0,iI1/I2,Xi) , i = 1, ..., T ,

w = w(τ0,g(i)I1/I2,Yi) , i = 1, ..., I1
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and
S

(k,Y,w)
[ n
knI1

] ≤ AS
(k,X,w)
[ n
k′nT

] ,

where A is a constant and k′
n = k[nI1/I2].

These are the main arguments to obtain the following result.

Proposition 3.3. Let X be a T -periodic sequence X satisfying D(u)
for all u = u(τi,Xi) for some i ∈ {1, ..., T} and D

(k)
T (v) for some v = v(τ0,i,Xi),

i = 1, ..., T , with k′ = {k[nI1/I2]} and k = {kn} as in (2.1). Then, for g as in the
above proposition, Y= {Xg(n)} satisfies:

(i) D(u) for all u = u(τi,Yi), i=1, ..., I1,

(ii) D
(k)
I1

(w) for w={v[nI2/I1]}=w(τ0,g(i)I1/I2
,Yi), i=1, ..., I1, with k={kn}.

We will assume that X is in the conditions of Proposition 3.3 and calcu-
late the extremal index of the periodic sub-sampled sequence Y = {Xg(n)} as a
consequence of this proposition and Corollary 2.1.

Proposition 3.4. Let X be a T -periodic sequence X satisfying D(u)
for all u = u(τi,Xi) for some i ∈ {1, ..., T} and D

(k)
T (v) for some v = v(τ0,i,Xi),

i = 1, ..., T , with k′ = {k[nI1/I2]} and k = {kn} as in (2.1). Then, for g as in the
above proposition, Y= {Xg(n)} has extremal index θY if and only if there exists

νY = lim
n→∞n

1
I1

I1∑
i=1

P

(
Xg(i) > v[nI2/I1] ≥ max

{
Xg(i+1), Xg(i+2), ..., Xg(i+k−1)

})
.

In this case

θY =
I1 νY

I1∑
i=1

τ0,g(i)

.

Let

νX = lim
n→∞n

1
T

T∑
i=1

P
(
Xi > vn ≥ M

(X)
i+1,i+k−1

)
,

and θX= νX
τ0

, with τ0 = 1
T

∑T
i=1 τ0,i.

For the particular case of I1 = T and g(i+1) = g(i), for i = 1, ..., I1, we find
θY = θX + ρ

Tτ0
where

ρ = lim
n→∞nP

(
Xg(I1) > v[nI2/I1] ≥ max

{
Xg(1)+I2 , Xg(2)+I2 , ..., Xg(k−1)+I2

})
− lim

n→∞nP
(
Xg(I1) > v[nI2/I1] ≥ M

(X)
g(I1)+1,g(I1)+k−1

)
.
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If k=1 then ρ=0, as expected, and for the particular cases where 1=T =I1

and k = 2 we have very simple expressions for ρ (Martins and Ferreira ([7])).
They can be applied, for instance, to calculate the extremal index of the sub-
sampled ARMAX(α) process considered in Robinson and Tawn ([9]). For that
example we find

θY = θX +
ρ

τ0
= 1 − α +

α (1 − αI2−1) τ0

τ0
= 1 − αI2 ,

equal to the value of Robinson and Tawn ([9]) for the sampling case Y= {XnI2}.

4. CONCLUDING REMARKS

Under the local dependence condition D
(k)
T (u(τ)) we compute the extremal

index of the T -periodic sequence X from the T distributions of k consecutive
variables as well as the extremal index of some sub-sampled I1-periodic sequences
Y = {Xg(n)}.

It would be interesting to apply these results to functions g used in appli-
cations and moving averages or Markov sequences X where D′′(un) fails. This
remains as topic of future research.
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periódicas com caudas de variação regular. Pre-print. Univ. of Beira Interior.

[9] Robinson, M.E. and Tawn, J.A. (2000). Extremal analysis of processes sam-
pled at different frequencies, J.R. Statist. Soc. B, 62, 117–135.

[10] Scotto,M.G. and Ferreira,H. (2002). Extremes of deterministic sub-sampled
moving averages with heavy-tailed innovations. Preprint Univ. of Lisbon.



LIFETIME MODELS WITH NONCONSTANT
SHAPE PARAMETERS

Authors: Josmar Mazucheli
– Departamento de Estat́ıstica, Universidade Estadual de Maringá,
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1. INTRODUCTION

To express the distribution of a nonnegative random variable, T , which rep-
resents the lifetime of individuals (or components) in some population subjected
to covariate effects, several mathematically equivalent functions that uniquely de-
termine the distribution can be considered; namely, the cumulative distribution,
the density, the survival and the hazard functions [16]. For lifetime data, the
survival function at a particular time t is defined as

S0(t |μ(x), γ) = P (T > t |μ(x), γ) ,(1.1)

where μ(x) is a scale parameter that is a function of covariate involving unknown
parameters and γ is a constant unknown shape parameter. It is particularly
useful to define the survival model in terms of (1.1), because of its interpretation
as the probability of an individual (or component) surviving till time t [16].

Besides, in several applications, it is clear that a non-zero proportion of
patients or components can be considered cured, or do not fail in their testing
time [20]. In this context, we consider the model

S(t |x) = p + (1−p)S0(t |μ(x), γ) ,(1.2)

where S is the population survival function and 0 < p < 1 represents the cured
fraction, which is cured or never fails with respect to the specific cause of death
(or failure). Observe that (1.2) is a mixture model with two components, where
S0 is the survival function of the individuals which are not cured. For the cured
patients, the survival function is equal to one for all finite values t. Mixture
survival models provide a way of modelling time to death when cure is possible,
simultaneously estimating death hazard of fatal cases and the proportion of cured
cases.

In many applications however the usual assumption of constant shape pa-
rameter γ cannot be appropriate. For instance, in some studies with fatigue of
materials, usually, it is assumed that the shape parameter of the Weibull distri-
bution depends on the stress levels, as we can see in Wang and Kececioglu ([30]),
Meeker and Escobar ([22]), Pascual and Meeker ([26]), Meeter and Meeker ([23]),
Meeker and Escobar ([21]), Hirose ([12]), Chan ([4]), Smith ([27]) and Nelson
([25]). Anderson ([1]) considers a Weibull accelerated regression model with the
dispersion parameter depending on the location parameter. In the context of risk
modelling, Hsieh ([13]) introduces heteroscedastic risk models, and Louzada-Neto
([19, 17]) introduces an extended risk model. Applications in the context of re-
gression models with normal errors and nonconstant scale are considered by Zhou
et al. ([31]) and Tanizaki and Zhang ([28]). Cepeda and Gamerman ([3]) consider
Bayesian modelling of variance heterogeneity in normal regression models.

In this paper we consider a general survival model with shape and cured
fraction parameters depending on covariates. The approach with constant shape
parameter was first used by Farewell [8]. The advantage of such a formulation
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is to have several usual survival models as particular cases. Maximum likelihood
estimation procedure is adopted for two special cases: the Weibull distribution
with shape parameter depending on a vector of covariates and a long-term Weibull
survival mixture model in the presence of covariates. In Section 2 we introduce a
general survival model with shape and scale parameters depending on covariates.
The Weibull case is introduced in Section 3. Two real data sets are presented in
Section 4. Some concluding remarks in Section 5 finalize the paper.

2. A GENERAL SURVIVAL MODEL

Consider a survival model with shape parameter depending on covariates.
The corresponding survival function is

S0(t |μ(x), γ(y)) = P (T > t |x, y) ,(2.1)

where μ(x) is a scale parameter depending on a covariate vector, x, and γ(y)
is the shape parameter depending on a covariate vector, y. Both μ and γ may
involve unknown parameters. Of course, the vectors x and y can be equal.

For fitting long-term survival data, where a proportion of the individuals
are cured [20], we consider the general survival model

S(t|x,y, z) = p(z) + (1−p(z))S0(t |μ(x), γ(y)) ,(2.2)

where μ(x) and γ(y) are scale and shape parameters of the lifetime distribution
of non-cured patients and 0 < p(z) < 1 is the incidence probability depending on
a covariate vector, z, involving unknown parameters. For p(z) = 0 we have the
model (2.1).

A special case is given by the Weibull survival function for the non-cured
patients, given by

S0(t |μ(x), γ(y)) = exp

[
−
(

t

μ(x)

)γ(y)
]

.(2.3)

Let us assume a random sample T1, ..., Tn, such that, associated to each
Ti there are covariate vectors xt

i = (1, xi1, ..., xik), yt = (1, yi1, ..., yik) and
zt = (1, zi1, ..., zik), and an indicator variable δi, δi = 1 if ti is an observed life-
time or δi = 0 if ti is a censored observation (rigth-censored observations). Then,
for an uninformative censoring mechanism, the likelihood function [16] can be
written as

L =
n∏

i=1

f(ti|xi,yi, zi)δi S(ti|xi,yi, zi)1−δi ,(2.4)

where f(ti|xi,yi, zi) is the density function and S(ti|xi,yi, zi) is defined in (2.2).
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Let θ
′
= (α, β, γ) be the parameter vector indexing (2.2). The maximum

likelihood estimator (MLE) of θ can be obtained by solving the system of non-
linear equations, ∂ log L/∂θ = 0. However, it can be hard to solve the system
of nonlinear equations above by pure Newton-type methods, since it is easy to
overstep the true minimum. An alternative algorithm is proposed by [30] based
on [15, 2, 9]. However, a straightforward procedure, which we prefer, is to maxi-
mize (2.4). This procedure can be implemented in a standard statistical software
such as R [14] or a SAS via a routine that finds a local maximum of a nonlin-
ear function using general-purpose optimization procedure. In the appendix, we
present the SAS code of the NLP procedure [10, 11] used to find out the maximum
likelihood estimates presented in our examples.

3. THE WEIBULL PARTICULAR CASE

Consider the general Weibull survival model obtained by considering (2.2)
with (2.3). Assuming that the scale parameter, the shape parameter and the
incidence probability are affected by covariate vectors x, y and z, respectively,
let us to consider p(zi) as a logit link, such as, log

(
p(zi)

1−p(zi)

)
= η0+

∑k
j=1 ηjzij , the

log-linear models log(μ(xi))=α0 +
∑k

j=1 αjxij and log(γ(yi))=β0 +
∑k

j=1 βjyij .
Thus, the log-likelihood function for γ, α and β is given by

l(α, β, γ|x,y, z) ∝
n∑

i=1

δi

[
yt

i β + eyt
iβxt

i α + eyt
iβ log(ti)

]
+

n∑
i=1

δi log(p(zi)) −
n∑

i=1

δi(ti ext
iα)ey

t
iβ

(3.1)

+
n∑

i=1

(1−δi) log
[
p(zi) + (1−p(zi)) e(−ti ex

t
iα)e

yt
iβ
]

,

where p(zi)−1=e−(γ0+
∑k

j=1γjzij)(1+eγ0+
∑k

j=1γjzij), αt=(α0, ..., αk), βt= (β0, ..., βk),
γt =(γ0, ..., γk), xt

i = (1, xi1, ..., xik), yt = (1, yi1, ..., yik) and zt = (1, zi1, ..., zik).

4. SOME APPLICATIONS

4.1. A first application

To check the assumption of shape parameter dependent on the covariates
we can use graphical diagnostic methods. As a special case, consider the ac-
celerated lifetime test (ALT) data on PET film, (see, Table 1), introduced by
Hirose [12], see also Wang and Kececioglu ([30]). The ALT was performed at
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Table 1: Failure times (hours) from an accelerated life test on PET film
in SF6 gas insulated transformers, [12].

Voltage Failure times

5 kV
7131, 8482, 8559, 8762, 9026, 9034, 9104, 9104.25∗,
9104.25∗, 9104.25∗

7 kV
50.25, 87.75, 87.76, 87.77, 92.90, 92.91, 95.96, 108.3,
108.3, 117.9, 123.9, 124.3, 129.7, 135.6, 135.6

10 kV 15.17, 19.87, 20.18, 21.50, 21.88, 22.23, 23.02, 28.17, 29.70
15 kV 2.40, 2.42, 3.17, 3.75, 4.65, 4.95, 6.23, 6.68, 7.30

Starred quantities denote censored observations.

four levels of the voltage; v = 5, 7, 10 and 15, with 10, 15, 10 and 9 observations
each, respectively. Three censored values were observed at v = 5. Denoting by
S(t)=P (T >t), the survival function, we should have parallel straight lines for the
plots of log(− log Ŝ(t)) versus log(t) for each stress level considering the Weibull
distribution [16]. This is also true for the Weibull probability plot, Figure 1-b.
In Figures 1-a and 1-b we observe straight lines which indicates that the Weibull
distribution is appropriate, but we do not have parallel lines which indicates
different shape parameters for each stress level. Interested readers can refer to
Chapters 2, 7 and 8 of Meeker and Escobar ([22]), which present different methods
to search for an appropriate lifetime distribution for fitting a set of data.
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Figure 1: Weibull fit for PET film data, Table 1.
(a): Hazard plot.
(b): Probability plot. 5 kV (◦), 7 kV (�), 10 kV (+) and 15 kV (×).

Figure 1 indicate that the scale and shape parameter of the Weibull dis-
tribution should be affected by the stress levels. Moreover, following [30], plots
show that log μ̂ and log γ̂ have linear relationships with x1 = y1 = − log(v−4.76),
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where μ̂ and γ̂ are the MLEs of μ and γ, obtained by considering each individual
covariate level, which are given in Table 2, the constant 4.76 is a fixed threshold
level [12], below which a failure is unlikely to occur.

Table 2: Maximum likelihood and standard deviation estimates
considering a Weibull model for each stress level.

MLE
Level log-likelihood μ̂ γ̂

5 kV −57.7394
9.1145

(0.0196)
2.9721

(0.3496)

7 kV −67.5903
4.7367

(0.0480)
1.7315

(0.2100)

10 KV −28.1308
3.1873

(0.0541)
1.8230

(0.2375)

15 kV −17.4361
1.6474

(0.1179)
1.0938

(0.2676)

Table 3 shows the MLEs for the parameter of (2.3) and their standard
deviations assuming log(μ(x1)) = α0 + α1 log(v − 4.76) and γ(y1) = constant
(hereafter called Model A) and log(γ(y1)) = β0 + β1 log(v − 4.76) (hereafter
called Model B).

Table 3: Maximum likelihood estimates considering
two Weibull models.

Estimates
Model Parameter MLE StDev

α0 6.3480 0.0399
model A α1 −1.9629 0.0265

β 1.6080 0.1281
α0 6.3285 0.0213
α1 −1.9529 0.0156

model B β0 2.2311 0.1776
β1 −0.4636 0.1152

Locally at the MLEs, the values of the log-likelihood functions are −179.9849
(for Model A) and −173.2728 (for Model B). The values of the likelihood ra-
tio statistics, Wald and score statistics to test model A against model B, that
is, H0 : β1 = 0 against H1 : β1 �= 0, are equal to 13.4240, 16.1896 and 17.0416,
respectively. Their empirical p-values obtained from 10 000 bootstrap simula-
tions are equal to 0.0007, 0.0007 and 0.0014, respectively, leading to a strong
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evidence in favour of the complete model (Model B). The empirical distributions
of these statistics are given in Figure 2 together with their Q-Q plots. We do not
observe a good approximation to the chi-square distribution with one degree of
freedom.
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Figure 2: Empirical distributions. (a): Likelihood ratio statistic; (b): Score statistic;
(c): Wald statistic; (d-f): Q-Q plots for (a), (b) and (c).

4.2. A second application

As an example where scale, shape and the proportion of immunes pa-
rameters may depend on covariates, consider the ovarian cancer data given by
Edmunson et al. ([7]) and Therneau ([29]) (see also, [20] pp. 134 and [5] pp. 142).
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The response variable (see, Table 4) was the survival time, in years, for 26 women
following randomization to one or other of the two chemotherapy treatments.
In Table 4 the censor indicator variable is 1 if ti is an observed survival time and
0 if ti is a right-censored observation. As pointed out in [20], we notice that large
survival times tend to be censored, so there is some evidence of the existence of
an immune component. To verify the possible difference between two treatments
(treatment 1: standard chemotherapy — cyclophosphamide alone; treatment
2: combined chemotherapy — cyclophosphamide combined with adriamycin),
[5] considered the usual Weibull regression model with covariates affecting only
the scale parameter and concluded that there is a nonsignificant difference be-
tween the two treatments. In fact, the final model considered by Collett (1994)
included age and treatment as covariates.

Table 4: Survival times (in years) of ovarian cancer patients.

Survival Time
Group 1

Censor
Indicator

Survival Time
Group 2

Censor
Indicator

0.1616 1 0.9671 1
0.3151 1 1.0000 1
0.4274 1 1.2712 1
0.7342 1 1.3014 1
0.9014 1 1.5425 1
1.1808 1 1.0329 0
1.7479 1 1.1534 0
1.2274 0 2.0384 0
1.3068 0 2.1068 0
2.2000 0 2.1096 0
2.3425 0 3.0932 0
2.8493 0 3.3041 0
3.0301 0 3.3616 0

From the survival curves (see, Figure 3), we observe that there are large
censored observations, which could indicate the presence of immune individu-
als [20]. Therefore, we assume the model (2.2) with S0(t) given by (2.3) with
log( pi

1−pi
) = η0 + η1xi, log(μi) = α0 + α1xi and log(γi) = β0 + β1xi, where xi

taking the value 1 if individual i is in the treatment group 1 or the value 2
if i is in the treatment group 2.

In this way, we can have the following hypothesis tests:

H0 : η1 = 0 (no treatment effect in the proportion of cured patients),
H0 : α1 = 0 (no treatment effect in the ratio of susceptible patients) or
H0 : β1 = 0 (no treatment effect in the shape of the lifetime distribution).
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In Table 5 we have the MLE and their asymptotic standard-deviation estimates
considering 4 models:

Model 1: log( pi

1−pi
) = η0, log(μi) = α0 and log(γi) = β0;

Model 2: log( pi

1−pi
) = η0, log(μi) = α0 + α1xi and log(γi) = β0;

Model 3: log( pi

1−pi
) = η0, log(μi) = α0 + α1xi and log(γi) = β0 + β1xi and

Model 4: log( pi

1−pi
) = η0 + η1xi, log(μi) = α0 + α1xi and log(γi) = β0 + β1xi.

Locally at the MLE, the values of −2 log(likelihood) are given by 49.3512
(Model 1), 48.1652 (Model 2), 40.6565 (Model 3) and 40.2318 (Model 4).
We observe that Model 4 seems to give better fit for the data. This result is
corroborated by Figure 3, where we have the plots of the fitted survival curves
obtained from Models 2, 3 and 4 and the nonparametric Kaplan–Meier survival
curve. We omitted the fitted survival curve from Model 1, which is very far from
the Kaplan–Meier survival curve.

Table 5: Maximum likelihood estimates — long-term survivors models.

Parameter
Model η0 β0 α0 α1 β1 η1

1
0.0284

(0.4300)
0.7457

(0.2658)
0.1423

(0.1572)

2
0.0614

(0.4464)
0.7222

(0.2663)
-0.3759
(0.5293)

0.3600
(0.3764)

3
0.0420

(0.4240)
-1.0535
(0.7314)

-0.4173
(0.5749)

0.3482
(0.2936)

1.4744
(0.4686)

4
0.8870

(1.3954)
-1.0782
(0.7615)

-0.3627
(0.6232)

0.3201
(0.3175)

1.4833
(0.4812)

-0.5614
(0.8725)

It is important to point out that in this application we have a small data set
(26 patients) and should be careful to conclude that model 4 provides a better fit.
In fact, model 3 and model 4 give similar fits for the survival curves (see Figure 3)
and the difference 40.6565− 40.2318 = 0.4247 is nonsignificant. In this case the
cured proportions and rates of failure do not seem to differ significantly between
the treatment groups.
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Figure 3: Survival curves.
(a): standard chemotherapy;
(b): combined chemotherapy;
(−−−) Kaplan–Meier;
(· · · ) model 2;
(— ·—) model 3;
(— —) model 4.

5. CONCLUDING REMARKS

In this paper, we consider a general class of survival models where the
shape, the scale and the incidence probability parameters can be dependent on
covariates. The major advantage of the general survival class of models lies on
its ability to accommodate several usual survival models. From the practical
viewpoint the methodology can be implemented straightforwardly and runs im-
mediately using existing statistical packages.

ACKNOWLEDGMENTS

This work has been supported by the Brazilian Organizations CAPES and
CNPq. The authors would like to thank the referees for their helpful comments.



36 Josmar Mazucheli, Francisco Louzada-Neto and Jorge Alberto Achcar

Appendix A — Maximum Likelihood, First Application

In this appendix, we present the SAS code used to get the maximum
likelihood estimates presented the both examples. The optimization of the
log-likelihood was made by using the nonlinear programming SAS procedure
considering the trust-region algorithm, [6, 24].

Listing 1: Single Weibull model.

proc nlp data=h i r o s e tech=t r phes cov=2 varde f=n ;
max L ;
parms alpha0 = 6 . 0 , beta0 = 1 .0 ;
mu = exp ( alpha0 ) ;
beta = exp ( beta0 ) ;
logH = log ( beta)−beta ∗ l og (mu)+beta ∗ l og ( t ) ;
logS = −( t /mu)∗∗ beta ;
L = de l t a ∗ logH+logS ;
by vo l tage ;

run ;

Listing 2: Weibull model with constant shape parameter.

proc nlp data=h i r o s e tech=t r phes cov=2 varde f=n ;
max L ;
parms alpha0 = 6 . 0 , alpha1 = 0 . 9 , beta0 = 1 . 0 ;
mu = exp ( alpha0+alpha1∗ vo l tage ) ;
beta = exp ( beta0 ) ;
logH = log ( beta)−beta ∗ l og (mu)+beta ∗ l og ( t ) ;
logS = −( t /mu)∗∗ beta ;
L = de l t a ∗ logH+logS ;

run ;

Listing 3: Weibull model with nonconstant shape parameter.

proc nlp data=h i r o s e tech=t r phes cov=2 varde f=n ;
max L ;
parms
alpha0 = 6 . 0 , alpha1 = −2.0 , beta0 = 2 . 2 , beta1 = −0.4;
mu = exp ( alpha0+alpha1∗ vo l tage ) ;
beta = exp ( beta0+beta1 ∗ vo l tage ) ;
logH = log ( beta)−beta ∗ l og (mu)+beta ∗ l og ( t ) ;
logS = −( t /mu)∗∗ beta ;
L = de l t a ∗ logH+logS ;

run ;
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Appendix B — Maximum Likelihood, Second Application

Listing 4: Long-term survivors model — model 4.

proc nlp data = dados tech=t r cov=2 varde f=n phes ;
max L ;
parms alpha0 =−0.4 , alpha1 = 0 . 3 , beta0 = −1.0 ,

beta1 = 1 .4 , g0 = 0 .0 , g1 = 0 .0 ;
mu = exp ( alpha0+alpha1∗ treatment ) ;
beta = exp ( beta0+beta1 ∗ treatment ) ;
p = exp ( g0+g1∗x1)/(1+exp ( g0+g1∗ treatment ) ) ;
h = ( beta /mu)∗ ( t /mu)∗∗ ( beta −1);
S = exp(−( t /mu)∗∗ beta ) ;
Lc = log (p)+ log (h)+ log (S ) ;
Li = log (1−p+p∗S ) ;
L = de l t a ∗Lc+(1−de l t a )∗ Li ;

run ;
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1. INTRODUCTION

Multiple Correspondence Analysis and log-linear modeling are two very
different, but mutually beneficial approaches to analyzing multi-way contingency
tables: log-linear models are profitably applied to a small number of variables.
Multiple Correspondence Analysis is useful in large tables. This efficiency is
balanced by the fact that MCA is not able to explicit relations between more
than two variables, as can be done through log-linear modeling. The two ap-
proaches are complementary. After a short reminder on MCA and log-linear
approaches, we study the distribution of eigenvalues in MCA under modeling
hypotheses, especially in the case of independence. At the end we propose an
algorithmic approach for fitting log-linear models where the fitting criterion is
based on eigenvalues diagram.

2. A SHORT SURVEY OF MULTIPLE CORRESPONDENCE
ANALYSIS AND LOG-LINEAR MODELS

We first introduce MCA and log-linear modelling, then we present some
works using both methods.

2.1. Multiple Correspondence Analysis

Correspondence Analysis (CA) has quite a long history as a method for
the analysis of categorical data. The starting point of this history is usually
set in 1935 [28], and since then CA has been reinvented several times. We can
distinguish simple CA (CA of contingency tables) and MCA or Multiple Cor-
respondence Analysis (CA of so-called indicator matrices). MCA traces back
to Guttman [23], Burt [8] or Hayashi [25]. In France, in the 1960s, Benzecri [6]
proposes, other developments of this method. Outside France, MCA has been de-
veloped by J. de Leeuw since 1973 [22] under the name of Homogeneity Analysis,
and the name of Dual Scaling by Nishisato [38].

Multiple Correspondence Analysis (MCA) is a multidimensional descriptive
technique of categorical data. A theoretical version of Multiple Correspondence
Analysis of p variables can be defined as the limit, when the number of statistical
units increases, of the CA of a complete disjunctive table.

Let X be a complete disjunctive table of p categorical variables X1, X2, ...,
Xp, with respectively m1, m2, ..., mp modalities observed over a sample of n in-
dividuals. CA of this complete disjunctive table is equivalent to the analysis
of B [8], where B = X ′X is the Burt table associated with X. The two anal-
yses have the same factors, but the eigenvalues in MCA equal to the squared



44 S. Ben Ammou and G. Saporta

root of the eigenvalues in the CA of the associated Burt table. MCA of X cor-
responds to the diagonalization of the matrix 1

p(D−1X ′X) = 1
p(D−1B) where

D = Diag(X ′X) = Diag(B).

The structure of the eigenvalue diagram depends on the variable interac-
tions. It is well known that in the case of pairwise independent variables, the q
non-trivial eigenvalues are theoretically equal to to 1

p , where

(1) q =
p∑

i=1

mi − p .

2.2. Log-linear modeling

Log-linear modeling is a well-known method for studying structural rela-
tionships between categorical variables in a multiple contingency table when all
the variables have no particular role. Relatively recent and not as well known
in France as MCA, log-linear modeling has many classical references. After first
works of Birch [7] in 1963 and Goodman [17], we must mention the basic books
of Haberman [24], Bishop, Fienberg & Holland [8], Fienberg [15].

More Recently, Dobson [12], Agresti [1], Christensen [10] have written syn-
theses on the subject supplemented with personal contributions.

Whittaker [41] devotes a large part of his book to log-linear models before
defining associated graphical models.

2.2.1. Log-linear modeling in the binomial case

Let X = (X1, X2, ..., Xp) be a k-dimensional random vector, with values in
{0, 1}k. The expression for the k-dimensional probability density of X is:

fk(X) = p(0, 0, ..., 0)(1−x1)(1−x2)···(1−xk) · p(1, 0, ..., 0)x1(1−x2)···(1−xk)

· p(0, 1, ..., 0)(1−x1)x2···(1−xk) ··· p(0, 0, ..., 1)(1−x1)(1−x2)···xk

··· p(1, 1, ..., 0)x1x2···(1−xk) ··· p(1, 1, ..., 1)x1x2···xk .

We can write the density function as a log-linear expansion:

log[fk(X)] = uo +
k∑

i=1

ui xi +
k∑

i,j=1,
i�=j

uij xi xj +
k∑

i,j, l=1,
i�=j �=l

uijl xi xj xl

+ · · · + u123...k x1 x2 · · ·xk

where uo =log[p(0,0,...,0)], ui =log[p(0,0,...,0,1,0,...0)
p(0,0,...,0) ] and the u-terms uij , ..., u123...k

are a log cross product ratio in the (k, k) probability table. The u-term uij is set
to zero when Xi and Xj are independent variables.
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2.2.2. Log-linear modeling in the multinomial case

Let X = (X1, X2, ..., Xk) be a k-dimensional random vector, with values in
{0, 1, ..., m1−1} × {0, 1, ..., m2−1} × ...× {0, 1, ..., mk−1} instead of in {0, 1}k as
in the preceding case.

The generalisation to the k-dimensional cross-classified multinomial distri-
bution is the log-linear expansion:

log[fk(X)] = uo +
k∑

i=1

ui(x) +
k∑

i,j=1,
i�=j

uij(x) +
k∑

i,j, l=1,
i�=j �=l

uijl(x) + · · · + u123...k(x) .

Each u-term is a coordinate projection function with the coordinates indi-
cated by its index; and each u-term is constrained to be zero whenever one of its
indicated coordinates is zero.

The importance of log-linear expansions rests with the fact that many in-
teresting hypotheses can be generated by setting some u-terms to zero.

We are interested particularly in this paper with graphical and hierarchical
log-linear models.

2.2.2.1. Graphical log-linear models

Let G = (K, E) be the independence graph of the k-dimensional random
vector X, with k vertices in K = {1, 2, ..., k} and edge set E. G is the set of
pairs (i, j) such that whenever (i, j) is not in E the variables Xi and Xj are
independent conditionally on the other variables.

Given an independence graph G, the cross classified multinomial distribu-
tion for the random vector X is a graphical model for X, if the distribution of X
is different from constraints of the form that for all pair of coordinates not in the
edge set E of G, the u-terms constraining the selected coordinates are identically
zero.

2.2.2.2. Hierarchical log-linear models

A graphical model satisfies constraints of the form that all u-terms ‘above’
a fixed point have to be zero to get conditional independence. A larger class of
models, the hierarchical models, is obtained by allowing more flexibility in setting
the u-terms to zero.

A log-linear model is hierarchical if, whenever one particular u-term is
constrained to zero then all higher u-terms containing the same set of subscripts
are also set to zero.
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We note here that every distribution with a log-linear expansion has an
interaction (or independence) graph, and a hierarchical log-linear model is graph-
ical if and only if its maximal u-terms correspond to cliques in the independence
graph.

When all the u-terms are non-zero, we have the saturated model.

In the case when only the ui are non-zero, the model is called the mutual
independence model:

log[fk(X)] = uo(x) +
k∑

i=1

ui(x) .

When only ui and some of uij are non-zero, the model is called a condi-
tional independence model:

log[fk(X)] = uo(x) +
k∑

i=1

ui(x) +
∑
i,j

uij(x) .

These conditional independence models refer to simple interactions between
some variables.

2.2.3. Parameters estimation and related tests

Theoretical frequencies are generally estimated using the maximum-likeli-
hood method. Weighted regression, or iterative methods can be also used as
well since log-linear models are particular cases of the generalized linear model.
Usually the classical χ2 or the G2 tests (the likelihood ratio) are used to assess
log-linear models. The values of the two statistics increase with the number of
variables, and decrease with the number of interactions. The closer the statistics
are to zero, the better the models.

Model selection becomes difficult when the number of variables grow:
e.g. with four variables there are 167 different hierarchical models. To avoid the
“combinatory explosion” we can use criterions based on the Kullback information
like the Akaike criterion:

AIC = −2 log(L̂) + 2 k (An Information criterion) ,

or the Schwartz criterion:

BIC = −2 log(L̂) + k log(n) (Bayesian Information criterion) ,

where L̂ is the maximum of the likelihood function (L), and k the number of
parameters maximising L.



Eigenvalues in MCA and Log-Linear Models 47

2.3. Multiple Correspondence Analysis and log-linear model as com-
plementary tools of analysis

In this section, we present some works that show how CA (or MCA) and
log-linear modeling can be related. This leads to a better understanding of CA,
and to a combined use of both methods.

CA is often introduced without any reference to other methods of statistical
treatment of categorical data with proven usefulness and flexibility.

A major difference between CA and most other techniques for categorical
data analysis lies in the use of probability models. In log-linear analysis (LLA),
for example, a distribution is assumed under which the data are collected, then
a log-linear model for the data is hypothesized and estimations are made under
the assumption that this probability model is true, and finally these estimates
are compared with the observed frequencies to evaluate the log-linear model.
In this way it is possible to make inferences about the population on the basis of
the sample data.

In CA, it is claimed that no underlying distribution has to be assumed and
no model has to be hypothesized, but a decomposition of the data is obtained to
study the ‘structure’ in the data.

A vast literature has been devoted to the assessment of CA (or MCA) and
LLA. We briefly report here some of that literature.

Several works compare CA or MCA and LLA. Daudin and Trecourt [11]
demonstrate empirically that LLA is better adapted to study global relationships
between the variables, in the sense that marginal liaisons are eliminated in the
computation of profiles.

Goodman [17],[18],[19],[20],[21] defines two models belonging to the same
family: the saturated row column correspondence analysis model as a general-
ization of MCA, and the row column association model as a generalization of
LLA. He demonstrates, with illustrations by examples, that using these models
is better than using the classical methods.

Baccini, Mathieu and Mondot [3] use an example to compare the two
methods. Jmel [30], De Falguerolles, Jmel and Whittaker [13],[14] use graphi-
cal models compared to MCA.

Other works use CA or MCA and LLA as a combined approach to con-
tingency table analysis: Van der Heijden and de Leeuw [26],[27],[28], Novak and
Hoffman [39] and others, use CA as a tool for the exploration of the residuals
from log-linear models, and give an example of the procedure.

Worsley [42] shows that in certain cases CA leads directly to the appropriate
log-linear model.

Lauro and Decarli [31] used AC as a procedure for the identification of best
log-linear models.
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3. EIGENVALUES IN CORRESPONDENCE ANALYSIS

It is well known that MCA is an extension of CA, although we first present
eigenvalues in CA, and some simple rules for the selection of the number of
eigenvalues.

3.1. Asymptotic distribution of eigenvalues in Correspondence Analysis

Let N be a contingency table with m1 rows and m2 columns, and let us
assume that N is the realization of a multinomial distribution M(n, pij) which
is realistic. In this framework the observed eigenvalues μi are estimators of the
eigenvalues λi of nP , where P is the table of unknown joint probabilities.

Lebart [32] and O’Neill [34],[35],[36] proved the following result:
if μi =0 then λi has the same distribution as the corresponding eigenvalues of a
(m1−1)(m2−1) degrees of freedom from the Wishart matrix: W(m1−1)(m2−1)(r, l)
where r = min(m1−1, m2−1).

If μj = 0 then
√

λj is asymptotically normally distributed, but with param-
eters depending on the unknown pij . Since it is difficult to test this hypothesis,
some authors have proposed a bootstrap approach, which unfortunately is not
valid: since the empirical eigenvalues, on which the replication is based, are gen-
erally not null, we cannot observe the distribution based on the Wishart matrix.

3.2. Malinvaud’s test

Based upon the reconstitution formula, which is a weighted singular value
decomposition of N :

nij =
(ni· n·j)

n

⎛⎜⎜⎝1 +

∑
k

(aik bki)

√
λk

⎞⎟⎟⎠ ,

where aik, bik are the factorial components associated to the row and column
profiles.

We may use a chi-square test comparing the observed nij from a sample
of size n to the expected frequencies under the null-hypothesis Hk of only k non
zeros. The μi weighted least squares estimates of these expectations are precisely
the ñij of the reconstitution formula with its first k terms. We then compute the
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classical chi-square goodness of fit statistic:

Qk =
∑

i

∑
j

(ñij − nij)2

ñij
.

If k = 0 (independence), Q0 is compared to a chi-square with (m1 − 1) (m2 − 1)
degrees of freedom. Under Hk, Qk is asymptotically distributed like a chi-square
with (m1 − k − 1) (m2 − k − 1) degrees of freedom. However Qk suffers from the
following drawback: if nij is small, ñij can be negative and the test statistic can-
not be used. This is not the case for the modification proposed by E. Malinvaud
[37] who proposed to use (ni· n·j)

n instead of ñij for the denominator. Furthermore,
this leads to a simple relation with the sum of the discarded eigenvalues:

Q′
k =

∑
i

∑
j

(ñij − nij)2
(ni·n·j)

n

= n (λk+1 + λk+2 + ... + λr) .

Q′
k is also asymptotically distributed like a chi-square with (p− k− 1) (q− k− 1)

degrees of freedom.

4. BEHAVIOUR OF EIGENVALUES IN MCA UNDER
MODELING HYPOTHESES

Let X = (X1|X2|...|Xp) be a disjunctive table of p categorical variables Xi

(with respectively mi modalities) observed on a sample of n individuals, and q
the number of non trivial eigenvalues (as defined in § 2.1).

Multiple Correspondence Analysis is the CA of disjunctive table X.

The rank of X: rank(X) = min(q+1; n), so equals q+1 if n > q+1.

We suppose, without loss of generality, that n is large enough, which is the
usual case. CA factors are the eigenvectors of the matrix 1

p D−1B (where B and
D are defined in § 2.1). So D−1B is a diagonal unit matrix.

Its trace is: Tr(D−1B) =
p∑

i=1

mi and
1
p

Tr(D−1B) =
1
p

p∑
i=1

mi.

Since
q∑

i=1

μi =
1
p

p∑
i=1

mi − 1, we can conclude that

(2)
1
q

q∑
i=1

μi =
1
p
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and

(3)
q∑

i=1

(μi)2 =
1
p2

p∑
i=1

(mi−1) +
1
p2

∑
i�=j

∑
ϕ2

ij

where ϕ2
ij is the observed Pearson’s ϕ2 crossing of Xi with Xj , and

ϕ2 =
1
n

∑
i

∑
j

(
nij − ni· n·j

n

)2

ni· n·j
n

=
χ2

n
,

(ni· and n·j are margin effectives).

Although MCA is an extension of CA, the results of § 3 are not valid and
one cannot use Malinvaud’s test: elements of X being 0 or 1 and not frequencies,
Qk and Q′

k do not follow a chi-square distribution.

However it is possible to get information about the dispersion of the q
eigenvalues in particular cases [5].

4.1. Distribution of eigenvalues in MCA under independence
hypothesis

Under the hypothesis of pairwise independence of the variables Xi,
all ϕ2

ij = 0 and equation (3), becomes

q∑
i=1

(μi)2 =
1
p2

p∑
i=1

(mi − 1) .

Using (2) we get
q∑

i=1

(μi)2 =
1
p2

q ,

and finally:
q∑

i=1

(μi)2 =
1
p2

=

[
1
q

∑
i

(μi)

]2

.

Since the mean of the squared μi equals their squared means only if all the terms
are equal, we can conclude that all the eigenvalues have the same value, so that:

μi =
1
p

, ∀ i .

We conclude that the theoretical MCA (i.e. for the population), under the hy-
pothesis of pairwise independence of the variables Xi leads to one q-multiple
non-trivial non-zero eigenvalue λ = 1

p . And the eigenvalue diagram has the par-
ticular shape shown in Figure 1 :
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λI Eigenvalues diagram

λ1

λ2

λ3

λ4

λ5
...

λq

****************************
****************************
****************************
****************************
****************************
****************************
****************************

Figure 1: Theoretical eigenvalues diagram in the independence case.

This result is not true when we have a finite sample, since sampling fluc-
tuations make the observed ϕ2

ij �= 0. Although the trace of 1
p(D−1B) and μ the

mean of the observed non-trivial eigenvalues, are constants, we observe q different
non-trivial eigenvalues μi �= 1

p , and the eigenvalue diagram takes the shape shown
in Figure 2 :

λI Eigenvalues diagram

λ1

λ2

λ3

λ4

λ5
...

λq

****************************
***************************
**************************
*************************
************************
***********************
**********************

Figure 2: Observed eigenvalues diagram in the independence case.

4.1.1. Dispersion of eigenvalues

Let S2
μ be the measure of μi around 1

p given by:

S2
μ =

1
q

q∑
i=1

(
μi − 1

p

)2

=
1
q

q∑
i=1

(μi)2 − 1
p2

,

which implies
q∑

i=1

(μi)2 = q

(
S2

μ +
1
p2

)
.

Using equations (1)&(3), we have:
q∑

i=1

(μi)2 =
q

p2
+

1
p2

∑
i�=j

∑
ϕ2

ij =
q

p2
+

1
n p2

∑
i�=j

∑
χ2

ij .
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Under the hypothesis of pairwise independence of the variables,
the χ2

ij are realizations of χ2
(mi−1)(mj−1) variables, so their expected values are

(mi − 1) (mj − 1).

We can then easily compute E(
∑q

i=1(μi)2), and get:

E

( q∑
i=1

(μi)2
)

=
q

p2
+

1
p2

1
n

∑
i�=j

∑
(mi − 1) (mj − 1) .

Finally:

E(S2
μ) =

1
q

E

( q∑
i=1

(μi)2
)
− 1

p2

and we obtain:

E(S2
μ) =

1
p2

1
n

1
q

∑
i�=j

∑
(mi − 1) (mj − 1) .

Now, since E(S2
μ)=σ2, we may assume that 1

p ± 2σ contains roughly 95%
of the eigenvalues. Moreover, since the kurtosis of the set of eigenvalues is lower
than for a normal distribution, this proportion is actually probably larger then
95%.

4.1.2. Estimation of the Burt table

Let X be the disjunctive table associated to p categorical variables Xi,
with mi modalities respectively, observed on a sample of n individuals, where
Xi = (Xi1, Xi2, ..., Ximi), X is a matrix made (of p-block) of p blocks Xi

X = (X1 | X2 | ... | Xi | ... | Xp) .

Let (Xj
i1, X

j
i2, ..., X

j
ip) be the observed value of Xi on the jth individual.

We can write

X =

⎡⎢⎢⎢⎢⎢⎣
X1

11 · · · X1
1m1

X1
21 · · · X1

2m2
· · · X1

p1 · · · X1
pmp

X2
11 · · · X2

1m1
X2

21 · · · X2
2m2

· · · X2
p1 · · · X2

pmp

...
...

...
...

Xn
11 · · · Xn

1m1
Xn

21 · · · Xn
2m2

· · · Xn
p1 · · · Xn

pmp

⎤⎥⎥⎥⎥⎥⎦ .

The Burt table of X is then

B =

⎡⎢⎢⎢⎢⎣
X ′

1X1 X ′
1X2 · · · X ′

1Xp

X ′
2X1 X ′

2X2 · · · X ′
2Xp

...
...

. . .
...

X ′
pX1 X ′

pX2 · · · X ′
pXp

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
B11 B12 · · · B1p

B21 B22 · · · B2p
...

...
. . .

...
Bp1 Bp2 · · · Bpp

⎤⎥⎥⎥⎥⎦ ,
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where

Bi = Bii

= X ′
iXi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n∑
j=1

(Xj
1i)

2
n∑

j=1

(Xj
1i) (Xj

2i) · · ·
n∑

j=1

(Xj
1i) (Xj

mii
)

n∑
j=1

(Xj
2i) (Xj

1i)
n∑

j=1

(Xj
2i)

2 · · ·
n∑

j=1

(Xj
2i) (Xj

mii
)

...
...

. . .
...

n∑
j=1

(Xj
mii

) (Xj
1i)

n∑
j=1

(Xj
mii

) (Xj
2i) · · ·

n∑
j=1

(Xj
mii

)2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and

Xj
ki =

{
0

1

with
∑mi

k=1 Xj
ki = 1. Since there is only one k in {1, ..., mi} such as Xk

ji = 1, all
other being zero, we obtain:

n∑
k=1

(Xj
ki)

2 =
n∑

k=1

Xj
ki in {1, ..., n}, ∀ k ∈ {1, ..., mi}

and
n∑

k=1

(Xj
ki) (Xk′i

j) = 0 ∀ k, k ∈ {1, ..., mi} .

And so can conclude that ∀ i=1, ..., p the diagonal sub-matrices of the Burt
table are themselves diagonal matrices:

X ′
iXi = Bi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n∑
j=1

(Xj
1i)

2 0

. . .
n∑

j=1

(Xj
ki)

2

. . .

0
n∑

j=1

(Xj
mii

)2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Furthermore, we know that
mi∑
k=1

(
n∑

j=1

Xj
ki

)
=

mi∑
k=1

(nki) = n ,

where

nki =
n∑

j=1

Xj
ki = nk

i

is the number of individuals that have the kth modality of the i th variable
(for 1 ≤ i ≤ p and 1 ≤ k ≤ mi).
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So the diagonal sub-matrices of the Burt table are:

Bi = Bii =

⎡⎢⎢⎢⎢⎢⎢⎣
n1

i 0
. . .

nk
i

. . .
0 nmi

i

⎤⎥⎥⎥⎥⎥⎥⎦ where
mi∑
k=1

nki

n
= 1 ∀ i=1, ..., p .

Consider now two independent variables Xα and Xβ amongst the p vari-
ables having respectively mα and mβ modalities.

Let Bα be the (mα, mα) square matrix Bα = X ′
αXα, and Bαβ the (mα, mβ)

rectangular matrix Bαβ = X ′
αXβ .

We have

(Bα)ii =
n∑

k=1

Xk
iα = Xα

·i and (Bα)ij = 0 if i �= j ,

and where (Bαβ)ij = Xk
iα Xk

iβ ≤ n.

Under the hypothesis that Xα and Xβ are independent

(Bαβ)ij =
(Bα)ij (Bβ)ij

n
=

Xα
·i Xβ

·i
n

.

Since Xα
·i = nα

i and Xβ
·i = nβ

i , we can write

[
(Bαβ)ij =

n∑
k=1

Xα
ki Xβ

kj =
Xα

·i Xβ
·i

n
=

nα
i nβ

j

n

]

and, more generally, we can conclude that

X ′
iXj = Bij =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ni
1n

j
1

n

ni
1n

j
2

n
· · · ni

1n
j
mj

n

ni
2n

j
1

n

ni
2n

j
2

n
· · · ni

2n
j
mj

n
...

...
...

ni
mi

nj
1

n

ni
mi

nj
2

n
· · · ni

mi
nj

mj

n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
if the p variables are mutually independent.
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Now consider a sample of p multinomial random variables Xi. Let pk
i = pik

be the probability that an individual be in the kth category of the ith variable,
and pk

ij be the probably that the jth individual be in the kth category of the ith

variable.

The observed Burt table is:

B = X ′X =

⎡⎢⎢⎢⎢⎢⎣
X ′

1X1 X ′
1X2 · · · X ′

1Xp

X ′
2X1 X ′

2X2 · · · X ′
2Xp

...
...

...
...

X ′
pX1 X ′

pX2 · · · X ′
pXp

⎤⎥⎥⎥⎥⎥⎦ ,

with

X ′
iXi = Ni =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n∑
j=1

(X1
ij)

2 0

. . .
n∑

j=1

(Xj
ki)

2

. . .

0
n∑

j=1

(Xj
mii

)2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= diag{n1

i , ..., n
mi
i } .

But nk
i =

n∑
j=1

(Xi
ki)

2 =npk
i and

mi∑
k=1

pk
i =1, so that

mi∑
k=1

nk
i = n

mi∑
k=1

pk
i =n, ∀ i=1, ..., p

and X ′
iXj =

⎡⎢⎢⎢⎢⎢⎢⎣
n p1

i 0
. . .

n pk
i

. . .
0 n pmi

i

⎤⎥⎥⎥⎥⎥⎥⎦.

Since Xi and Xj are independent variables, X ′
iXj = Nij and (Nij)kk′ =

(X ′
iXj)kk′ = n pk

i p
k′
j , which implies

X ′
iXj = Nij =

⎡⎢⎢⎢⎢⎢⎢⎣
n pi

1p
j
1 n pi

1p
j
2 · · · ni

1n
j
mj

n pi
2p

j
1 n pi

2p
j
2 · · · n pi

2p
j
mj

...
...

...

n pi
mi

pj
1 n pi

mi
pj
2 · · · n pi

mi
pj

mj

⎤⎥⎥⎥⎥⎥⎥⎦ .
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The maximum-likelihood estimator of pk
i is p̂k

i =
nk

i
n , so

N̂i =

⎡⎢⎢⎢⎢⎢⎢⎣
n1

i 0
. . .

nk
i

. . .
0 nmi

i

⎤⎥⎥⎥⎥⎥⎥⎦ = Bii

and

N̂ij =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ni
1n

j
1
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1
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ni
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mj
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ni
mi
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n

ni
mi

nj
2

n
· · · ni

mi
nj

mj

n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= Bij .

We can conclude that the the maximum-likelihood estimator B̂ of the theo-
retical Burt table is B̃ the observed one. Using the invariance functional propriety
we can affirm that the maximum-likelihood estimators of the eigenvalues of D−1B
are the eigenvalues of D−1B̃, so that each μi is the maximum-likelihood estimator
of λi = λ.

Maximum-likelihood estimators are asymptotically normal, and so, asymp-
totically, each μi is normally distributed. But due to the fact that eigenvalues
are ordered, the eigenvalues are not identically and independently distributed.
However:

E(μ1) >
1
p
, E(μq) <

1
p

but E(μ1) −→
n→∞

1
p

and E(μq) −→
n→∞

1
p

.

Furthermore the eigenvalue variances are not the same. And from simula-
tions of large samples of n observations (n = 100, ..., n = 10 000), we notice that
the convergence of the eigenvalue distribution to a normal one is slow, especially
for the extremes (μ1 and μq), even for very large samples [4].

4.2. Distribution of eigenvalues in MCA under non-independence
hypotheses

4.2.1. Distribution of the theoretical eigenvalues

Let μ be an eigenvalue of D−1X ′X. Since μ can be also obtained by
diagonalization of 1

p XD−1X ′, μ is a solution of 1
p XD−1X ′z = z, where z is an

eigenvector associated to μ.
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So

1
p

(
p∑

i=1

Xi

(
X ′

iXi

)−1
X ′

i

)
z = μ z ⇐⇒ 1

p

p∑
i=1

Pi z = μ z ,

where Pi =
p∑

i=1
Xi(X ′

iXi)
−1X ′

i is the orthogonal projector on the space spanned

by linear combinations of the indicators of variables categories Xi.

Let Ai the centered projector associated to Pi:

Ai = Pi − 1mimi

n
where 1mimi =

⎡⎣ 1 1 · · · 1
...

...
...

1 1 · · · 1

⎤⎦ .

And so we get

(4)
1
p

p∑
i=1

Ai z = μ z .

4.2.1.1. The Case of two-way interactions

Let us assume that among the p studied variables, there is a two-way inter-
action between Xj and Xk, and that the (p−2) reminding variables are mutually
independent. Multiplying equation (4) by Aj we get:

1
p

(
AjA1︸ ︷︷ ︸

0

+AjA2︸ ︷︷ ︸
0

+ · · · + AjAj︸ ︷︷ ︸
Aj

+ · · · + AjAk + · · · + AjAp︸ ︷︷ ︸
0

)
z = μAj z ,

since all variables are pairwise independent except Xj , Xk, and the Ai are or-
thogonal projectors. Thus:

(5) AjAk z = (p μ − 1)Aj z .

Similarly, multiplying (4) by Ak, we get:

(6) AkAj z = (p μ − 1)Ak z .

Now let us multiply (5) by Ak to get:

AkAjAk z = (p μ − 1)AkAj z .

Using (6) we obtain

AkAj Ak z︸︷︷︸
z1

= (p μ − 1)2 Ak z︸︷︷︸
z1

.
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With the notation λ = (p μ − 1)2, we finally write:

(7) AkAj z1 = λ z1 .

Equation (7) implies that λ is an eigenvalue of the product of the centered
projector AkAj associated to the eigenvector z1.

In general: ∀ j, k = 1, ..., p, if there is an interaction between Xj and Xk,
the orthogonal projector AjAk admits a non zero eigenvalue λ = (p μ − 1)2.
If λ �= 0 ⇔ μ �= 1

p , the trace of Burt table being constant, there is, at least,
another eigenvalue not equal to 1

p .

Let n0 be the number of eigenvalue non equal to 1
p , so that

∑n0
i=1 λi = n0

p .

Theoretically, (except for the particular case, where λ = 1, for which we
have μ = 2

p and μ′ = 0), the number of non-trivial-eigenvalues greater than 1
p is

equal to the number of non-trivial eigenvalues smaller than 1
p .

The eigenvalue diagram shape is shown on Figure 3 :

λI Eigenvalues diagram

λ1

λ2

λ3

λ4

λ5
...

λq

****************************
***************************
************************
************************
************************
******************
*****************

Figure 3: Theoretical eigenvalues diagram in two-way interaction case.

The number n0 depends on the number of categories of Xj and Xk, on the
number of variables and on the number of dependent variables.

Let n1 be the multiplicity of 1
p , we will show that n1 = q − 2min((mj−1);

(mk−1)), when p > 2, and when there is only one two-way interaction between
the variables.

This result can be shown as follows:

Let us consider equation (4), and suppose, without loss of generality,
that X1 and X2 are dependant. So, upon multiplication by A3: 1

p

∑p
i=1 Aiz = μz

becomes 1
p(A3A1 + A3A2 + A3A3 + · · · + A3AP ) z = μA3 z, and we get μ = 1

p .
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Now multiply equation (4) by A2 and A1 in turn to get:⎧⎨⎩
(
A1A1 + A1A2 + A1A3 + · · · + A1AP

)
z = p μA1 z(

A2A1 + A2A2 + A2A3 + · · · + A2AP

)
z = p μA2 z

⇐⇒

⇐⇒
{

(A1 + A1A2) z = p μA1 z

(A2A1 + A2) z = p μA2 z

⇐⇒
{

A1A2 b = λ z

A2A1 b = λ z

where λ = (p μ − 1)2, a = A1 z and b = A2 z.

We recognize here the CA equations, so that the CA of Burt tables, when
only two variables are dependent is equivalent to the CA of the contingency
tables crossing the two dependent variables. It is well known that the number of
eigenvalue in CA equals q − 2min((mj−1); (mk−1)), and for all non trivial λi,
there corresponds the values μi and μ′

i such that:

μi =
1 +

√
λi

p
and μ′

i =
1 −√

λi

p
.

Finally, the CA of the Burt table may have 2min((mj−1);(mk−1)) eigenval-
ues non trivial and not equal to 1

p , associated to the CA of the contingency table.
So the number of supplementary eigenvalues equals q − 2min((mj−1); (mk−1)).

There is, in addition, one n1 multiple eigenvalue, where n1 is at least
q − 2min((mj − 1); (mk − 1)).

4.2.1.2. The case of higher order interactions

Since the Burt table is constructed with pairwise cross products of variables,
its observation cannot give us information about multiway interactions.

However the observation of the bi-dimensional theoretical Burt sub-tables,
for all pairwise variable combinations, can provide us with all the two-way inter-
actions.

The theoretical Burt table can reveal the existence of higher order interac-
tions in the following case:

If Bij �= Bii 1mjmjBjj and Bik �= Bii 1mkmk
Bkk: there may be a triple

interaction between Xi, Xj and Xk.

In general, a Burt table doesn’t give either the order of the interactions, or
supplementary information on the eigenvalue behavior.
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4.2.2. Distribution of observed eigenvalues

Exceptionally, with a small number of interactions, we observe the par-
ticular shape of the eigenvalue diagram exhibited in Figure 4, where we can
distinguish eigenvalues near 1

p (theoretically equal to 1
p), and so we are able to

recognize the existence of the independent variables in the analysis.

λI Eigenvalues diagram

λ1

λ2

λ3

λ4

λ5
...
...

λq

****************************
***************************
***********************
**********************
*********************
**************
*************
************

Figure 4: Observed eigenvalues diagram in a two-way interaction case.

When the number of interaction grows, we cannot distinguish eigenvalues
theoretically equal to 1

p from the eigenvalues non equal to 1
p .

To detect the existence or interactions, we can first check if the observed
variables are mutually independent. In that case, the eigenvalues distribution
diagram should have a particular shape (see § 4.1.), with more than 95% of the
eigenvalues within the confidence interval 1

p ± 2σ (see § 4.1.1).

If there is one or more eigenvalues out of the confidence interval, we can
then assume the existence of one or more two-way interaction between variables.

5. AN EMPIRICAL PROCEDURE FOR FITTING LOG-LINEAR
MODELS BASED ON THE MCA EIGENVALUE DIAGRAM

We propose an empirical procedure for progressively fitting a log-linear
model where the fitting test at each step is based on the MCA eigenvalues dia-
gram.

Let Xi, Xj and Xk, three categorical variables, with respectively mi, mj

and mk modalities, and let a cross variable with (mi×mj) modalities. We suppose
that Xij and Xk, have the same behavior if mk = mi × mj .
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Under the hypothesis that two dependant variables Xi and Xj have the
same behaviour as the variable Xk with the same characteristics of the cross
variable Xij , we propose here an empirical procedure for fitting progressively,
with p steps, the log-linear model where the fitting criterion at each step is based
on the MCA eigenvalue diagram. Distribution of observed eigenvalues

5.1. Description of the procedure steps

The first step of the procedure consist to test the pairwise independence
hypothesis of the variables. To detect existence of interactions, we must first
check if all variables are mutually independent. For that matter, we calculate the
eigenvalues of MCA on all the p variables, and construct the related confidence
interval: the eigenvalue distribution diagram should have a particular shape (cf.
§ 4.1.). If all the eigenvalues belong to the confidence interval 1

p ±2σ (cf. § 4.1.1),
we can conclude that the p variables are mutually independent. The log-linear
model associated to the variables is a simple additive one:

log[fp(X)] = u0(x) +
p∑

i=1

ui(x) ,

and the procedure is stopped.

If one or more eigenvalue are not in the confidence interval, we conclude
that there is at least one double interaction between variables, and we go to the
second step of the procedure.

In the second step, we look at all two-way interaction u-terms. We isolate
one variable amongst the p variables that we note Xp, without loss of generality,
and so we obtain a set of (p−1) variables Xi, and apply the first step to test
pairwise independence of the (p−1) variables.

If the (p−1) variables are independent, we can conclude that the doubles
interactions are amongst Xp and at least one of the Xi, so we construct corre-
spondent cross variables Xip by using the first step to test independence between
variables (Xi, Xp) where i = 1, ..., p−1. The log-linear model associated to the
variables is:

log[fp(X)] = u0(x) +
p∑

i=1

ui(x) +
p−1∑
i=1

uip(x) δip ,

and the procedure stopped, (with δip = 1 if the interaction between Xp and Xi

exists, otherwise it is set to zero.)

If the (p−1) variables are not independent, we can conclude that there is
double interaction between Xi and Xj where i, j=1, ..., p−1, and perhaps between
Xi and Xp.
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We can construct correspondent cross variables Xip and Xij by using the
first step to test independence of variables (Xi, Xp) and variables (Xi, Xj) where
i, j = 1, ..., p−1. The log-linear model associated to the variables is:

log[fp(X)] = u0(x) +
p∑

i=1

ui(x) +
p−1∑
i=1

uip(x) δip + terms due to the interaction
between three or more variables

and we go to the third step of the procedure

In the third step, we look at three-way interaction u-terms, by testing the
dependence of variables Xi and cross variables Xjk, where i, j, k = 1, ..., p and
i, j, k are different, and construct cross variables Xijk. The independence test is
based on the eigenvalue pattern of the related MCA as described in the first step.

Continuing this way, in the kth step, we look at k-way interaction u-terms,
... and in the least step we look at the p-way interaction u-term.

This algorithm is summarized in Figure 5.

5.2. An example for a graphical model

For this example we use a data set given by Haberman [24] that was used in
Falguerolles et al. [14] to fit a graphical model. The data reports attitudes toward
non therapeutic abortions among white subjects crossed with three categorical
variables describing the subjects.

The data set is a contingency table observed for 3181 individuals, crossing
four three modality variables X1, X2, X3 and X4, defined in Table 1.

The first step of the procedure consists of testing the pairwise indepen-
dence hypothesis of the variables. We first transform the contingency table in
a complete disjunctive table, then calculate the parameters (defined in § 2.1 and
§ 4.1.1) needed for the test (Table 2).

MCA on the four variables gives the eigenvalues diagram of Figure 6.

The shape of eigenvalues diagram refers clearly to the existence of depen-
dent variables.

Eigenvalues λ1, λ7 and λ8 are not in the interval Ic, so there is at least two
dependent variables: there is one or more two-way interactions between variables.
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Figure 5: Block diagram for the Empirical procedure.
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Table 1: Attitudes toward non therapeutic abortions among white.

Year Religion: Education Attitude: X4

X1 X2 in years: X3 positive mixed negative

1972 northern Protestant ≤ 8 09 16 41
9–12 85 52 105
≥ 13 77 30 38

southern Protestant ≤ 8 08 08 46
9–12 35 29 54
≥ 13 37 15 22

Catholic ≤ 8 11 14 38
9–12 47 35 115
≥ 13 25 12 42

1973 northern Protestant ≤ 8 17 17 42
9–12 102 38 84
≥ 13 88 15 31

southern Protestant ≤ 8 14 11 34
9–12 61 30 59
≥ 13 49 11 19

Catholic ≤ 8 06 16 26
9–12 60 29 108
≥ 13 31 18 50

1974 northern Protestant ≤ 8 23 13 32
9–12 106 50 88
≥ 13 79 21 31

southern Protestant ≤ 8 05 15 37
9–12 38 39 54
≥ 13 52 12 32

Catholic ≤ 8 08 10 24
9–12 65 39 89
≥ 13 37 18 43

Table 2: Parameters needed for the test
(first step of the example for a graphical model).

n p m1 m2 m3 m4 q m σ Ic

3181 4 3 3 3 3 8 0.25 0.0109 [0.2283, 0.2717]

λ1 = 0.3221
λ2 = 0.2704
λ3 = 0.2599
λ4 = 0.2531
λ5 = 0.2451
λ6 = 0.2393
λ7 = 0.2277
λ8 = 0.1823

**************************
*********************
********************
*******************
******************
*****************
****************
***********

Figure 6: Eigenvalues diagram
(first step of the example for a graphical model).



Eigenvalues in MCA and Log-Linear Models 65

The second step consists of the detection of two-way interactions. In a
first time, we use our first step with only three variables X1, X2 and X3.

With the values of n and mi (for i = 1, ..., 3) still the same, the other
parameters become (Table 3 ):

Table 3: Parameters for the test
(second step of the example for a graphical model).

q m σ Ic

6 0.33333 0.0118 [0.3097, 0.3569]

We get the following eigenvalue diagram (Figure 7 ):

λ1 = 0.3606
λ2 = 0.3448
λ3 = 0.3385
λ4 = 0.3305
λ5 = 0.3025

**************************
*************************
************************
**********************
*********************

Figure 7: Eigenvalues diagram
(second step of the example for a graphical model).

λ1 and λ5 are not in interval Ic, so there is one or more two-way interaction
between X1, X2 and X3, as also as interactions between X4 and others.

In a second step we look at the interactions between X4 and Xi (i = 1, 2, 3).

For i = 1 to i = 3 we look at the eigenvalues of the MCA of X4 with Xi,
and calculate their variances and intervals Ic.

Crossing X1 with X4 we get (Table 4 ):

Table 4: MCA on X1 and X4 (parameters and eigenvalues).

q m σ Ic λ1 λ2 λ3 λ4

4 0.5 0.0125 [0.4750, 0.5250] 0.5389 0.5156 0.4644 0.4611

Crossing X2 with X4 we get (Table 5 ):

Table 5: MCA on X2 and X4 (parameters and eigenvalues).

q m σ Ic λ1 λ2 λ3 λ4

4 0.5 0.0125 [0.4750, 0.5250] 0.5741 0.5076 0.4924 0.4259
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Crossing X3 with X4 we get (Table 6 ):

Table 6: MCA on X3 and X4 (parameters and eigenvalues).

q m σ Ic λ1 λ2 λ3 λ4

4 0.5 0.0125 [0.4750, 0.5250] 0.6112 0.5041 0.4959 0.3979

In the three cases, λ1 and λ4 are not in the intervals Ic, so there is a two-
way interaction between X1 and X4, X2 and X4 and between X3 and X4, so we
can construct cross variables X4i having 9 modalities (i = 1, 2, 3).

Now, we use the first step with only two variables X1 and X2, after we look
for interactions between X3 and Xi (i = 1, 2).

Crossing X1 with X2 we get (Table 7 ):

Table 7: MCA on X1 and X2 (parameters and eigenvalues).

q m σ Ic λ1 λ2 λ3 λ4

4 0.5 0.0125 [0.4750, 0.5250] 0.5153 0.5045 0.4955 0.4848

All the eigenvalues are in the confidence interval, so X1 and X2 are in-
dependent conditionally on the other, and there is no cross variable X12. The
corresponding u-term u12 equals to zero.

Let us now look, when i = 1 and i = 2, at the eigenvalues of the MCA of
X3 with Xi, with their variances and intervals Ic:

Crossing X1 with X3 we get (Table 8 ):

Table 8: MCA on X1 and X3 (parameters and eigenvalues).

q m σ Ic λ1 λ2 λ3 λ4

4 0.5 0.0125 [0.4750, 0.5250] 0.5134 0.5023 0.4978 0.4866

All the eigenvalues are in the confidence interval Ic, so X1 and X3 are
independent conditionally on the other, and there is no cross variable X13: the
corresponding u-term u13 equals to zero.

Crossing now X2 with X3 we get (Table 9 ):

Table 9: MCA on X2 and X3 (parameters and eigenvalues).

q m σ Ic λ1 λ2 λ3 λ4

4 0.5 0.0125 [0.4750, 0.5250] 0.5401 0.5128 0.4872 0.4599

Here, λ1 and λ4 are not in the interval Ic, so there is a two-way interaction
between X2 and X3, u23 is not set to zero, and we can add the cross variable X32

(as well as X23) with 9 modalities to the model.
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The third step consists of the detection of triple interactions between
variables, that is to two-way interactions between the variables Xi and the cross
variables Xjk.

We first put the cross variables (X41, X42, X43, X32) with the initial vari-
ables that were deemed non dependent in the second step of the procedure, i.e. X1

and X2, and then we use the first step of the procedure with the set of obtained
variables.

So we get the following results (Table 10 and Figure 8 ):

Table 10: MCA on X1, X2, X41, X42, X43 and X32

(parameters third step of the example for a graphical model).

q m σ Ic

36 0.1667 0.0168 [0.1331, 0.2003]

λ1 = 0.5201
λ2 = 0.5006
λ3 = 0.3447
λ4 = 0.3347
λ5 = 0.3303
λ6 = 0.3193
λ7 = 0.1810
λ8 = 0.1796
λ9 = 0.1732
λ10 = 0.1710
λ11 = 0.1664
λ12 = 0.1627
λ13 = 0.1626
λ14 = 0.1578
λ15 = 0.1538
λ16 = 0.1423

**************************
*************************
******************
******************
******************
*****************
************
***********
***********
***********
***********
***********
***********
***********
**********
*********

Figure 8: MCA on X1, X2, X41, X42, X43 and X32

(eigenvalues diagram, third step of the example for a graphical model).

The first six eigenvalues are not in Ic: there is one or more two-way inter-
action between the initial variables Xi, and the crossed ones Xik, so there exists
a triple interaction between simple variables.
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We drop X32 and use the first step with the five other variables to get the
following results (Table 11 and Figure 9 ):

Table 11: MCA on X1, X2, X41, X42 and X43

(parameters for the test).

q m σ Ic

28 0.2 0.0162 [0.1671, 0.2324]

λ1 = 0.6105
λ2 = 0.6006
λ3 = 0.4143
λ4 = 0.4028
λ5 = 0.3982
λ6 = 0.3831
λ7 = 0.2262
λ8 = 0.2220
λ9 = 0.2162
λ10 = 0.2083
λ11 = 0.2054
λ12 = 0.2017
λ13 = 0.1952
λ14 = 0.1986
λ15 = 0.1952
λ16 = 0.1928
λ17 = 0.1878
λ18 = 0.1837
λ19 = 0.1815
λ20 = 0.1711

**************************
**************************
****************
****************
****************
***************
**********
**********
**********
*********
*********
*********
*********
*********
*********
*********
********
********
********
********

Figure 9: MCA on X1, X2, X41, X42 and X43

(eigenvalues diagram, third step of the example for a graphical model).

The first six eigenvalues are not in Ic, so there is at least one two-way
interaction between the variables. We know that simple variables X1, X2 and
the crossed variables X41, X42, X43 are dependent so we have to test dependence
between X1 and X32 only. Crossing X1 and X32 we get the following results
(Table 12):

Table 12: MCA on X1 and X32

(parameters and eigenvalues).

q m σ Ic

10 0.5 0.0159 [0.4682, 0.5318]

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10

0.5287 0.5194 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.4806 0.4713
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All the eigenvalues are in the confidence interval Ic, so X1 and X32 are
independent conditionally on the other, and there is no cross variable X132.
The corresponding u-term u123 equals zero.

Now we can drop the cross variable X43. The remaining variables X1, X2,
X41, X42 are dependent by construction. We have only to test for dependence
between X1 and X43.

Crossing X1 with X43, we get the same parameter as the crossing of X1

and X32, and the following eigenvalues (Table 13 ):

Table 13: MCA on X1 and X43 (eigenvalues).

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10

0.5445 0.5232 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.4768 0.4555

We remark that λ1 and λ10 are not in the interval Ic, so X1 and X43 seem
to be dependent. But we have to fit a graphical model, that is a particular case
of hierarchical models (as defined in § 2.2.2.2, a log-linear models is hierarchical
if, whenever one particular u-term is constrained to zero then all higher u-terms
containing the same set of subscripts are also set to zero).

Here the u-term u13 is set to zero, so the u-term u134 is also set to zero.

Crossing X2 with X43, we get the same parameter as the crossing of X1

and X32, and the following eigenvalues (Table 14 ):

Table 14: MCA on X2 and X43 (eigenvalues).

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10

0.5871 0.5466 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.4534 0.4143

Eigenvalues λ1, λ2, λ9 and λ10 are not in the interval Ic, the u-terms u23

and u24 are not set to zero, and since X2 and X43 are not dependent the u-term
u234 is not set to zero.

Crossing X1 with X42 (or equivalently X2 with X41) we get the same pa-
rameter as the crossing of X1 and X32, and the following eigenvalues:

Table 15: MCA on X1 and X42 (eigenvalues).

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10

0.5434 0.5289 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.4711 0.4566
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Eigenvalues λ1 and λ10 are not in the interval Ic, the u-term u14 is equal
to zero, X1 and X42 are dependent, and the u-term u124 is set to zero.

Finally, variables X1 and X41 are dependent by construction.

The procedure stops here because we can’t have more than triple interac-
tions in a hierarchical model when all the two-way interactions are not present.
We obtain the following model (see Figure 10 for the associated graph):

Figure 10: Lattice diagram (example for a graphical model).

log[f4(X)] = u0 + u1x1 + u2 x2 + u3 x3 + u4 x4 + u32 x2x3 + u41x4x1 + u42 x4x2

+u43 x4x3 + u432 x4x3x2 .

5.3. An example for a saturated model

Here we use a data set given by Israëls [29] that was also used by Van der
Heijden et al. [28] about ‘shop-lifting’ habits.

Table 16 is a contingency table crossing three variables: sex (2 modalities),
age (9 modalities) and type of goods (13 modalities: Clothing (C), Clothing
accessories (Ca), Provision-Tobacco (PT), Writing materials (Wm), Books (B),
Records (R), Household goods (Hg), Sweets (S), Toys (T), Jewellery (J), Perfume
(P), Hobbies tools(Ht), and Others(O)) observed over 33 101 individuals.

In the first step, we test the pairwise independence of variables X1, X2 and
X3. We first transform the contingency table in a complete disjunctive table,
then compute the parameters (defined in § 2.2 & § 4.1.1) needed for the test to
get (Table 17 ).

A MCA on the three variables gives the eigenvalue diagram of Figure 11.

The eigenvalue diagram shows clearly that the variables are not indepen-
dent: only 8 eigenvalues (λ7, ..., λ15) are in the confidence interval.

Using the second step of the procedure, we get the two-way interactions.
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Table 16: Multicontingency table for the shop-lifting data.

Sex: Age: Goods: X3

X1 X2 C Ca PT Wm B R Hg S T J P Ht O

≤ 11 81 66 150 667 67 24 47 430 743 132 32 197 209
12–14 138 204 340 1409 259 272 117 637 684 408 57 547 550
15–17 304 193 229 527 258 368 98 246 116 298 61 402 454
18–20 384 149 151 84 146 141 61 40 13 71 52 138 252

Male 21–29 942 297 313 92 251 167 193 30 16 130 111 280 624
30–39 359 109 136 36 96 67 75 11 16 31 54 200 195
40–49 178 53 121 36 48 29 50 5 6 14 41 152 88
50–64 137 68 171 37 56 27 55 17 3 11 50 211 90
≥ 65 45 28 145 17 41 7 29 28 8 10 28 111 34

≤ 11 71 19 59 224 19 7 22 137 113 162 70 15 24
12–14 241 98 111 463 60 32 29 240 98 138 178 29 58
15–17 477 114 58 91 50 27 41 80 14 548 141 9 72
18–20 436 108 76 18 32 12 32 12 10 303 70 14 67

Female 21–29 1180 207 132 30 61 21 65 16 12 74 104 30 157
30–39 1009 165 121 27 43 9 74 14 31 100 81 36 107
40–49 517 102 93 23 31 7 51 10 8 48 46 24 66
50–64 488 127 214 27 57 13 79 23 17 22 69 35 64
≥ 65 173 64 215 13 44 0 39 42 6 12 41 11 55

Table 17: Parameters needed for the test
(first step of the example for a satured model).

n p m1 m2 m3 q m σ Ic

33101 3 2 9 13 21 0.3333 0.0061 [0.3211, 0.3455]

λ1 = 0.5759
λ2 = 0.4256
λ3 = 0.3966
λ4 = 0.3899
λ5 = 0.3542
λ6 = 0.3494
λ7 = 0.3407
λ8 = 0.3384
λ9 = 0.3344
λ10 = 0.3333
λ11 = 0.3333
λ12 = 0.3333
λ13 = 0.3322
λ14 = 0.3271
λ15 = 0.3260
λ16 = 0.3177
λ17 = 0.3103
λ18 = 0.2802
λ19 = 0.2632
λ20 = 0.1925
λ21 = 0.1423

***************************************************
***********************************
********************************
*******************************
****************************
****************************
***************************
**************************
**********************
**********************
**********************
**********************
*********************
*********************
*********************
********************
*******************
******************
****************
************
*******

Figure 11: MCA on X1, X2 and X3

(eigenvalues diagram, third step of the example for a saturated model).
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MCA of X1 and X3 gives the following results (Table 18 and Figure 12 ):

Table 18: MCA on X1 and X3

(parameters).

n p q m σ Ic

33101 2 13 0.5 0.00002 [0.5000, 0.5000]

λ1 = 0.7032
λ2 = 0.5000
λ3 = 0.5000
λ4 = 0.5000
λ5 = 0.5000
λ6 = 0.5000
λ7 = 0.5000
λ8 = 0.5000
λ9 = 0.5000
λ10 = 0.5000
λ11 = 0.5000
λ12 = 0.5000
λ13 = 0.2968

****************************************
*************************
*************************
*************************
*************************
*************************
*************************
*************************
**********************
**********************
**********************
**********************
**********

Figure 12: MCA on X1 and X3

(eigenvalues diagram, second step of the example for a saturated model).

The first and the last eigenvalues are not in the confidence interval so the
u-term u13 is not set to zero.

We notice here the peculiar form of the eigenvalues diagram, due to the
fact that multiple eigenvalue λ = 1

2 that have a multiplicity 11 = m3 − m1 is an
artificial one (cf. § 4.2.1.1).

MCA of X2 and X3 gives the following results (Table 19 and Figure 13 ):

Table 19: MCA on X2 and X3

(parameters).

n p q m σ Ic

33101 2 20 0.5 0.0001 [0.4998, 0.5002]

The 8 first and the 8 last eigenvalues are not in the confidence interval so
the u-term u23 is not set to zero.
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λ1 = 0.7852
λ2 = 0.6074
λ3 = 0.5903
λ4 = 0.5346
λ5 = 0.5245
λ6 = 0.5112
λ7 = 0.5109
λ8 = 0.5019
λ9 = 0.5000
λ10 = 0.5000
λ11 = 0.5000
λ12 = 0.5000
λ13 = 0.4981
λ14 = 0.4891
λ15 = 0.4888
λ16 = 0.4755
λ17 = 0.4654
λ18 = 0.4097
λ19 = 0.3926
λ20 = 0.2148

****************************************
*******************************
*****************************
**************************
*************************
************************
************************
***********************
********************
********************
********************
********************
*******************
******************
******************
*****************
****************
************
***********
******

Figure 13: MCA on X2 and X3

(eigenvalues diagram, second step of the example for a saturated model).

MCA of X1 and X2 gives the following eigenvalue results (Table 20, Figure 14 ):

Table 20: MCA on X1 and X2

(parameters).

n p q m σ Ic

33101 2 9 0.5 0.0037 [0.4926, 0.5074]

λ1 = 0.6241
λ2 = 0.5000
λ3 = 0.5000
λ4 = 0.5000
λ5 = 0.5000
λ6 = 0.5000
λ7 = 0.5000
λ8 = 0.5000
λ9 = 0.3759

****************************************
*************************
*************************
*************************
*************************
*************************
*************************
*************************
**********

Figure 14: MCA on X1 and X2

(eigenvalues diagram, second step of the example for a saturated model).

The first and the last eigenvalues are not in the confidence interval so the
u-term u12 is not set to zero. At the end of the second step, we obtain all three
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two-way interactions. To know if the model is a saturated one we can built one of
the crossed variables and test its dependence with the remaining simple variable.

MCA of X32 with X1 gives the following eigenvalues:

λ1 = 0.7285 , λ2 = λ3 = · · · = λ116 = 0.5 ,

λ117 = 0.2715 and Ic = [0.4615, 0.5384] .

The first and the last eigenvalues are not in the confidence interval so the
u-term u123 is not set to zero.

At the end we get the following saturated model:

log[f3(X)] = u0 + u1x1 + u2 x2 + u3 x3 + u12 x1x2 + u23 x2x3 + u13 x1x3

+u123 x1x2x3 .

5.4. An example for a mutual independence model

Here we use a data set given by Andersen [2] as a contingency table cross-
ing four variables observed over 299 individuals corresponding to a retrospective
study of ovary cancer, defined in Table 21:

Table 21: Retrospective study of ovary cancer.

X1 X2 X3 X4

stage operation survival X-ray

No Yes

Early radical no 10 17
limited yes 41 64

no 1 3
yes 13 9

Advanced radical no 38 64
limited yes 6 11

no 3 13
yes 1 5

In the first step of procedure, we test for the pairwise independence of
variables X1, X2, X3 and X4. We first transform the contingency table in a
complete disjunctive table, then compute the parameters (see § 4.1.1) needed for
the test.
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The MCA on the four variables gives the following results (Table 22 and Figure 15 ):

Table 22: Parameters needed for the test
(first step of the example for a mutual independence model).

n p m1 m2 m3 m4 q m σ Ic

299 4 2 2 2 2 4 0.25 0.0250 [0.2000, 0.3000]

λ1 = 0.4145
λ2 = 0.2512
λ3 = 0.2449
λ4 = 0.0894

**********************************
********************
*******************
*********

Figure 15: MCA on X1, X2, X3 and X4

(eigenvalues diagram, first step of the example for a mutual independence model).

The eigenvalue diagram shows clearly that variables are not independent,
only λ2 and λ3 are in the confidence interval.

Let’s drop X4 and use the second step of the procedure. MCA on the three
remaining variables gives the following results (Table 23 and Figure 16 ):

Table 23: MCA on X1, X2 and X3

(parameters).

n p q m σ Ic

299 3 3 0.3333 0.0273 [0.2787, 0.3879]

λ1 = 0.3639
λ2 = 0.3342
λ3 = 0.3019

**********************
********************
*******************

Figure 16: MCA on X1, X2 and X3

(eigenvalues diagram).

The eigenvalue diagram shows clearly that variables are independent, since
all the eigenvalues are in the confidence interval, so there is surely one or more
interaction X4 and Xi, i=1, ..., 3.
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The MCA on X4 and Xi gives the following results (Table 24 and Figure 17 ):

Table 24: MCA on X4, Xi

(parameters).

n p q m σ Ic

299 2 2 0.5 0.0283 [0.4434, 0.5566]

X4 and X1 X4 and X2 X4 and X3

λ1 = 0.5365 **********
λ2 = 0.4635 *********

λ1 = 0.8198 **********
λ2 = 0.1802 ***

λ1 = 0.5058 **********
λ2 = 0.4942 *********

Figure 17: Eigenvalues diagram for MCA on X4 and X1,
MCA on X4 and X2 and MCA on X4 and X3.

It’s clear that there exists only an interaction between X4 and X2, X1 and
X3 are non dependent of X4, then u14 = u13 = 0 and u24 �= 0 and we build the
crossed variable X24.

The MCA of X1, X3 and X24 gives the following results (Table 25 and
Figure 18 ):

Table 25: MCA on X1, X3 and X24

(parameters).

n p q m σ Ic

299 3 5 0.3333 0.0273 [0.2787, 0.3879]

λ1 = 0.3647
λ2 = 0.3624
λ3 = 0.3333
λ4 = 0.3047
λ5=0.3016

**********************
**********************
*********************
********************
********************

Figure 18: Eigenvalues diagram for MCA on X1, X3 and X24.

The eigenvalue diagram shows that the variables are independent, all the
eigenvalues being within the confidence interval, and there is no triple interaction
between variables.

We finally obtain the same model as Andersen:

log[f4(X)] = u0 + u1x1 + u2 x2 + u3 x3 + u4 x4 + x24x4x2 .
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6. CONCLUSION

Log-linear modeling and MCA are two complementary techniques for the
analysis of categorical data. In this framework, we propose a method for fitting
progressively log-linear models, using the eigenvalue shape of MCA.

We show that, in MCA, under the independence hypothesis for the
variables, each observed eigenvalue is asymptotically normally distributed.
These distributions have the same mean, different variances and converge to
normal distributions. In this case, the eigenvalue diagram takes a peculiar shape.
This shape is different if there is one or more interactions between variables, and
we can recognize the log-linear model fitted for the data in some special cases.

Then, based on these results, we propose a simple procedure for progres-
sively fitting log-linear models, where the fitting criterion is based on MCA eigen-
value diagrams: the chosen model is constructed by successive utilizations of
MCA (non constrained by the variables number). Finally, we validate this pro-
cedure on three sets of data drawn from the literature.
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