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1. INTRODUCTION

Time series models for count data have been the object of growing interest

in the last twenty years. Numerous articles dealing with the theoretical aspects

of these models as well as their applicability have appeared in the literature.

We refer to McKenzie (2003) for an overview of the recent work in this area,

Stationary time series with a given marginal distribution have been de-

veloped by several authors. Most notably, McKenzie (1986, 1988), Al-Osh and

Alzaid (1988) and Pillai and Jayakumar (1995) constructed stationary integer-

valued autoregressive moving average (INARMA) processes with Poisson, nega-

tive binomial and discrete Mittag–Leffler marginal distributions. These mod-

els are based on the binomial thinning operator ⊙ of Steutel and van Harn

(1979) which is defined as follows: if X is a Z+-valued random variable (rv)

and α ∈ (0, 1), then

(1.1) α ⊙ X =

X
∑

i=1

Xi ,

where (Xi, i≥ 1) is a sequence of iid Bernoulli(α) rv’s independent of X.

The binomial thinning operator incorporates the discrete nature of the vari-

ates and replaces the multiplication used in the definition of standard ARMA

processes. Related models that make use of a more general operator were intro-

duced by Aly and Bouzar (1994) and Zhu and Joe (2003). Other aspects of the

analysis of INARMA processes, such as parameter estimation and the study of

extremal properties, can be found in Al-Osh and Alzaid (1987), McCormick and

Park (1997), Park and Oh (1997), Kim and Park (2006), and Hall and Scotto

(2006).

Aly and Bouzar (2005) used a convolution semigroup of probability gener-

ating functions (pgf’s) and the related operator ⊙F (see definitions below) to con-

struct a class of stationary Z+-valued INAR(p) processes. They developed a num-

ber of models with specific marginals which were shown to generalize several ex-

isting INAR(p) models. The aim of this paper is to use the semigroup approach to

construct a family of stationary F -INMA(1), F -INMA(q), and F -INARMA(1, q)

processes. These processes can be seen as extensions of the classical branching

processes of Galton–Watson–Bienaymé (Arthreya and Ney, 1972). We obtain var-

ious distributional and regression properties of F -INARMA(1, q) processes. We

establish in particular that a stationary F -INMA(1) process has the property

of linear regression if and only if its marginal distribution is (discrete) F -stable.

F -INARMA(1, q) processes with F -stable, F -Mittag–Leffler, and compound dis-

crete Linnik innovation sequences are studied. Examples are developed through-

out the paper.
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In the remainder of this section we recall some definitions and results that

will be needed throughout the paper. For proofs and further details we refer to

Athreya and Ney (1972, Chapter 3), van Harn et al. (1982) and van Harn and

Steutel (1993).

F := (Ft; t≥ 0) will denote a continuous composition semigroup of pgf’s

such that Ft 6≡ 1 and δF = − lnF ′
1
(1) > 0. For any |z| ≤ 1,

(1.2) Fs ◦ Ft(z) = Fs+t(z), (s, t ≥ 0) ; lim
t↓0

Ft(z) = z ; lim
t→∞

Ft(z) = 1 .

The infinitesimal generator U of the semigroup F is defined by

(1.3) U(z) = lim
t↓0

(

Ft(z) − z
)

/t (|z| ≤ 1) ,

and satisfies U(z) > 0 for 0 ≤ z < 1. There exists a constant a > 0 and a dis-

tribution (hn, n≥ 0) on Z+ with pgf H(z) such that h1 = 0,

(1.4) H ′
(1) =

∞
∑

n=1

nhn ≤ 1 ,

and

(1.5) U(z) = a
{

H(z) − z
}

, |z| ≤ 1 ,

The related A-function is defined by

(1.6) A(z) = exp

{

−

∫ z

0

(

U(x)
)−1

dx

}

, z ∈ [0, 1] .

A(z) is strictly decreasing over [0, 1], with A(0) = 1 and A(1) = 0. The functions

U(z) and A(z) satisfy

(1.7) U
(

Ft(z)
)

= U(z)F ′
t(z) and A

(

Ft(z)
)

= e−tA(z) (t≥ 0; 0≤ z ≤ 1) .

Moreover,

(1.8) δF = a
(

1−H ′
(1)
)

= −U ′
(1) and F ′

t(1) = e−δF t
(t≥ 0) .

The function B(z) defined by

(1.9) B(z) = lim
t→∞

Ft(z) − Ft(0)

1 − Ft(0)

is a pgf such that B(0) = 0 and takes the form

(1.10) B(z) = 1 − A(z)
δF .

For a Z+-valued rv X and η ∈ (0, 1), the generalized multiplication η ⊙F X

is defined by

(1.11) η ⊙F X =

X
∑

i=1

Yi ,
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where (Yi, i≥ 1) is a sequence of iid rv’s independent of X, with common pgf Ft,

t = − ln η.

A distribution on Z+ with pgf P (z) is said to be F -self-decomposable if

for any t > 0, there exists a pgf Pt(z) such that

(1.12) P (z) = P
(

Ft(z)
)

Pt(z) , |z| ≤ 1 .

F -self-decomposable distributions are infinitely divisible.

Throughout the paper, stationarity of a stochastic process is considered to

be in the strict sense. Finally, PX will denote the pgf of the distribution of the

Z+-valued rv X.

2. F -INMA(1) PROCESSES

Definition 2.1. A sequence (Xn, n∈Z) of Z+-valued rv’s is said to be

an F -INMA(1) process if for any n ∈ Z,

(2.1) Xn = η ⊙F ǫn−1 + ǫn ,

where 0 < η < 1 and (ǫn, n∈Z) is a sequence of iid, Z+-valued rv’s. (ǫn, n∈Z)

is called the innovation sequence.

The generalized multiplication η⊙F ǫn−1 in (2.1) is performed independently

for each n. More precisely, we assume the existence of an array (Yi,n, i≥ 0, n∈Z)

of iid Z+-valued rv’s, independent of (ǫn, n∈Z), such that the array’s common

pgf is Ft(z), t =− ln η, and

(2.2) η ⊙F ǫn−1 =

ǫn−1
∑

i=1

Yi,n−1 .

It is clear that model (2.1) is not a Galton–Watson process. However, one can give

a branching process-like interpretation as follows. In the time interval (n−1, n],

each element of ǫn−1 brings into the system k new elements (offspring) according

to the probability distribution with pgf Ft(z). This gives rise to a total of Un−1 =

η⊙F ǫn−1 new elements in the system by time n. The variable Xn is then obtained

by superposing Un−1 and ǫn. For any n, elements of ǫn can only be present at

time n and their offspring at time n+1. In other words, elements of ǫn and their

offspring remain in the system for at most two units of time.

The transformed version of (2.1) in terms of pgf’s is given by

(2.3) PXn(z) = Pǫ(z)Pǫ

[

Ft(z)
]

, |z| ≤ 1 ,
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where Pǫ is the common pgf of the ǫn’s and t = − ln η. Furthermore, it can be

easily shown that for an F -INMA(1) process (Xn, n ∈ Z) the joint pgf Φk of

(Xn+1, Xn+2, ..., Xn+k) for any n ∈ Z and k ≥ 2 is

(2.4) Φk(z1, z2, ..., zk) = Pǫ(zk)

k
∏

i=1

Pǫ

(

zi−1Ft(zi)
)

,

where z0 = 1, |zi| ≤ 1, i = 1, 2, ..., k, and t = − ln η. It follows from (2.4) that

any F -INMA(1) process is stationary.

Further distributional and correlation properties of F -INMA(1) processes

are gathered in the following proposition.

Proposition 2.1. Let (Xn, n∈Z) be an F -INMA(1) process with coef-

ficient η ∈ (0, 1). Assume further that the mean µǫ and the variance σ2
ǫ of ǫn are

finite and that
∑∞

n=2
n(n−1)hn < ∞. Then

(i) E(Xn) = µǫ(η
δF +1) ;

(ii) Var(Xn) = σ2

ǫ (1+ η2δF ) + µǫ

(

1−
U ′′

(1)

U ′(1)

)

ηδF (1− ηδF ) ;

(iii) for any n ∈ Z, Cov(Xn−1, Xn) = ηδF σ2
ǫ ;

(iv) the autocorrelation function (ACRF ) of (Xn, n∈Z) at lag k is

(2.5) ρ(k) =











ηδF σ2
ǫ

/(

σ2
ǫ (1+η2δF )

)

+ µǫ

(

(

1− U ′′(1)

U ′(1)

)

ηδF(1−ηδF )

)

, if k = 1 ,

0 , if k > 1 .

Proof: We first note that
∑∞

n=2
n(n−1)hn < ∞ implies U ′′

(1) exists

(see (1.4) and (1.5)). By (1.8) and (2.2), we have E
(

η⊙F ǫn−1 | ǫn−1

)

= ηδF ǫn−1.

Therefore, E(Xn) = E(ǫn) + E(η ⊙F ǫn−1) = E(ǫn) + ηδF E(ǫn−1) = µǫ(η
δF +1),

and thus (i) holds. By differentiating twice the expression U(Ft(z)) = F ′
t(z)U(z)

(t = − ln η) with respect to z and letting z → 1, we obtain F ′′
t (1) = ηδF (ηδF −1) ·

·U ′′
(1)/U ′

(1). By (1.8) and (2.2), E
(

(η ⊙F ǫn−1)
2 | ǫn−1

)

= Var(Y1,n−1) ǫn−1 +

η2δF ǫ2n−1
. Noting that

Var(Y1,n−1) = F ′′
t (1) + F ′

t(1) − F ′
t(1)

2
= ηδF (1− ηδF )

(

1−
U ′′

(1)

U ′(1)

)

,

(ii) follows by direct calculations. By (2.1) and independence,

E(Xn−1Xn) = E(Xn−1)E(ǫn)+E
(

ǫn−1(η⊙F ǫn−1)
)

+E(η⊙F ǫn−2)E(η⊙F ǫn−1) .

Since E
(

ǫn−1(η ⊙F ǫn−1) | ǫn−1

)

= ηδF ǫ2n−1
, again direct calculations (and (i))

yield (iii). (iv) results from (ii) and (iii) combined with the fact that Xn−k

and Xn are independent for k > 1.
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A stochastic process (Zn, n∈Z) is time reversible if for all n, (Z1, Z2, ..., Zn)

and (Zn, Zn−1, ..., Z1) have the same distribution. By a result of McKenzie (1988),

an F -INMA(1) process is time reversible if and only if for any n, (Xn−1, Xn)

has the same distribution as (Xn, Xn−1). The following result gives a necessary

condition for the time reversibility of an F -INMA(1) process.

Theorem 2.1. Assume that (Xn, n∈Z) is a time reversible F -INMA(1)

process with coefficient η ∈ (0, 1). Then the pgf Pǫ(z) of the marginal distribution

of the innovation sequence (ǫn, n∈Z) admits the representation

(2.6) Pǫ(z) = Czm
exp

{

−λ

∫ z/Ft(0)

0

Ft(x)−Ft(0)

x
dx

}

, z ∈ [0, Ft(0)] ,

where t = − ln η, m is a nonnegative integer, λ > 0 and 0 < C < 1 are real

numbers.

Proof: Since A(z) is strictly decreasing on [0, 1] (with A(0) = 1 and

A(1) = 0), it is invertible. It follows by (1.7) that Ft(0) = A−1
(e−t

) > 0 for any

t > 0. Assume Pǫ(0) 6= 0. By (2.4) (applied to k = 2) and the property of time

reversibility, we have

(2.7) Pǫ(z2) Pǫ

(

Ft(z1)
)

Pǫ

(

z1Ft(z2)
)

= Pǫ(z1)Pǫ

(

Ft(z2)
)

Pǫ

(

z2Ft(z1)
)

,

where t =− ln η and |zi| ≤ 1, i = 1, 2. Setting z1 = 0 and z2 = z in (2.7) yields

(2.8) Pǫ(z) =
Pǫ

(

Ft(z)
)

Pǫ

(

zFt(0)
)

Pǫ

(

Ft(0)
) .

Moreover, differentiating with respect to z1 in (2.7), setting z1 = 0 and z2 = z

in the resulting equation, and using (2.8), we obtain

(2.9) Pǫ

(

zFt(0)
)

[

F ′
t(0)P ′

ǫ

(

Ft(0)
)

Pǫ

(

Ft(0)
) +

P ′
ǫ(0)

Pǫ(0)

(

Ft(z)−1
)

]

= F ′
t(0) zP ′

ǫ

(

zFt(0)
)

.

Setting z = 0 in (2.9) gives
F ′

t (0) P ′

ǫ(Ft(0))

Pǫ(Ft(0))
=

P ′

ǫ(0)

Pǫ(0)
(1−Ft(0)). Therefore,

(2.10) Ft(0)
P ′

ǫ

(

zFt(0)
)

Pǫ

(

zFt(0)
) = λ

Ft(z)−Ft(0)

z
,

where λ =
P ′

ǫ(0)

Pǫ(0)

Ft(0)

F ′

t (0)
. The solution to the differential equation (2.10) is easily

seen to be

(2.11) Pǫ

(

zFt(0)
)

= Pǫ(0) exp

{

λ

∫ z

0

Ft(x)−Ft(0)

x
dx

}

, z ∈ [0, 1] .

If Pǫ(0) = 0, then let m be the smallest positive integer such that P ∗
ǫ (0) 6= 0,

where P ∗
ǫ (z) = Pǫ(z)/zm

. It is easily seen that P ∗
ǫ (z) satisfies (2.7) and thus

admits the representation (2.11). This leads to (2.6) with C = P ∗
ǫ (0) = P

(m)

ǫ (0).
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A process (Zn, n∈Z) has the property of (forward) linear regression if

for any n ∈ Z,

(2.12) E(Zn |Zn−1) = a + bZn−1 .

Aly and Bouzar (2005) showed that F -INAR(1) processes do possess this prop-

erty. This is not true in general for F -INMA(1) models. In fact the following re-

sult gives a characterization of those F -INMA(1) processes that possess the prop-

erty of linear regression. Recall that F -stable distributions (see van Harn et al.,

1982) have a pgf of the form

(2.13) P (z) = exp
{

−λA(z)
γ
}

, λ > 0, |z| ≤ 1 ,

where γ, called the exponent of the distribution, must satisfy 0 < γ ≤ δF .

F -stable distributions are F -self-decomposable (see (1.12)).

Theorem 2.2. Assume that the distribution (hn, n ≥ 0) of (1.4)–(1.5)

satisfies

(2.14)

∞
∑

n=2

hn n lnn < ∞ .

Let (Xn, n∈Z) be an F -INMA(1) process such that 0 < Pǫ(0) < 1 and µǫ =

P ′
ǫ(1) < ∞. Then (Xn, n∈Z) has the property of linear regression if and only if

ǫn has an F -stable distribution with exponent δF , and in this case

(2.15) E(Xn |Xn−1) = µǫ +
ηδF

1 + ηδF
Xn−1 .

Proof: Assume that (2.12) holds for some real numbers a and b. By (2.4)

(for k = 2), the joint pgf of (Xn−1, Xn), n ∈ Z, is

Φ2(z1, z2) = Pǫ(z2)Pǫ

(

Ft(z1)
)

Pǫ

(

z1Ft(z2)
)

, t =− ln η .

Differentiating Φ2 with respect to z2 and then setting z2 =1 and z1 = z, we obtain

(2.16) E
(

Xn zXn−1
)

= Pǫ

(

Ft(z)
)

[

P ′
ǫ(1)Pǫ(z) + F ′

t(1) zP ′
ǫ(z)

]

, n ∈ Z .

By (2.12), we have for any n ∈ Z,

(2.17)
E(Xn zXn−1) = E

(

zXn−1 E(Xn |Xn−1)
)

= b zE
(

Xn−1zXn−1−1
)

+ aE(zXn−1) .

Note that E(Xn−1zXn−1−1
) = P ′

(z), where P (z) is the pgf of Xn−1. It follows by

(2.17) that E(Xn zXn−1) = aP (z) + bzP ′
(z) which, combined with (2.3), implies

(2.18)

E(XnzXn−1) = aPǫ

(

Ft(z)
)

Pǫ(z)

+ b z
[

F ′
t(z)P ′

ǫ

(

Ft(z)
)

Pǫ(z) + P ′
ǫ(z)Pǫ

(

Ft(z)
)

]

.
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Letting Q(z) = P ′
ǫ(z)/Pǫ(z) and noting, by (1.8), F ′

t(1) = ηδF , it follows by (2.16)

and (2.18) that

(2.19) P ′
ǫ(1) + ηδF z Q(z) = a + bz

[

F ′
t(z)Q

(

Ft(z)
)

+ Q(z)

]

.

Setting z = 0 and z = 1 in (2.19) (recall Q(1) = P ′
ǫ(1) 6= 0), we deduce that

a = P ′
ǫ(1) and b = ηδF/(ηδF +1). Therefore, (2.19) reduces to

F ′
t(z)Q

(

Ft(z)
)

= ηδF Q(z) ,

or, by (1.7),

Q(z) = η−δF
U
(

Ft(z)
)

U(z)
Q
(

Ft(z)
)

.

The additivity property Ft(Fjt(z)) = F(j+1)t(z) and an induction argument yield

for any n ≥ 1,

(2.20) Q(z) = enδF t U
(

Fnt(z)
)

U(z)
Q
(

Fnt(z)
)

.

From the semigroup properties (1.2), (1.8), and (1.9) we have

lim
n→∞

Fnt(z) = 1 , lim
n→∞

U
(

Fnt(z)
)

Fnt(z)−1
= U ′

(1) = −δF , lim
n→∞

Fnt(z)−1

Fnt(0)−1
= 1−B(z) .

Moreover, (2.14) implies (see van Harn et al., 1982)

lim
n→∞

enδF t
(

Fnt(0)−1
)

= −1 .

By letting n → ∞ in (2.20), we obtain

(2.21) Q(z) =
P ′

ǫ(z)

Pǫ(z)
= δF Q(1)

1−B(z)

U(z)
.

Since (by (1.6) and (1.10)) 1/U(z) =−A′
(z)/A(z) and 1−B(z) = A(z)

δF , it fol-

lows from (2.21)

lnPǫ(z) = −δF Q(1)

∫ z

1

A′
(x)A(z)

δF−1 dx = −δF Q(1)A(z)
δF .

This proves the necessary part. To prove sufficiency, assume that Pǫ(z) =

exp
{

−λA(z)
δF
}

for some λ > 0. Since by (1.9) Pǫ(z) = exp(B(z)−1), assump-

tion (2.14), which is equivalent to B′
(1) <∞ (see Athreya and Ney (1972), Chap-

ter 3, or van Harn et al. (1982), Remark 7.3), implies µǫ = E(ǫn) <∞, and thus

E(Xn) < ∞. We have for any n ∈ Z

E(Xn |Xn−1) = E

(

E
(

Xn |ǫn−1, ǫn−2,
(

Yi,n−1, Yi,n−2, i≥ 1
)

)
∣

∣

∣
Xn−1

)

and, by independence and (2.2),

E
(

Xn |ǫn−1, ǫn−2,
(

Yi,n−1, Yi,n−2, i≥ 1
)

)

= µǫ + ηδF ǫn−1 .
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Therefore,

(2.22) E(Xn |Xn−1) = µǫ + ηδF E(ǫn−1 |Xn−1) .

The joint pgf g(z1, z2) = E(zǫn

1
zXn

2
) of (ǫn, Xn) is independent of n and is given

by

(2.23) g(z1, z2) = Pǫ(z1z2) Pǫ

(

Ft(z2)
)

.

By (2.3) and (1.7), the pgf P (z) of Xn is

(2.24) P (z) = exp

{

−λ
(

A
(

Ft(z)
)δF

+ A(z)
δF

)}

= exp

{

−λ
(

1+ηδF
)

A(z)
δF

}

.

Moreover,

(2.25)
d

dz1

g(z1, z2)

∣

∣

∣

∣

z1=1, z2=z

= E(ǫnzXn) =

∞
∑

k=0

zk E
(

ǫn |Xn = k
)

pk ,

where (pk, k ≥ 0) is the distribution of Xn. By (2.23),

d

dz1

g(z1, z2) = z2 Pǫ

(

Ft(z2)
)

P ′
ǫ(z1z2) .

Direct calculations, combined with (1.7) and the equation A′
(z)/A(z) = −1/U(z)

(from (1.6)), yield

d

dz1

g(z1, z2)

∣

∣

∣

∣

z1=1, z2=z

= λ δF
zA(z)

δF

U(z)
exp

{

−λ
(

1+ηδF
)

A(z)
δF

}

.

We deduce (in view of (2.24))

(2.26)
d

dz1

g(z1, z2)

∣

∣

∣

∣

z1=1, z2=z

=
(

1+ηδF
)−1

zP ′
(z) =

(

1+ηδF
)−1

∞
∑

k=0

k pk zk .

Since P (z) is infinitely divisible and p1 = P ′
(0) = λ δF e−λ > 0, it follows by

Corollary 8.3, p. 51, in Steutel and van Harn (2004) that pk > 0 for all k ≥ 0.

Uniqueness of the power series coefficients in (2.25) and (2.26) implies that for

any n ∈ Z

(2.27) E(ǫn |Xn) = (1+ ηδF )
−1Xn .

Equation (2.15) follows then from (2.22) and (2.27).

van Harn et al. (1982) (see also Zhu and Joe, 2003) give some rich exam-

ples of continuous composition semigroups of pgf’s from which one can gener-

ate F -INMA(1) processes. We mention the parameterized family of semigroups
(

F (θ), θ ∈ [0, 1)
)

described by

(2.28) F
(θ)
t (z) = 1 −

θ e−θt
(1− z)

θ + θ (1− e−θt)(1− z)
, t ≥ 0, |z| ≤ 1, θ = 1− θ .
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In this case we have δF (θ) = θ, U (θ)
(z) = (1− z)(1− θz) and A(θ)

(z) =
(

1−z
1−θz

)
1
θ .

We note that for θ = 0, F (θ)
corresponds to the standard semigroup F

(0)

t (z) =

1− e−t
+ e−tz and ⊙F (0) is the binomial thinning operator of Steutel and van

Harn (1979) (see (1.1)).

For the family of semigroups
(

F (θ), θ ∈ [0, 1)
)

of (2.28), the pgf Pǫ(z) of

(2.6) is shown to be (via analytic continuation):

(2.29) Pǫ(z) =











zm e−λ(1−z), if θ = 0 (λ > 0) ,

zm

(

θ

1− θz

)r

, if 0 < θ < 1 (r > 0) ,

for some nonnegative integer m. Therefore, by Theorem 2.1, for time reversibility

for an F (0)
-INMA(1) (resp. F (θ)

-INMA(1), 0 < θ < 1) to hold it is necessary that

ǫn
d
= ǫ + m where ǫ has a Poisson distribution with some mean λ > 0 (resp.

a negative binomial distribution with probability of success θ). In this case the

converse holds as well, as shown by Al-Osh and Alzaid (1988), for θ = 0, and by

Aly and Bouzar (1994), for 0 < θ < 1.

The family of semigroups
(

F (θ), θ ∈ [0, 1)
)

of (2.28) necessarily satisfies con-

dition (2.14) (since hn = 0 for n≥ 3). By Theorem 2.2, an F (θ)
-INMA(1) process

has the property of (forward) linear regression if and only if its innovation se-

quence has a Poisson geometric distribution with pgf

(2.30) Pǫ(z) = exp

{

−λ
1− z

1− θz

}

(λ > 0) .

The version of Theorem 2.2 for the semigroup F (θ)
was established Al-Osh and

Alzaid (1988) (for θ = 0) and by Aly and Bouzar (1994) (for 0 < θ < 1).

3. F -INMA(1) PROCESSES WITH A DISCRETE STABLE INNO-

VATION SEQUENCE

Aly and Bouzar (2005) introduced a stationary F -INAR(1) process with

an F -stable marginal. In this section, we construct its F -INMA(1) counterpart.

Let (Xn, n∈Z) be an F -INMA(1) process such that ǫn has the F -stable

distribution with exponent γ, 0 < γ ≤ δF , and pgf (2.13). Then by (1.3), (2.3),

and (2.13), the marginal distribution of (Xn, n∈Z) is F -stable with the same

exponent and with pgf

(3.1) P (z) = exp

{

−λ(1+ ηγ
)A(z)

γ
}

, λ > 0, |z| ≤ 1 .
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The joint pgf of (X1, X2, ..., Xk) is (by way of (2.4) and (1.3))

(3.2) Φk(z1, z2, ..., zk) = exp

{

−λ

(

ηγA(z1)
γ

+

k
∑

i=2

A
(

zi−1Ft(zi)
)γ

+A(zk)
γ

)

}

,

where t = − ln η.

By van Harn et al. (1982), an F -stable distribution with exponent γ has a

finite mean if and only if γ = δF and B′
(1) < ∞ (or, equivalently, (2.14) holds).

Therefore, a finite mean F -INMA(1) process with an F -stable marginal distribu-

tion exists only if γ = δF and B′
(1) <∞. In this case µǫ = λB′

(1). If we further

assume that B′′
(1) < ∞, the variance of ǫn is σ2

ǫ = λ(B′′
(1)+B′

(1)). The mean

and variance of Xn as well as the correlation coefficient of (Xn, Xn+1), follow

from Proposition 2.1, under the further assumption
∑∞

n=2
n(n −1)hn < ∞.

The branching process-like interpretation of an F -INMA(1) process (de-

scribed in Section 2) leads naturally to consider the variable Tk =
∑k

i=1
Xi.

Tk represents the total number of elements that were present in the system

during the time interval [0, k]. It can be easily seen that the pgf of Tk is

PTk
(z) = Φ(z, z, ..., z) (see (2.4)), or

(3.3) PTk
(z) = exp

{

−λ
[

(1+ηγ
)
(

A(z)
)γ

+(k−1)A
(

zFt(z)
)γ
]

}

, t =− ln η .

It is easily shown from (3.3) that Tk
d
= Y1+Z1, where Y1 is F -stable with exponent γ,

Z1 is an F -stable compounding (with exponent γ) of the distribution with pgf

zFt(z), and Y1 and Z1 are independent.

Considering the family of semigroups
(

F (θ), θ ∈ [0,1)
)

of (2.28), we note that

the Poisson INMA(1) process of McKenzie (1988) is the finite mean F (0)
-INMA(1)

process with an F (0)
-stable marginal. The Poisson geometric INMA(1) process of

Aly and Bouzar (1994) (with pgf (2.30)) arises as the finite mean F (θ)
-INMA(1)

process with an F (θ)
-stable marginal.

4. F -INMA(1) PROCESSES WITH A DISCRETE

MITTAG–LEFFLER INNOVATION SEQUENCE

A distribution on Z+ is said to have an F -Mittag–Leffler (or F -ML ) dis-

tribution with exponent γ, 0 < γ ≤ δF , if its pgf is of the form

(4.1) P (z) =
(

1 + c A(z)
γ
)−1

for some c > 0 .

F -ML distributions are F -self-decomposable (van Harn and Steutel, 1993). Aly

and Bouzar (2005) presented a stationary F -INAR(1) process with an F -ML

marginal.
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If (Xn, n∈Z) is an F -INMA(1) process such that ǫn has the F -ML distri-

bution of (4.1), then Xn admits the following representation:

(4.2) Xn
d
=

Y +Z
∑

i=1

Wi ,

where the Wi’s are iid Z+-valued rv’s with common pgf B(z) of (1.9)–(1.10), and

Y and Z are independent Z+-valued rv’s (also independent of the Wi’s) and with

respective pgf’s

(4.3) PY (z) =

(

1 + c(1−z)
γ/δF

)−1

and PZ(z) =

(

1 + c ηγ
(1−z)

γ/δF

)−1

.

This is shown as follows. Let P (z) be the pgf of
∑Y +Z

i=1
Wi. By (1.10) and (4.3),

P (z) = PY +Z

(

B(z)
)

= PY

(

B(z)
)

PZ

(

B(z)
)

=
(

1+ cA(z)
γ
)−1(

1+ c ηγA(z)
γ
)−1

,

or, P (z) = Pǫ(z)Pǫ(Ft(z)), t =− ln η. The representation (4.2) follows then from

(2.3).

The joint pgf of (X1, X2, ..., Xk) is (by way of (2.4) and (1.3))

(4.4)

Φk(z1, ..., zk) =
(

1 + c ηγA(z1)
γ
)−1

×

[

k
∏

i=2

(

1 + c A
(

zi−1Ft(zi)
)γ
)−1

]

(

1 + c ηγA(zk)
γ
)−1

,

where t = − ln η.

Similarly to the discrete stable case of Section 3, an F -ML distribution with

exponent γ has a finite mean if and only if γ = δF and B′
(1) <∞ (or, equivalently,

(2.14) holds). Therefore, a finite mean F -INMA(1) process with an F -ML inno-

vation exists only if γ = δF and B′
(1) <∞. In this case µǫ = c B′

(1). If we further

assume that B′′
(1) <∞, the variance of ǫn is σ2

ǫ = c
(

B′′
(1) + c B′

(1)
2
+ B′

(1)
)

.

The mean and variance of Xn as well as the correlation coefficient of (Xn, Xn+1)

follow from Proposition 2.1, under the further assumption
∑∞

n=2
n(n−1)hn < ∞.

We note that when γ = δF , the distributions of the rv’s Y and Z of (4.2) and

(4.3) simplify respectively to a Geometric
(

c
1+c

)

and a Geometric
( cηγ

1+cηγ

)

.

The total number of elements, Tk =
∑k

i=1
Xi, that were present in the

system during the time interval [0, k] for an F -INMA(1) process with an F -ML

marginal has pgf

(4.5) PTk
(z) =

[

(

1+cA(z)γ
)(

1+c ηγA(z)γ
)

]−1(

1+c A
(

zFt(z)
)γ
)1−k

, t=− ln η .

By (4.5), Tk admits the representation Tk
d
= Y2 + W2 + Z2, where Y2, W2 and Z2

are independent, Y2 and W2 have F -ML distributions with exponent γ, and Z2 is
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a compounding of the distribution with pgf zFt(z) by the (k−1)-th convolution

of the distribution of ǫn.

Following McKenzie (1986), an F -INMA(1) process with an F -ML marginal

distribution can be obtained by modifying (2.1) as follows:

(4.6) Xn = η ⊙ ǫn + Bn ǫn−1 ,

where 0 < η < 1, (ǫn, n∈Z) is a sequence of iid rv’s with a common F -ML distri-

bution with exponent 0 < γ ≤ δF , (Bn, n∈Z) is a sequence of iid Bernoulli(1−ηγ
)

rv’s, and (ǫn, n∈Z) and (Bn, n∈Z) are independent. By (4.6), (4.1), and (1.7),

the pgf P (z) of Xn is shown to be

P (z) =
(

1 + c ηγA(z)
γ
)−1
(

ηγ
+ (1−ηγ

)
(

1+ c A(z)
γ
)−1
)

=
(

1+ c A(z)
γ
)−1

.

The finite mean F (0)
-ML innovation sequence corresponding to the F (0)

-

INMA(1) process of (2.1) (with F (0)
as in (2.28)) reduces to a geometric innovation

with probability of success 1/(1+ c). Likewise, for the semigroup F (θ)
, 0 < θ < 1,

of (2.28), the finite mean F (θ)
-ML innovation process for an F (θ)

-INMA(1) process

admits the representation ǫn
d
= In ǫ′n where (In, n∈Z) and (ǫ′n, n∈Z) are indepen-

dent sequences of Z+-valued iid rv’s, In is Bernoulli(c/(1+c)), and ǫ′n has a (trun-

cated at zero) geometric distribution with probability of success θ/(1+c). Finally,

the geometric INMA(1) process of McKenzie (1986) corresponds to the modified

finite mean (γ = 1) F -INMA(1) process of (4.6) with an F (0)
-ML marginal dis-

tribution.

5. F -INMA(1) PROCESSES WITH A COMPOUND DISCRETE

LINNIK INNOVATION SEQUENCE

A Z+-valued rv X is said to have an F -compound discrete Linnik distribu-

tion if its pgf has the form

(5.1) P (z) =
(

1 + λA(z)
γ
)−r

,

for some 0 < γ ≤ δF , λ > 0, and r > 0. van Harn and Steutel (1993) showed that

F -compound discrete Linnik distributions are F -self-decomposable and arise as

solutions to stability equations for Z+-valued processes with stationary indepen-

dent increments. Aly and Bouzar (2005) constructed a Z+-valued stationary

INAR(1) process with an F -compound discrete Linnik distribution. Note the

case r = 1 corresponds to the F -ML distribution of the previous section.

If (Xn, n∈Z) is an F -INMA(1) process such that ǫn has the F -compound

discrete Linnik distribution, then the distribution of Xn has the following repre-
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sentation:

(5.2) Xn
d
=

Y +Z
∑

i=1

Wi ,

where the Wi’s are iid with common pgf B(z), and Y and Z are Z+-valued

independent rv’s (also independent of the Wi’s) with respective pgf’s

(5.3) PY (z) =

(

1 + c(1−z)
−γ/δF

)−r
and PZ(z) =

(

1 + c ηγ
(1−z)

−γ/δF

)−r
.

The proof of (5.2)–(5.3) is identical to the one given in the case of the F -INMA(1)

process with an F -ML innovation (see (4.2)–(4.3) of the previous section ). The

details are omitted.

Formulas for the joint pgf of (X1, X2, ..., Xk) as well as the pgf of Tk =
∑k

i=1
Xi can be derived similarly to the F -ML case of the previous section.

Furthermore, a finite mean F -INMA(1) process with a compound dis-

crete Linnik innovation sequence exists only if γ = δF and B′
(1) <∞. In this

case µǫ = rc B′
(1). If we further assume then B′′

(1) <∞, the variance of ǫn is

σ2
ǫ = rc

(

B′′
(1) + cB′

(1)
2

+ B′
(1)
)

. The mean and variance of Xn as well as

the correlation coefficient of (Xn, Xn+1) follow from Proposition 2.1, under the

further assumption
∑∞

n=2
n(n−1)hn < ∞. We note that when γ = δF , the dis-

tributions of the rv’s Y and Z of (5.2) simplify respectively to a negative binomial
(

c
1+c , r

)

and a negative binomial
( cηγ

1+cηγ , r
)

.

6. F -INMA(q) PROCESSES

Definition 6.1. A sequence (Xn, n∈Z) of Z+-valued rv’s is said to be

an F -INMA(q) process if for any n ∈ Z,

(6.1) Xn = ǫn +

q
∑

i=1

ηi ⊙F ǫn−i ,

where (ǫn, n∈Z) is a sequence of iid, Z+-valued rv’s, and 0<ηi <1, i=1, 2, ..., q.

The generalized multiplications ηi ⊙F ǫn−i, i = 1, ..., q, in (6.1) are per-

formed independently. More precisely, we assume the existence of q indepen-

dent arrays
(

Y
(i)
j,n , j ≥ 0, n∈Z

)

, i = 1, 2, ..., q, of iid Z+-valued rv’s, independent

of (ǫn, n∈Z), such that for each i = 1, 2, ..., q, the array’s common pgf is Fti(z),

ti =− log ηi, and

(6.2) ηi ⊙F ǫn−i
d
=

ǫn−i
∑

j=1

Y
(i)
j,n−j .
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Equation (6.2) can be interpreted as follows. Subsequent to time n, each

element of ǫn has q nonoverlapping reproduction periods: (n + i, n + i +1],

i = 0, 1, 2, ..., q−1 with the distribution of offspring having pgf Fti(z) over

(n + i, n + i + 1]. Each ηi ⊙F ǫn represents then the total number of offspring

brought into the system by all ǫn elements. The offspring survive one unit of

time and are replaced at time n + 1 by the offspring from the next reproduction

period. The offspring of ǫn are phased out of the system after q units of time.

It is important to note that for all n ∈ Z and all i, j = 1..., q, i 6= j, ηi ⊙ ǫn and

ηj ⊙ ǫn are independent, given ǫn.

The process (Xn, n ∈ Z) of (6.1) is necessarily stationary and its marginal

distribution has pgf

(6.3) PX(z) = Pǫ(z)

q
∏

i=1

Pǫ

[

Fti(z)
]

,

where ti =− log ηi, i = 1, ..., q.

Distributional properties of an F -INMA(q) process are given in the follow-

ing proposition. The proof is similar to the one given in the case q = 1 in section 2

(Proposition 2.1). The details are omitted.

Proposition 6.1. Let (Xn, n∈Z) be an F-INMA(q) process. Assume fur-

ther that the mean µǫ and the variance σ2
ǫ of ǫn are finite and that

∑∞
n=2

n(n−1)hn

< ∞. Then (with η0 = 1)

(1) E(Xn) = µǫ

q
∑

i=0

ηδF

i ;

(2) Var(Xn) = σ2

ǫ

(

q
∑

i=0

ηδF

i

)

+ µǫ

(

1 − U ′′
(1)/U ′

(1)

)

(

q
∑

i=0

ηδF

i

(

1− ηδF

i

)

)

;

(3) the ACRF of (Xn, n∈Z) at lag k is

(6.4) ρ(k) =







































[(

q−k
∑

i=0

ηδF

i ηδF

i+k

)

σ2

ǫ

]

/

[(

q
∑

i=0

ηi δF

)

σ2

ǫ

+ µǫ

(

1−
U ′′

(1)

U ′(1)

)

(

q
∑

i=0

ηδF

i

(

1− ηδF

i

)

)]

, 0 ≤ k ≤ q ,

0, k > q .

It is clear from (6.4) that an F -INMA(q) process has the same correlation

structure as the standard MA(q) processes.

An F -INMA(q) process with an F -stable innovation sequence has finite

mean only if γ = δF and B′
(1) < ∞. In addition, if B′′

(1) < ∞, then ǫn has
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finite mean and finite variance (recall, µǫ = λB′
(1) and σ2

ǫ = λ(B′′
(1) + B′

(1))).

The mean and variance of Xn as well as the correlation coefficient of (Xn, Xn+1),

follow from Proposition 6.1, under the further assumption
∑∞

n=2
n(n−1)hn <∞.

If (Xn, n∈Z) is an F -INMA(q) process such that ǫn has an F -stable dis-

tribution with pgf given by (2.13), then by (6.3) and (1.7) its marginal is also

F -stable with pgf

(6.5) PX(z) = exp

{

−λ

(

q
∑

i=0

ηγ
i

)

(

A(z)
)γ

}

, η0 = 1 .

We note that the Poisson INMA(q) process of McKenzie (1988) and the

Poisson Geometric INMA(q) process of Aly and Bouzar (1994) are special cases

of F -INMA(q) processes with a stable marginal for the semigroups F (0)
and F (θ)

(0 < θ < 1) of (2.28), respectively.

If (Xn, n∈Z) is an F -INMA(q) process such that ǫn has the F -ML distri-

bution of (4.1), then Xn admits the following representation:

(6.6) Xn
d
=

Y +Z1+···+Zq−1
∑

i=1

Wi ,

where the Wi’s are iid Z+-valued rv’s with common pgf B(z) of (1.9)–(1.10), and

Y and Zi, i = 1, ..., q−1, are independent Z+-valued rv’s (also independent of the

Wi’s) and with respective pgf’s

(6.7)

PY (z) =

(

1 + c(1− z)
γ/δF

)−1

,

PZi
(z) =

(

1 + c ηγ
i (1− z)

γ/δF

)−1

, i = 1, ..., q −1 .

F -INMA(q) processes with compound discrete Linnik innovation sequences

can be constructed in similar fashion. The details are omitted.

We note next the existence of an F -INMA process of infinite order

(F -INMA(∞)). Let Xn, n∈Z be a stationary F -INAR(1) process, i.e.,

(6.8) Xn = η ⊙F Xn−1 + ǫn , n ∈ Z ,

for some innovation sequence (ǫn, n∈Z) and some 0 < η < 1. Then (see Aly and

Bouzar, 2005) Xn, n∈Z admits the following F -INMA(∞) representation:

(6.9) Xn =

∞
∑

i=0

ηi⊙F ǫn−i , n ∈ Z .

We conclude this section by mentioning that classes of F -INMA(q) proces-

ses with an autocorrelation structure different from (6.4) may result by assuming
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some form of dependence between the generalized multiplications in equation

(6.1). Al-Osh and Alzaid (1988) and Brännäs and Hall (2001) proposed several

INMA(q) processes where dependence between the binomial thinnings in the

governing equation was allowed.

7. F -INARMA(1, q) PROCESSES

In this section the F -INAR(1) process of Aly and Bouzar (2005) is com-

bined with the F -INMA(q) process of the previous section to obtain a mixed

process. Let (ǫn, n∈Z) be a sequence of iid rv’s and define the F -INAR(1)

process (Yn, n∈Z) by

(7.1) Yn = η ⊙F Yn−1 + ǫn ,

The F -INARMA(1, q) process is defined as

(7.2) Xn = Yn−q +

q
∑

i=1

ηi⊙F ǫn+1−i .

Note that both the AR(1) and the MA(q) components in (7.1)–(7.2) share

the same innovation sequence (ǫn, n∈Z). Moreover, the generalized multiplica-

tions ηi ⊙F ǫn+1−i, i = 1, ..., q, in (7.2) are performed independently. A repre-

sentation of (Xn, n∈Z) of (7.1)–(7.2) in terms of sequences of iid rv’s can be

easily obtained from the representations of its AR(1) and MA(q) components.

The details are left out. If (Yn, n ∈ Z) is stationary (see Aly and Bouzar (2005)

for sufficient conditions), then (Xn, n∈Z) is also stationary. We will assume

throughout the section that (Yn, n∈Z) is stationary. The joint pgf of higher or-

der distributions of (Xn, n∈Z) can be expressed in terms of the pgf’s PY (z) of Yn,

Pǫ(z) of ǫn, Ft(z) (t =− ln η), and Fti(z) (ti =− ln ηi, i = 1, ..., q. For example,

the joint pgf of (Xn−1, Xn) is shown to be

(7.3) φ2(z1, z2) = PY

[

z1Ft(z)
]

Pǫ

[

Ft1(z2)
]

q
∏

i=1

Pǫ

[

Fti(z1)Fti+1(z2)
]

,

where Ftq+1(z2) = z2.

Assume that Yn and ǫn have finite means (µǫ and µ, respectively) and finite

variances (σ2
ǫ and σ2

respectively). Assume further that
∑∞

n=2
n(n −1)hn < ∞.

It can be shown that

(7.4) Cov
(

η ⊙F ǫn, η′⊙F ǫn

)

= (η η′)δF σ2

ǫ , η, η′ ∈ (0, 1) ,

(7.5) Cov(Yn−k, Yn) = ηkδF σ2 ,
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and

(7.6) Yn−q
d
= ηk ⊙F Yn−q−k +

k−1
∑

i=0

ηi⊙F ǫn−q−i .

By (7.4)–(7.6) and the independence assumptions we obtain the ACRF at lag k

of (Xn, n∈Z):

(7.7)

ρ(k) =











































ηkδF σ2

Y0
+ η(k−q)δF

(

∑q
l=1

(

ηl−1 ηl

)δF

)

σ2
ǫ

σ2

Y0
+

(

∑q
k=1

η2δF

k

)

σ2
ǫ + µǫ

(

∑q
k=1

ηδF

k

(

1− ηδF

k

)

)

(

1−U ′′(1)/U ′(1)
)

, k > q

ηkδF σ2

Y0
+

(

∑q−k
l=1

(

ηl ηl ηk

)δF
+ η(k−q)δF

∑q
l=q−k+1

(

ηl−1 ηl

)δF

)

σ2
ǫ

σ2

Y0
+

(

∑q
k=1

η2δF

k

)

σ2
ǫ + µǫ

(

∑q
k=1

ηδF

k

(

1− ηδF

k

)

)

(

1−U ′′(1)/U ′(1)
)

, k ≤ q

where t = ln η and ti = ln ηi, i = 1, 2, ..., q.

Let (Xn, n∈Z) be a F -INARMA(1, q) process. Assume that its F -INAR(1)

component (Yn, n ∈ Z) of (7.1) is stationary with an F -stable marginal distri-

bution with pgf (2.13). Then the innovation sequence (ǫn, n∈Z) has also an

F -stable marginal distribution with pgf (see Aly and Bouzar, 2005)

Pǫ(z) = exp

[

−λ (1− ηγ
)A(z)

γ
]

.

It follows that the associated F -INMA(q) component in (7.2) has also an F -stable

marginal with pgf

P1(z) = exp

{

−λ (1− ηγ
)

(

q
∑

i=1

ηγ
i

)

(

A(z)
)γ

}

.

Therefore, (Xn, n∈Z) is stationary with an F -stable marginal distribution with

pgf

(7.8) PX(z) = exp

{

−λ

[

1 + (1− ηγ
)

(

q
∑

i=1

ηγ
i

)]

(

A(z)
)γ

}

.

If (Xn, n∈Z) is an F -INARMA(1, q) process such that its F -INAR(1) com-

ponent (Yn, n∈Z) has an F -ML marginal (with pgf (4.1)), then the innovation

sequence (ǫn, n∈Z) admits the representation (see Aly and Bouzar, 2005)

(7.9) ǫn = In En ,

where (In, n∈Z) and (En, n∈Z) are independent sequences of iid rv’s such that

In is Bernoulli(1− ηγ
) and En has the same distribution as Yn. It follows from

(4.1), (7.2) and (7.9) that (Xn, n∈Z) is stationary with marginal pgf

(7.10) PX(z) =
1

1+ dA(z)γ

q
∏

i=1

(

ηγ
+

1− ηγ

1+ dηγ
i A(z)γ

)

.
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8. CONCLUSION

We have presented a class of integer-valued time series that can be used to

model count data. The models introduced in this paper may be seen as exten-

sions of the classical branching processes of Galton–Watson–Bienaymé. Various

distributional and regression properties were shown to be similar to those of the

standard real-valued ARMA processes. Models with specific marginals such as

stable distributions and Mittag–Leffler distributions were discussed in some detail

and some examples were developed.
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1. INTRODUCTION

Suppose the data (X1, Y1), ..., (Xn, Yn) are observations from a general real

valued bivariate random process. The simplest example is when the data are

generated by a model of the form Yi = r(Xi)+ ǫi where the ǫi are mean zero ran-

dom errors satisfying some conditions; in general, the ǫi will not be independent.

A second example of interest is nonparametric autoregression, where Yt =Xt+1.

The function r, the conditional mean of Y given X, is unknown and will be esti-

mated from the data. There are many nonparametric approaches to estimating r,

including various kernel methods proposed by Nadaraya [15] and Watson [25],

Gasser and Müller [7, 8], and local polynomial estimators, Fan [6]. In each of

these techniques r(x) is in essence estimated through weighted local averaging on

the data near x. The smoothness of the function r and properties of the weights

used in this averaging determine the performance of the estimator. In this paper

we propose a new class of kernels which allow the Nadaraya–Watson estimator to

automatically achieve asymptotically optimal performance no matter how smooth

r happens to be.

The Nadaraya–Watson estimator is defined to be

(1.1) r̂(x) :=

∑n
i=1

Yi K
(

(Xi−x)/h
)

∑n
i=1

K
(

(Xi−x)/h
) .

The function K(x) is the kernel; it is used to weight the observations. The

denominator ensures the weights sum to 1. The parameter h is the bandwidth,

or smoothing parameter. It balances a tradeoff between bias and variance. Small

values of h concentrate the mass of the kernel near x, giving heavy weight to

nearby observations and relatively little or no weight to more distant observations,

resulting in a relatively unbiased but highly variable estimate. By contrast, large

values of h average over many data points, resulting in an estimate with relatively

low variance, but potentially large bias, as observations which are quite distant

from x are included in the average. Since the number of data points included in

the average is proportional to nh, each of these estimators has pointwise variance

proportional to 1/(nh). For these reasons, we require that as n → ∞, h → 0 in

such a way that nh → ∞.

It is well known that the asymptotic bias of such nonparametric regression

estimators is proportional to hp
, where p depends on the smoothness of r, the

smoothness of the marginal density of the Xi, and the properties of the kernel,

or in the case of local polynomials, the polynomial degree of the local fit. In this

paper we show that through appropriate choice of kernel, the rate at which the

bias converges to zero will only be limited by properties of the unknown function,

and not the kernel.
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Sections 2 and 3 contain some important definitions and background.

The case where the pairs of data (X1, Y1), ..., (Xn, Yn) are i.i.d. will be stud-

ied in Section 4; the case where the data satisfy strong mixing conditions will

be presented in Section 5; a small simulation study is presented in Section 6.

Technical proofs have been placed in Section 7.

2. INFINITE ORDER KERNELS

If the kernel K has finite moments up to order q and its first q − 1 mo-

ments are 0, then K is said to be of order q. The most frequently used kernels

are second order; common examples include the Epanechnikov kernel, Ke(x) :=

(3/4) (1− x2
) 1[−1,1](x), and the scaled normal density.

In general, if r is k times differentiable, with k ≥ 2, the bias of a second

order kernel estimate is O(h2
). This rate of convergence can be improved up

to O(hk
) by choosing a kernel of order greater than or equal to k. However,

the degree of smoothness in the underlying function is unknown and difficult to

estimate, so it is difficult to know what order kernel to use.

In order to alleviate this difficulty we focus on a class of kernels that effec-

tively have infinite order. These kernels automatically reduce the bias to o(hk
)

no matter how large k happens to be. As in Politis and Romano [18, 19, 20] and

Politis [16, 17], we now state the following general definition.

Definition 2.1. A general flat-top kernel K is defined in terms of its

Fourier transform λ, which in turn is defined as follows. Fix a constant c > 0.

Let

(2.1) λ(s) =

{

1 if |s| ≤ c ,

g
(

|s|
)

if |s|> c ,

where the function g is chosen to make λ(s), λ2
(s), and s λ(s) integrable. The

flat top kernel is now given by

(2.2) K(x) =
1

2π

∫ ∞

−∞

λ(s) e−isx ds ,

i.e., the inverse Fourier transform of λ(s).

Note that in the preceding definition, the choice of g is not unique. The

function λ, and hence the kernel K, depend on the function g and the parameter c

although this dependence will not be explicitly denoted.

Kernels satisfying this definition do not necessarily satisfy the moment

conditions
∫

zkK(z) dz = 0 for all integers k, as some of these integrals may not
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be defined in either the Riemann or Lebesgue sense. However, the Cauchy prin-

cipal value of each of these integrals is zero, and in many cases this is sufficient

for optimal asymptotic performance.

The simplest kernel satisfying Definition 2.1 is determined by

λD(s) =

{

1 if |s| ≤ 1 ,

0 if |s|> 1 .

This is the example studied in the case of density estimation by Davis [2, 3],

Devroye [4], and Ibragimov and Hasminksii [12], and it generates the Dirichlet

kernel, K(x) := sin(x)/(π x). Both λ(s) and the resulting kernel are shown in

Figure 1. We can see that the tails of this kernel are very wiggly. This is prob-

lematic in two ways. First, the slow decay in the tails and the large negative

oscillations increase
∫

K2
(z) dz, which will be shown to increase the variance of

the estimate. Secondly, the large wiggles distant from 0 generate a finite sam-

ple bias because they allow observations which are relatively distant from x to

have a substantial influence on the estimate at x. These difficulties make density

estimators using this kernel relatively uncompetitive for all but extremely large

sample sizes.

Figure 1: λ(s) and the resulting Dirichlet kernel.

These problems can be substantially remedied by making the transition

from 0 to 1 in the Fourier domain less abrupt. For example, Devroye and Gy-

orfi [5], Hall and Marron [11], and in the case of spectral density estimation,

Politis and Romano [19], studied the kernel whose Fourier transform is given by

(2.3) λT,1/2(s) =















1 if |s| ≤ 1/2 ,

2
(

1−|s|
)

if 1/2 < s≤ 1 ,

0 if |s|> 1 .

The corresponding kernel is

K(x) =
2
(

cos(x/2) − cos(x)
)

π x2
.
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These are shown in Figure 2. Note the substantial improvement in the tails of

the kernel.

Figure 2: λ(s) and the resulting improved kernel.

Unfortunately, in the case of regression, it is often only reasonable to assume

that the function being estimated is smooth over some interval rather than over

its entire domain; if the marginal density of the Xi has compact support, then

the endpoints often generate discontinuities. Since infinite order kernels do not

have compact support, the effects caused by these breaks get spread across the

whole region of interest, potentially worsening the rate of convergence. For this

reason, as discussed in the case of discontinuous density estimation in Politis [16],

it is important that the tails of K decay as quickly as possible, to minimize the

effect on the interior of the interval. This can be ensured by requiring the Fourier

transform of the kernel to be very smooth. If λ is infinitely differentiable, then

the tails of K(x) decay faster than x−m
for any positive m. In addition, λ(s)

as defined in equation (2.1) clearly has an infinite number of zero derivatives at

s = 0. Together, these two conditions ensure that all moments of K are zero in

the Lebesgue sense. For these reasons, for the remainder of this work, we will

restrict ourselves to kernels satisfying the following stronger definition.

Definition 2.2. An infinitely differentiable flat-top kernel K is a flat-top

kernel (as in Definition 2.1) with the added caveat that the function g is chosen

to make λ(s) infinitely differentiable for all s.

We now provide an example of such a kernel, which was first introduced in

McMurry and Politis [14], where the case of fixed design regression was studied.

Let b and c be constants satisfying b > 0 and 0 < c < 1. Define λ(s) by

(2.4) λIO(s) =























1 if |s| ≤ c ,

exp

[

−b exp

[

−b/
(

|s| − c
)2
]

/
(

|s| − 1
)2

]

if c < |s|< 1 ,

0 if |s| ≥ 1 .
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The parameter c determines the region over which the kernel is identically 1;

the parameter b allows the shape of λ to be altered, making the transition from

0 to 1 less abrupt. Figure 3 show plots of λ (as defined above) and the resulting

kernel K for c = 0.05 and b = 1/4.

Figure 3: Smooth λ(s) and the resulting kernel with b = 1/4 and c = 0.05.

The function exp
[

−b exp[−b/(|s| − c)2]/(|s| − 1)
2
]

was chosen because it

connects the regions where λ is 0 and the region where λ is 1 in a manner such

that λ(s) is infinitely differentiable for all s, including where |s| = c, and |s| = 1.

3. BACKGROUND AND NOTATION

We examine the performance of the Nadaraya–Watson estimator when us-

ing infinite order kernels. The observed data is assumed to take the form of

identically distributed pairs (X1, Y1), ..., (Xn, Yn), which satisfy Yi = r(Xi) + ǫi.

Further restrictions will be necessary, but their discussion will be postponed for

the moment. The Nadaraya–Watson estimator introduced in equation (1.1) can

be written as

r̂(x) :=
(1/n)

∑n
i=1

Yi Kh(Xi − x)

(1/n)
∑n

i=1
Kh(Xi − x)

,

where

Kh(x) := (1/h)K(x/h) .

This estimator should be viewed in two different ways. As mentioned be-

fore, it is a weighted local average of the Yi’s, where the denominator normalizes

the weights so they sum to 1. It is also an explicit estimator of conditional

expectation. The denominator is the standard kernel estimate of the design den-

sity, the marginal density of the Xi’s. The numerator is an approximation to
∫∞

−∞
yf(x, y) dy, where f(x, y) is the joint density of (Xi, Yi). Put together, this

is an approximation to r(x) = E
[

Y |X = x
]

.
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In order to simplify notation, define

ĝ(x) := (1/n)

n
∑

i=1

Yi Kh(Xi − x)

and

f̂(x) := (1/n)

n
∑

i=1

Kh(Xi − x) ,

which are the finite sample approximations to

g(x) :=

∫ ∞

−∞

y f(x, y) dy

and

f(x) :=

∫ ∞

−∞

f(x, y) dy .

We note that r(x) = g(x)/f(x).

4. THE INFINITE ORDER NADARAYA-WATSON ESTIMATOR

FOR I.I.D. DATA

We first examine the behavior of the Nadaraya–Watson estimator when the

observed pairs of data, (X1, Y1), ..., (Xn, Yn), are i.i.d. In order to understand the

estimator as a whole, we begin with lemmas quantifying the asymptotic perfor-

mance of the numerator and denominator, ĝ(x) and f̂(x), as they approximate

g(x) and f(x). In the process, it will be necessary to impose some assumptions,

which will be introduced and discussed as needed. We first place some reasonable

restrictions on the behavior of the bandwidth h as the sample size grows large

and on the conditional distribution of the errors.

Assumption 1. As the sample size n → ∞, the bandwidth h → 0 in

such a way that nh → ∞.

Assumption 2. E
[

ǫi|Xi = x
]

= 0, and E
[

ǫ2i |Xi = x
]

:= σ2
(x) < ∞.

Under this assumption, f̂(x) and ĝ(x) are infinite order estimators of f(x)

and g(x); this is quantified in the following lemma.

Lemma 4.1. If x is contained in an open interval on which f(x) has

p bounded continuous derivatives and r(x) has q bounded continuous derivatives,

then under Assumptions 1 and 2,

(4.1) E
[

f̂(x)
]

− f(x) = o(hp
)
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and

(4.2) E
[

ĝ(x)
]

− g(x) = o(hk
) ,

where k = min{p, q}. If both f(x) and g(x) are infinitely differentiable, then each

of these biases become o(hm
) for all positive real m.

If we impose the additional assumptions that the observed pairs of data are

i.i.d., and that f , g, and σ2
(x) are reasonably well behaved, then the variance of

f̂ and ĝ also behaves as expected.

Assumption 3. (X1, Y1), ..., (Xn, Yn) are i.i.d.

The next assumption is necessary to ensure that the asymptotic approxi-

mations we use are valid, and to avoid division by zero.

Assumption 4. The point x is a continuity point of σ2
(x), f(x) > C for

some C > 0, and r and f are each differentiable in a neighborhood of x.

Lemma 4.2. Under Assumptions 1–4,

var
[

f̂(x)
]

=
f(x)

nh

∫ ∞

−∞

K2
(z) dz + o

(

1

nh

)

+ O

(

1

n

)

,(4.3)

var
[

ĝ(x)
]

=

(

r2
(x) + σ2

(x)

)

f(x)

nh

∫ ∞

−∞

K2
(z) dz + o

(

1

nh

)

+ O

(

1

n

)

(4.4)

and

cov
[

f̂(x), ĝ(x)
]

=
r(x) f(x)

nh

∫ ∞

−∞

K2
(z) dz + o

(

1

nh

)

+ O

(

1

n

)

.(4.5)

Now that the behaviors of f̂ and ĝ are understood independently, the anal-

ysis will proceed by establishing their joint asymptotic normality. Once this has

been shown, a Taylor series argument can be employed to show that r̂ also has an

asymptotic normal distribution with optimal bias and the standard variance. The

joint asymptotic normality of f̂ and ĝ will be established via the Liapunov con-

dition, which implies the Lindeberg–Feller central limit theorem. This requires a

uniform bound on the 2+δ ’th moments of the Yi, for some δ > 0.

Assumption 5. There exists a positive constants M and δ such that

E
[

|Yi|
2+δ
∣

∣Xi = x
]

< M ,

for all x.
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The final assumption forces the conditional variance of the errors to be

bounded above and below for all x. The bound from below is assumed for tech-

nical simplicity.

Assumption 6. There exist strictly positive constants b and B such that

b < σ2
(x) < B for all x.

Lemma 4.3. Under Assumptions 1–6, for all real c1 and c2 (not both zero),

(4.6)

√
nh

[

c1

(

f̂(x) − E
[

f̂(x)
]

)

+ c2

(

ĝ(x) − E
[

ĝ(x)
]

)

]

D
−→ N

(

0, θ(x)
)

.

where θ(x) :=

(

c2
1
+ 2 c1 c2 r(x) + c2

2

[

r2
(x)+σ2

(x)
]

)

f(x)
∫∞

−∞
K2

(z) dz. This im-

plies the joint asymptotic normality of f̂ and ĝ.

The consequence of the preceding Lemma is the asymptotic normality of

our estimator.

Theorem 4.1. If x is contained in an open interval on which f(x) has

p bounded continuous derivatives and r(x) has q bounded continuous derivatives,

then under Assumptions 1–6,

(4.7)

√
nh
(

r̂(x) − r(x) + o(hk
)

)

D
−→ N

(

0 ,
σ2

(x)

f(x)

∫ ∞

−∞

K2
(z) dz

)

,

where k = min{p, q}.

Remark 4.1. Letting h proportional to n−1/(2k+1)
, the mean square

optimal rate, we get r̂(x) = r(x) + Op

(

n−k/(2k+1)
)

, and
√

nh
(

r̂(x) − r(x)
) D
−→

N
(

0 , σ2(x)

f(x)

∫∞

−∞
K2

(z) dz
)

, which demonstrates the higher order accuracy pro-

vided by infinite order kernels.

5. DEPENDENT DATA AND NONPARAMETRIC

AUTOREGRESSION

It is desirable to weaken the condition that (X1, Y1), ..., (Xn, Yn) are i.i.d.

In particular we wish to be able to estimate nonparametric autoregression, where

Xt may be an unknown function of Xt−1. Mathematically, autoregressive pro-

cesses are assumed to satisfy a model of the form, Xt = r(Xt−1) + σ(Xt−1) ǫt ,

where r and σ are unknown, and the ǫt are mean zero errors; further restrictions
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similar to those in Section 4 will be imposed as necessary. The problem of in-

terest is the estimation of r(x) := E
[

Xt|Xt−1 = x
]

; this can be done by pairing

consecutive observations, (X1, X2), (X2, X3), ..., (Xn−1, Xn), and then performing

a standard nonparametric regression.

Since nothing is gained by restricting ourselves to the case of autore-

gression, we will study the infinite order kernel estimator in the case where

(X1, Y1), ..., (Xn, Yn) satisfy the same type of asymptotic dependence conditions

that we wish the autoregressive process to satisfy. The results in this more general

situation will then imply the desired result in the specific case of interest.

Any meaningful analysis will require conditions that ensure some sort of

asymptotic independence; that is, random samples at times which are very distant

from each other should behave as if they are independent. We will focus on

the case of α-mixing because it is the weakest of the most commonly studied

conditions.

Definition 5.1. Let Fm
l be the σ-field generated by Ul, Ul+1, ..., Um.

A stationary time series {Un}n∈Z is said to be α-mixing (or strong-mixing), if

sup
k∈Z

sup

A∈Fk
−∞

,B∈F∞

k+i

∣

∣

∣
P (A)P (B) − P (AB)

∣

∣

∣
:= α(i) → 0 ,

as i → ∞. The α(i)’s are called the α-mixing coefficients.

The analysis proceeds as in the i.i.d. case. We begin by proving, under

some conditions, the joint asymptotic normality of f̂(x) and ĝ(x). Once this has

been established, we will be able to use the same argument used in the proof

of Theorem 4.1 to show the asymptotic normality of ĝ/f̂ . Similar results for

local polynomial regression and for Nadaraya–Watson estimators with finite order

kernels have been obtained by Masry and Fan [13] and Robinson [21] respectively.

Although their arguments are similar, the central limit theorem we prove here

will be more closely related to that of Masry and Fan [13]. Let c1 and c2 be real

numbers (not both zero). Define

Zi := c1

[

Kh(Xi−x) − E
[

Kh(Xi−x)
]

]

+ c2

[

Yi Kh(Xi−x) − E
[

Yi Kh(Xi−x)
]

]

and

Qn :=
1

n

n
∑

i=1

Zi .

We will establish asymptotic normality for
√

nhQn. In order to do so, we

impose further assumptions on the marginal distributions of (X1, Y1), and on the

α-mixing coefficients associated with the time series defined by Ui = (Xi, Yi).
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Assumption 7. There exist finite positive bounds M1, M2, and M3, such

that

(i) fi(u, v) ≤ M1, where fi(u, v) is the joint density of (X1, Xi);

(ii) E
[

Y 2
1

+ Y 2
i |X1, Xi

]

≤ M2 ;

(iii) There exists δ > 2 and β > 1− 2/δ such that E
[

|Y1|
δ |X

]

≤ M3 and
∑∞

i=1
iβ[α(i)]1−2/δ < ∞ .

Lemma 5.1. Let x be a continuity point of conditional mean and variance

functions, r(·) and σ2
(·). In addition, suppose that the marginal density of the Xi,

f(·), and the product of r(·) and f(·), g(·), have k bounded continuous derivatives

in a neighborhood of x, where k ≥ 1. Under Assumptions 2, 4, 6, and 7, we have

the following convergences as n → ∞, h → 0, and nh → ∞ :

(a) h var[Z1] → θ(x) ,

(b) h
∑n−1

i=1

∣

∣cov[Z1, Zi+1]
∣

∣→ 0 ,

(c) nh var[Qn] → θ(x) ,

where, as before, θ(x) :=

(

c2
1
+2 c1 c2 r(x)+c2

2

[

r2
(x)+σ2

(x)
]

)

f(x)
∫∞

−∞
K2

(z) dz.

In order to establish the central limit theorem, we need one final condition

on the α-mixing coefficients.

Assumption 8. There exists a sequence of positive integers satisfying

sn → ∞ and sn = o(
√

nh) such that
√

n/h α(sn) → 0.

Remark 5.1. Assumption 8 is a technical assumption that may dictate

some particular rates at which h→ 0; nevertheless, Assumption 8 is weak enough

to allow for a wide range of useful rates. To elaborate, Assumption 7 (iii) requires

that the mixing coefficients decay at a polynomial rate depending on δ. In partic-

ular, it requires that there exist C > 0, ǫ > 0, and n0 > 0 such that for all n > n0,

α(n) < Cn−(δ/(δ−2)+1+ǫ)
. For example, if δ = 3, then the mixing coefficients need

to decay slightly faster than n−4
. Assuming that the function being estimated is

at least twice differentiable, h will optimally decrease at a rate equal to or slower

than n−1/5
. This means that

√

n/h ≤ Cn3/5
for some constant C. Similarly,√

nh ≥ Cn2/5
. Under the strongest moment assumptions, α(n) is required to

decay faster than n−2
. If we put these together,

√

n/h α(sn) ≤ Cn3/5s−2
n . From

this expression it is easily seen that as long as sn grows faster than n3/10
, the

second requirement of Assumption 8 will be satisfied. By the preceding argument

the first requirement is satisfied if sn = o(n2/5
). Since these conditions can be

met simultaneously, Assumption 8 generally imposes no additional restrictions.
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Lemma 5.2. Under Assumptions 2, 4, and 6–8, we have as n→∞, h→ 0,

and nh → ∞, √
nh Qn

D
−→ N

(

0, θ(x)
)

.

The immediate consequence of this result is the following asymptotic nor-

mality for r̂.

Theorem 5.1. If x is contained in an open interval on which f(x) has

p bounded continuous derivatives and r(x) has q bounded continuous derivatives,

then under Assumptions 1, 2, 4, and 6–8,

(5.1)

√
nh
(

r̂(x) − r(x) + o(hk
)

)

D
−→ N

(

0 ,
σ2

(x)

f(x)

∫ ∞

−∞

K2
(z) dz

)

,

where k = min{p, q}.

6. SIMULATIONS

An extensive simulation study was undertaken to investigate the perfor-

mance of the proposed estimator. For each combination of regression function,

design density, error variance, and sample size, 100 data sets were created and

smoothed using the infinite order and local linear estimators. Finally the in-

tegrated square error was estimated using Simpson’s rule. Bandwidths for the

infinite order estimator were selected by the rule of thumb suggested in [14] and

developed further in [17]. Bandwidths for the local linear estimator were selected

using the direct plug-in method suggested by Ruppert, Sheather, and Wand [22]

and implemented in the R package KernSmooth [24].

The first regression function was taken to be r(x) = x+4 exp(−2x2
)/
√

2π,

which includes sections of almost linear behavior and an exponential bump with

more curvature. Design densities were uniform on [−2, 2] and N(0, 1), and the

integrated square error is over the interval [−2, 2]. The resulting integrated square

errors for one simulation are shown in Figure 4. A scatterplot along with the two

smoothings is shown in Figure 5.

The second regression function was taken to be r(x) = sin(4πx) with uni-

form design density on [0, 1]. The integrated square error was calculated on both

the entire interval [0, 1] and over the interval [0.15, 0.85] to exclude edge effects.

It is clear from the simulations that the two estimators have different

strengths. The infinite order estimator is clearly superior in the interior of the

data set, when the error variance is large, and when the sample size is moderate

to large. Since the local linear estimator automatically adapts to the edges of the

design and the infinite order estimator does not, it is unsurprising that the local

linear estimator is superior in these regions.
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Table 1: Comparison of infinite order and local linear estimators.

Function Design n σ
Median Integrated Square Error

Infinite Order Local Linear

Exponential Normal 100 0.3 0.0870 0.0631

0.5 0.1312 0.1627

0.7 0.2101 0.2521

Exponential Normal 200 0.3 0.0337 0.0324

0.5 0.0633 0.0686

0.7 0.1091 0.1375

Exponential Normal 1000 0.3 0.0065 0.0077

0.5 0.0132 0.0166

0.7 0.0204 0.0274

Exponential Uniform 100 0.3 0.0520 0.0384

0.5 0.0954 0.1613

0.7 0.0813 0.1481

Exponential Uniform 200 0.3 0.0251 0.0190

0.5 0.0481 0.0474

0.7 0.0731 0.0823

Exponential Uniform 1000 0.3 0.0066 0.0051

0.5 0.0110 0.0112

0.7 0.0175 0.0189

Sin Uniform 100 0.3 0.0065 0.0052

(edges excluded) 0.5 0.0135 0.0139

0.7 0.0232 0.0228

Sin Uniform 100 0.3 0.0120 0.0077

(edges included) 0.5 0.0221 0.0191

0.7 0.0412 0.0333

Sin Uniform 200 0.3 0.0032 0.0031

(edges excluded) 0.5 0.0069 0.0068

0.7 0.0108 0.0126

Sin Uniform 200 0.3 0.0066 0.0042

(edges included) 0.5 0.0115 0.0091

0.7 0.0191 0.0183

Sin Uniform 1000 0.3 0.0007 0.0008

(edges excluded) 0.5 0.0013 0.0019

0.7 0.0021 0.0030

Sin Uniform 1000 0.3 0.0029 0.0011

(edges included) 0.5 0.0037 0.0026

0.7 0.0050 0.0040
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Figure 4: Comparison of integrated square errors for 100 simulations

of the exponential function with n = 200 and σ = 0.5.

Figure 5: A sample regression. The solid line is the true function,

the dashed line is the infinite order estimate, and the

dotted line is the local linear estimate.

7. TECHNICAL PROOFS

Proof of Lemma 4.1: The proof of (4.2) is almost identical to, but slight-

ly more complicated than the proof of (4.1). For this reason, only (4.2) will be

shown. The proof is similar in spirit to the proof of Theorem 2 in McMurry and

Politis [14], except this time it requires both r and f to be smooth. It will be

proved using a different, although more standard, technique. This method of
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proof is somewhat less elegant than the Fourier transform method used previ-

ously, but it has the advantage of showing that the same convergence rates hold

even if f and g are only smooth on an open interval containing x. This proof

technique does have a slight disadvantage. If f and g are smooth over all R,

then the Fourier transform technique can be employed to show the same con-

vergence rates hold even if λ(s), the Fourier transform of K, is not smooth.

By conditioning on Xi,

E
[

ĝ(x)
]

− g(x) = E
[

E
[

Yi Kh(Xi−x)
∣

∣Xi

]

]

− g(x)

= E
[

r(Xi)Kh(Xi−x)

]

− g(x)

=

∫ ∞

−∞

r(u) f(u)Kh(u−x) du − g(x) .

Suppose (rf) has k bounded continuous derivatives on an interval (a,b) containing x.

Should (rf) be smooth over all R, then the proof can be simplified by taking

(a, b) = (−∞,∞):

E
[

ĝ(x)
]

− g(x) =

∫ b

a
r(u) f(u)Kh(u−x) du +

∫ a

−∞

r(u) f(u) Kh(u−x) du

+

∫ ∞

b
r(u) f(u)Kh(u−x) du − g(x) .

Since the tails of K(x) decay faster than x−m
for all positive m, the two error

terms are o(hm
) for all positive m. At this point we perform a Taylor series

expansion of the product (rf)(z) around x :

E
[

ĝ(x)
]

− g(x) =

=

∫ b

a
r(u) f(u)Kh(u−x) du − g(x) + o(hm

)

=

∫

(b−x)/h

(a−x)/h
r(x+hv) f(x+hv)K(v) dv − g(x) + o(hm

)

=

∫

(b−x)/h

(a−x)/h

[

(rf)(x) + hv (rf)
′
(x) + · · · +

(hv)
k

k!
(rf)

(k)
(x+ξ)

]

K(v) dv

− g(x) + o(hm
) ,

where ξ is between x and x + hv. Since K integrates to one, its moments are

zero, and since g(x) = r(x) f(x),

E
[

ĝ(x)
]

− g(x) =

=

∫ ∞

−∞

[

(rf)(x) + hv (rf)
′
(x) + · · · +

(hv)
k−1

(k−1)!
(rf)

(k−1)
(x)

]

K(v) dv

+

∫

(b−x)/h

(a−x)/h

(hv)
k

k!
(rf)

(k)
(x+ξ)K(v) dv − g(x) + o(hm

)

=

∫

(b−x)/h

(a−x)/h

(hv)
k

k!
(rf)

(k)
(x+ξ)K(v) dv + o(hm

) .
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Since (rf) has bounded continuous derivatives on (a, b), we can apply the domi-

nated convergence theorem, yielding

lim
h→0

∫

(b−x)/h

(a−x)/h
(rf)

(k)
(x+ξ) vk K(v) dv =

∫ ∞

−∞

(rf)
(k)

(x) vk K(v) dv = 0 .

Therefore,

E
[

ĝ(x)
]

− g(x) = o(hk
) .

Proof of Lemma 4.2: As f(x) can be viewed as a special case of g(x)

with Yi = 1 for all i, (4.3) will follow immediately from the proof of (4.4).

The proof of (4.5) is almost identical to the proof of (4.4), so it is omitted.

By conditioning on X1, and by Lemma 4.1,

var
[

ĝ(x)
]

=
1

n
var
[

Y1Kh(X1−x)
]

=
1

n

[
∫ ∞

−∞

(

r2
(u)+σ2

(u)

)

f(u)K2

h(u−x) du − r2
(x) + o(hk

)

]

=
1

nh

∫ ∞

−∞

(

r2
(x+hz) + σ2

(x+hz)

)

f(x+hz)K2
(z) dz + O

(

1

n

)

,

since x is a continuity point of r, f , and σ2
, the dominated convergence theorem

yields

var
[

ĝ(x)
]

=

(

r2
(x)+σ2

(x)

)

f(x)

nh

∫ ∞

−∞

K2
(z) dz + o

(

1

nh

)

+ O

(

1

n

)

.

Proof of Lemma 4.3: The proof proceeds by verifying that the Lia-

punov condition holds, which is sufficient for the Lindeberg–Feller central limit

theorem. The result is trivial if c1 = c2 = 0, so assume that at least one of these

constants is nonzero. Let C denote a positive constant.

∑n
i=1

E
[

∣

∣(c1 + c2Yi)Kh(Xi− x)
∣

∣

2+δ
]

var

[

c1

∑n
i=1

Kh(Xi−x) + c2

∑n
i=1

YiKh(Xi−x)

](2+δ)/2
≤

≤
Cnh1+δ

n1+δ/2

[

θ(x) + o(1/h) + O(1)

](2+δ)/2
,

where the inequality follows from the proof of Lemma 4.2. After multiplying

the numerator and denominator by h(2+δ)/2
, it is clear that this quantity goes to

zero as n goes to infinity. Therefore, the Liapunov condition is satisfied, and the

Lemma follows immediately.
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Proof of Theorem 4.1: We begin with a lemma which ensures that for

large enough n, f̂(x) ≥ c > 0 for some constant c, as long as f(x) > 0.

Lemma 7.1. Suppose f(x) > c for some c > 0. Also suppose h decreases

slowly enough that n−2/7
+ δ = o(h) for some δ > 0. Then for all ǫ > 0,

P
[

|f(x)− f̂(x)| > ǫ i.o.
]

= 0.

It should also be noted that much stronger results hold. Under additional

conditions, rates of uniform almost sure convergence over compact sets can be

established. See Bosq [1] or Györfi et al. [9].

Proof of Lemma 7.1: We make use of the following Bernstein inequality,

which is Theorem 1.3 part (2) in Bosq [1].

Lemma 7.2. Let {Wt}t∈Z be a mean zero real valued random process

such that sup1≤t≤n ‖Wt‖∞ ≤ b, and let Sn =
∑n

t=1
Wt. Then for each integer

q ∈ ⌊1, n/2⌋ and each ǫ > 0,

P
[

|Sn|> nǫ
]

≤ 4 exp

(

−
ǫ2

8 v2(q)
q

)

+ 22

(

1+
4 b

ǫ

)1/2

q α

(⌊

n

2 q

⌋)

,

where v2
(q) =

2

p2 σ2
(q) +

bǫ
2

, p =
n
2q , and

σ2
(q) = max

0≤j≤2q−1

E

[

(

⌊jp⌋ + 1 − j p
)

X⌊jp⌋+1 + X⌊jp⌋+2 + · · ·

+ X⌊(j+1)p⌋ +

[

(j +1)p −
⌊

(j +1)p
⌋

]

X⌊(j+1)p+1⌋

]

.

The Borel–Cantelli lemma will be used to show

P

[

∣

∣f̂n(x)−E f̂n(x)
∣

∣ > ǫ i.o.

]

= 0 .

Since E f̂n(x) → f(x), this will establish the desired result.

Let Wi = Kh(Xi− x) − E
[

Kh(Xi− x)
]

. Then ‖Wi‖∞ ≤ K̂/h for all i,

where K̂ = 2 sup
x∈R

K(x). In addition, it can easily be seen that σ2
(q)≤ (p+1)2

n2h2 K̂2
.

Therefore,

pn := P

[

1

n

∣

∣

∣

∣

∣

n
∑

i=1

Wi

∣

∣

∣

∣

∣

> ǫ

]

≤ 4 exp

(

−
C1 ǫ2

(p+1)2

n2 h2 p2 +
1

h

q

)

+ C2

(

1+
C3

hǫ

)1/2

q α

(⌊

n

2 q

⌋)

.
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We need
∑

n pn < ∞. In order for the first term in the sum to be fininte, it

is necessary that n2h2 q/(n2h)→∞ at a rate equal to or faster than nδ1 for some

δ1 > 0; this requires q grow at least as fast as nδ1h−1
. On the other hand, the

second term requires
∑

n(q/
√

h)α(⌊n/2q⌋) < ∞. As noted in the Remark 5.1,

it is sufficient to choose q such that
∑

n(q/
√

h)(q/n)
2 < ∞. The latter condition

can be satisfied if q3h−1/2
grows at a rate n1−δ2 , for some δ2 > 0. Equiva-

lently, it suffices for q to grow at a rate equal to or slower than n(1/3)−δ2 h1/6
.

It can easily be seen that these requirements can be met simultaneously as long

as h satisfies n−2/7+δ
= o(h), for some δ > 0; this includes all optimal rates.

This result could be further strengthened by imposing additional assumptions.

For example, in the case where X1, ..., Xn are i.i.d., the mixing coefficients are 0,

and hence summable. In this situation, the only restriction on h is that it de-

crease slightly slower than 1/n. In the case of a mixing process, the possible range

of rates for h could be expanded if one were to assume that the joint density of

(X1, Xi) is differentiable with partial derivatives uniformly bounded in i.

We now return to the proof of the main result. By the preceding lemma,

for large enough n, we can assume that f̂n(x) > c/2. So, we can apply the

intermediate value theorem to see,

r̂(x) − r(x) =
ĝ(x)

f̂(x)
−

g(x)

f(x)

= ĝ(x)

(

1

f(x)
−

1

ξ2
n

(

f̂(x)−f(x)

)

)

−
g(x)

f(x)
,

where |ξn− f(x)| ≤ |f̂(x) − f(x)|. This can be further simplified to

r̂(x) − r(x) =
1

f(x)

(

ĝ(x)−g(x)

)

−
ĝ(x)

ξ2
n

(

f̂(x)−f(x)

)

=
1

f(x)

(

ĝ(x)−E
[

ĝ(x)
]

)

−
ĝ(x)

ξ2
n

(

f̂(x)−E
[

f̂(x)
]

)

+ o(hk
) .

By Lemmas 4.1 and 4.2, ĝ(x) and f̂(x) converge in probability to g(x) and f(x)

respectively. Therefore, ξn also converges to f(x) in probability. By Slutsky’s

theorem, and Lemma 4.3,

√
nh
(

r̂(x) − r(x) + o(hk
)

)

D
−→ N

(

0 ,
σ2

(x)

f(x)

∫ ∞

−∞

K2
(z) dz

)

,

the desired result.

Proof of Lemma 5.1: The proof of part (a) follows from similar results

for the i.i.d. case:

var
[

Z1

]

= E
[

(c1+ c2Y1)
2 K2

h(X1−x)

]

−
(

c1f(x) + c2 r(x)f(x) + O(hk
)

)2

= E

[

(

c2

1 + 2 c1 c2 r(X1) + c2

2

[

r2
(X1)+ σ2

(X1)
]

)

K2

h(X1−x)

]

+ O(1)

= θ(x)/h + o(1/h) + O(1) .
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The proof of part (b) is more challenging. Let dn be a sequence of integers

such that dn→ ∞ and dnh → 0. Define

J1 :=

dn−1
∑

i=1

∣

∣cov[Z1, Zi+1]
∣

∣ ,

and

J2 :=

n−1
∑

i=dn

∣

∣cov[Z1, Zi+1]
∣

∣ .

We wish to show J1 = o(1/h) and J2 = o(1/h). We begin with J1. By con-

ditioning on (X1, Xi),

∣

∣cov[Z1, Zi]
∣

∣ ≤

≤

∣

∣

∣

∣

E
[

(c1 + c2Y1)Kh(X1− x) (c1 + c2Yi)Kh(Xi− x)

]

∣

∣

∣

∣

+ O(1)

≤ E

[

∣

∣Kh(X1−x)Kh(Xi−x)
∣

∣E
[

∣

∣(c1 + c2Y1) (c1 + c2Yi)
∣

∣

∣

∣

∣
X1, Xi

]

]

+ O(1)

≤ E

[

∣

∣Kh(X1−x)Kh(Xi−x)
∣

∣

×
(

E
[

(c1 + c2Y1)
2
∣

∣X1, Xi

]

E
[

(c1 + c2Yi)
2
∣

∣X1, Xi

])1/2
]

+ O(1)

≤ CE
[

∣

∣Kh(X1−x)Kh(Xi−x)
∣

∣

]

+ O(1)

≤ C

(
∫ ∞

−∞

∣

∣Kh(u − x)
∣

∣ du

)2

+ O(1) .

Since the O(1) term is the same for all i,
∣

∣cov[Z1, Zi]
∣

∣< C for some positive C.

Therefore J1 = o(1/h). For the second term, J2, we employ Davydov’s Lemma

(see Hall and Heyde [10]), which tells us

∣

∣cov[Z1, Zi+1]
∣

∣ ≤ 8
[

α(i)
]1−2/δ [

E |Z1|
δ
]2/δ

.

We now need to put a bound on E |Zi|
δ
.

E |Zi|
δ

= E

[

∣

∣

∣

∣

c1

[

Kh(Xi−x) − E
[

Kh(Xi−x)
]

]

+ c2

[

Yi Kh(Xi−x) − E
[

Yi Kh(Xi−x)
]

]

∣

∣

∣

∣

δ
]

(7.1)

≤ 2 E

[

∣

∣

∣

∣

c1

[

Kh(Xi−x) − E
[

Kh(Xi−x)
]

]

∣

∣

∣

∣

δ
]

+ 2 E

[

∣

∣

∣

∣

c2

[

Yi Kh(Xi−x) − E
[

Yi Kh(Xi−x)
]

]

∣

∣

∣

∣

δ
]

.
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These two terms behave similarly, so it is sufficient to examine only the second.

Let C denote a generic positive constant which may take on different values:

2 E

[

∣

∣

∣

∣

c2

[

Yi Kh(Xi−x) − E
[

Yi Kh(Xi−x)
]

]

∣

∣

∣

∣

δ
]

≤

≤ 4 E
[

∣

∣c2Yi Kh(Xi−x)
∣

∣

δ
]

+ 4

∣

∣

∣
E
[

Yi Kh(Xi−x)
]

∣

∣

∣

δ

≤ CE
[

∣

∣Kh(Xi−x)|δ E
[

|Yi|
δ
∣

∣Xi

]

]

+ C

≤ Ch1−δ
+ C .

An identical result holds for the first term in equation (7.1). Putting these two

terms together yields

[

E |Z1|
δ
]2/δ

≤
[

Ch1−δ
+ C

]2/δ

≤ Ch2/δ−2
+ C .

Returning to J2,

J2 ≤
∞
∑

i=dn

8
[

α(i)
]1−2/δ [

E |Z1|
δ
]2/δ

≤
∞
∑

i=dn

[

α(i)
]1−2/δ(

Ch2/δ−2
+ C

)

.

By Assumption 7,
∑∞

i=dn
[α(i)]1−2/δ→ 0 as dn→ ∞. So,

J2 ≤ Ch2/δ−2

∞
∑

i=dn

[

α(i)
]1−2/δ

+ o(1)

≤ Ch2/δ−2 d−β
n

∞
∑

i=dn

iβ
[

α(i)
]1−2/δ

+ o(1) .

By choosing dn such that h2/δ−1d−β
n → 1, we see J2 = o(1/h) and hdn → 0,

which ensures the convergence of J1. This completes the proof of (b). The proof

of (c) is an immediate consequence of (a) and (b).

Proof of Lemma 5.2: The proof employs a small-block large-block ar-

gument. The set {1, ..., n} is partitioned into 2k + 1 alternating large and small

subsets. Let rn be the size of the large blocks and sn be the size of the small

blocks. Then kn = ⌊n/(rn + sn)⌋. For 0 ≤ j ≤ k−1, define

Uj :=

√
h

j(r+s)+r
∑

i=j(r+s)+1

Zi ,

Vj :=

√
h

(j+1)(r+s)
∑

i=j(r+s)+r+1

Zi

and
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Wj :=

√
h

n
∑

i=k(r+s)+1

Zi .

We see immediately that Uj sums the Zi over the blocks of size r, Vj sums the Zi

over the blocks of size s, and Wj accounts for the remaining terms that do not

fit evenly into the first 2k blocks.

The idea of the proof is to show that the small blocks separate the large

blocks by enough to make them asymptotically independent while being small

enough that they don’t make a substantial contribution to the limiting distri-

bution. The Lindeberg condition can then be checked for the separated large

blocks.

To formalize this, we write

√
nh Qn =

1
√

n





k−1
∑

j=0

Uj +

k−1
∑

j=0

Vj + Wj





:=
1
√

n

[

Q′
n + Q′′

n + Q′′′
n

]

.

We will establish the following identities:

1

n
E
[

(Q′′
n)

2
]

→ 0 ,(7.2)

1

n
E
[

(Q′′′
n )

2
]

→ 0 ,(7.3)

∣

∣

∣

∣

∣

E exp(it Q′
n) −

k
∏

j=1

E
[

exp(it Uj)
]

∣

∣

∣

∣

∣

→ 0 ,(7.4)

1

n

k
∑

i=1

E
[

U2

i

]

→ θ2
(x) ,(7.5)

and

1

n

k−1
∑

j=0

E
[

U2

j 1
[|Uj | ≥ ǫ θ(x)

√
n]

]

→ 0 ,(7.6)

for all ǫ > 0.

Once these have been established, by a Taylor Series expansion, we will have
∣

∣

∣

∣

E
[

exp
(

it
√

nh Qn

)

]

− exp
(

−t2θ2
(x)/2

)

∣

∣

∣

∣

=

=

∣

∣

∣

∣

E

[

exp

(

it
1
√

n

[

Q′
n +Q′′

n +Q′′′
n

]

)]

− exp
(

−t2θ2
(x)/2

)

∣

∣

∣

∣

(7.7)

≤

∣

∣

∣

∣

E

[

exp

(

it
1
√

n
Q′

n

)]

− exp
(

−t2θ2
(x)/2

)

∣

∣

∣

∣

+ E

[
∣

∣

∣

∣

2t
√

n
Q′′

n

∣

∣

∣

∣

]

+ E

[
∣

∣

∣

∣

2t
√

n
Q′′′

n

∣

∣

∣

∣

]

.
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The final two terms will converge to 0 by the Cauchy–Schwarz inequality and

equations (7.2) and (7.3). Equations (7.4), (7.5), and (7.6) are enough to verify

the conditions of the Lindeberg–Feller central limit theorem, which will establish

the desired result. The proof will be complicated somewhat because (7.6) will

be established first for bounded random variables, and then the bound will be

allowed to tend to infinity.

We begin by choosing block sizes. By Assumption 8, there exists a sequence

qn such that qn → ∞ and qnsn = o
(
√

nh
)

, and qn

√

n/h α(sn) → 0. Define the

large block size rn by

rn :=
⌊
√

nh/qn

⌋

.

From this definition, we see

sn

rn
≤

sn√
nh/qn − 1

=
qnsn/

√
nh

1 − qn/
√

nh
→ 0 ,(7.8)

n

rn
α(sn) =

n

⌊
√

nh/qn⌋
α(sn) ≤

n
√

nh/qn − 1
α(sn)

(7.9)

=

(

√

n/h qn + o(1)

)

α(sn) → 0

and

rn√
nh

=

⌊
√

nh/qn

⌋

√
nh

≤

√
nh/qn + 1
√

nh
=

1

qn
+

1
√

nh
→ 0 .(7.10)

We begin by verifying equations (7.2) and (7.3):

(7.11) E
[

(Q′′
n)

2
]

=

k−1
∑

i=0

var[Vj ] +

∑

i6=j

cov[Vi, Vj ] ,

where, by Lemma 5.1,

var[Vi] = sh var[Z1] + 2 sh
s−1
∑

i=1

(1− j/s) cov[Z1, Z1+i]

= s
[

θ(x) + o(1)
]

.

By equation (7.8),

k−1
∑

i=0

var[Vj ] ≤ knsn

[

θ(x) + o(1)
]

≤
n sn

sn+ rn

[

θ(x) + o(1)
]

= o(n) .

The second term of (7.11) can be treated as follows:

∑

i6=j

cov[Vi, Vj ] = h
k−1
∑

i6=j

s
∑

l=1

s
∑

m=1

cov
[

Zi(r+s)+r+m , Zj(r+s)+r+l

]

.



146 T. McMurry and D. Politis

Since i 6= j, the difference between the indices,
∣

∣i(r+s)+r+m−(j(r+s)+r+l)
∣

∣≥ r,

so ∣

∣

∣

∣

∣

∑

i6=j

cov[Vi, Vj ]

∣

∣

∣

∣

∣

≤ 2 h

n−r
∑

l=1

n
∑

m=l+r

∣

∣cov[Zl, Zm]
∣

∣

= 2h
n−r
∑

l=1

n−l
∑

j=r

∣

∣cov[Zl, Zl+j ]
∣

∣

≤ 2 nh
n−1
∑

j=r

∣

∣cov[Z1, Zj+1]
∣

∣ = o(n) .

This establishes (7.2). We now turn our attention to (7.3):

1

n
E
[

(Q′′′
n )

2
]

=
h

n

(

n − k(r+s)
)

var[Z1] + 2h

n−k(r+s)
∑

i=2

cov[Z1, Zi]

≤
rn + sn

n
θ2

(x) + o(1) → 0 .

To prove (7.4), we use a lemma of Volkonskii and Rozanov [23], which is

stated in Lemma 7.3, following this proof:

∣

∣

∣

∣

∣

E exp(it Q′
n) −

k
∏

j=1

E
[

exp(it Uj)
]

∣

∣

∣

∣

∣

≤ 16(k−1) α(sn+1)

= 16
n

rn
α(sn+1) + o(1) → 0 ,

by equation (7.9).

We now turn our attention to equation (7.5):

1

n

k
∑

i=1

E[U2

i ] =
kn

n
var[U1]

=
kn rn

n

(

θ2
(x) + o(1)

)

=
rn

rn + sn
θ2

(x) + o(1) → θ2
(x) .

Finally, we verify equation (7.6). We begin establishing the result for trun-

cated random variables, and then subsequently letting the truncation point go to

infinity. Define

ZL
i := (c1 + c2Yi) 1[|Yi|≤L] Kh(Xi−x) − E

[

(c1 + c2Yi) 1[|Yi|≤L] Kh(Xi−x)

]

,

QL
n :=

1

n

n
∑

i=1

ZL
i ,

Q̃L
n :=

1

n

n
∑

i=1

(

Zi− ZL
i

)

,
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and

UL
j :=

√
h

j(r+s)+r
∑

i=j(r+s)+1

ZL
i .

We first need to estimate the asymptotic variance of ZL
1
. Assume conditions

strong enough that for all c1 and c2, and for all L > L0,

E
[

(c1 + c2Yi)
2

1[|Yi|≤L]

∣

∣X1 = x
]

is continuous as a function of x :

∣

∣

∣

∣

E
[

(c1 + c2Yi) 1[|Yi|≤L] Kh(Xi− x)

]

∣

∣

∣

∣

≤
(

|c1| + |c2L|
)

E
[

∣

∣Kh(X1− x)
∣

∣

]

≤ C ,

and

h E
[

(c1 + c2Yi)
2

1[|Yi|≤L] K
2

h(Xi− x)

]

=

= h E

[

K2

h(X1− x) E
[

(c1 + c2Yi)
2
1[|Yi|≤L]

∣

∣X1

]

]

= h

∫ ∞

−∞

K2

h(u−x) E
[

(c1 + c2Yi)
2
1[|Yi|≤L]

∣

∣X1 = u
]

f(u) du

=

∫ ∞

−∞

K2
(v) E

[

(c1+ c2Yi)
2
1[|Yi|≤L]

∣

∣X1 = x + hv
]

f(x+hv) dv

= E
[

(c1 + c2Yi)
2
1[|Yi|≤L]

∣

∣X1 = x
]

f(x)

∫ ∞

−∞

K2
(v) dv + o(1) .

Putting these two together,

h var[ZL
1 ] = E

[

(c1 + c2Yi)
2
1[|Yi|≤L]

∣

∣X1 = x
]

f(x)

∫ ∞

−∞

K2
(v) dv + o(1) .

For the sake of notational simplicity, we now define

(θL
)
2
(x) := E

[

(c1 + c2Yi)
2
1[|Yi|≤L]

∣

∣X1 = x
]

f(x)

∫ ∞

−∞

K2
(v) dv .

Returning now to the proof of (7.6), since K and Y L
i are bounded, hZL

i

is also bounded. Equivalently, for some D,

√
h ZL

i ≤ D/
√

h .

Therefore, by equation (7.10), max0≤j≤k−1 UL
j /

√
n ≤ (Drn)/

√
nh → 0. For large

enough n, the set
{

|UL
j | ≥ θL

(x) ǫ
√

n
}

becomes empty. Therefore, by the same

argument as used to establish (7.7),

(7.12)

√
nh QL

n
D
−→ N

(

0, (θL
)
2
(x)
)

.
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We are now prepared to put these pieces together to finish the proof of the

theorem:

∣

∣

∣

∣

E
[

exp
(

it
√

nhQn

)

]

− exp
(

−t2θ2
(x)/2

)

∣

∣

∣

∣

=

=

∣

∣

∣

∣

E
[

exp

(

it
√

nh
[

QL
n + Q̃L

n

]

)]

− exp
(

−t2(θL
)
2
(x)/2

)

+ exp
(

−t2(θL
)
2
(x)/2

)

− exp
(

−t2θ2
(x)/2

)

∣

∣

∣

∣

=

∣

∣

∣

∣

E
[

exp
(

it
√

nh QL
n

)

+ exp
(

it
√

nh QL
n

)

(

exp
[

it
√

nh Q̃L
n

]

− 1

)]

− exp
(

− t2(θL
)
2
(x)/2

)

+ exp
(

−t2(θL
)
2
(x)/2

)

− exp
(

−t2θ2
(x)/2

)

∣

∣

∣

∣

≤

∣

∣

∣

∣

E
[

exp
(

it
√

nh QL
n

)

]

− exp
(

−t2(θL
)
2
(x)/2

)

∣

∣

∣

∣

+

∣

∣

∣

∣

E
[

exp
(

it
√

nh QL
n

)

(

exp
[

it
√

nh Q̃L
n

]

− 1

)]

∣

∣

∣

∣

+

∣

∣

∣
exp
(

−t2(θL
)
2
(x)/2

)

− exp
(

−t2θ2
(x)/2

)

∣

∣

∣

≤

∣

∣

∣

∣

E
[

exp
(

it
√

nh QL
n

)

]

− exp
(

−t2(θL
)
2
(x)/2

)

∣

∣

∣

∣

+ E
[
∣

∣

∣
exp
[

it
√

nh Q̃L
n

]

−1

∣

∣

∣

]

+

∣

∣

∣
exp
(

−t2(θL
)
2
(x)/2

)

− exp
(

−t2θ2
(x)/2

)

∣

∣

∣
.

We analyze each term separately, first letting n → ∞, and then letting L → ∞.

For fixed t, the first term goes to zero by equation (7.12). The third term goes to 0

by dominated convergence, since (θL
)
2
(x) → θ2

(x) as L → ∞. Only the second

term remains to be analyzed. By a Taylor series expansion,

∣

∣

∣
exp
[

it
√

nh Q̃L
n

]

− 1

∣

∣

∣
≤ 2

∣

∣

∣
t
√

nh Q̃L
n

∣

∣

∣
.

By the Cauchy–Schwarz inequality, the bound will converge to 0 if it can be

shown that nh var
[

(Q̃L
N )
]

→ 0. As Q̃L
n satisfies the same dependence assumptions

as Qn, the calculations of Lemma 5.1(c) apply. So, it is sufficient to show that

(θL
)
2
(x)→ 0 as L→∞. This follows immediately by dominated convergence.

Lemma 7.3 (Volkonskii and Rozanov [23]). Let V1, ...,VN be strong mixing

random variables, which are measurable with respect to the σ-algebras F j1
i1

, ...,F jN

iN
respectively, with 1≤ i1 < j1 < i2 < ... < jN ≤ n, il+1−jl ≥ w ≥ 1, and |Vl| ≤ 1,

for l = 1, ..., N . Then

∣

∣

∣

∣

∣

∣

E

[

N
∏

j=1

Vj

]

−
N
∏

j=1

E[Vj ]

∣

∣

∣

∣

∣

∣

≤ 16 (L−1) α(w) ,

where α(w) is the strong mixing coefficient.
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1. INTRODUCTION

The extremal properties of sub-sampling stationary sequences is a rapidly

developing subject and it has been a topic of active research over the last years,

mainly due to its wide applicability to the analysis of environmental and financial

processes. Sub-sampling may occur according to some deterministic pattern, or

may occur randomly. Much of the early work on this topic paid attention on

the effect of deterministic sub-sampling on the extremal properties of stationary

sequences; see Scotto [22], Hall et al. [14], Martins and Ferreira [16], Ferreira and

Matins [9], Scotto et al. [23], Hall and Scotto [13], Scotto and Ferreira [24], Scotto

and Turkman [25] and Robinson and Tawn [21]. In contrast, the effect of random

sub-sampling has not received much attention in the literature. We refer to the

work of Weissman and Cohen [28] who considered the case of i.i.d. random sub-

sampling as a particular case of some mixture models. More recently, Hall and

Hüsler [12] have obtained some generalizations of Weissman and Cohen’s results

for sequences where the sub-sampling pattern has a weak dependence structure.

One reason for the interest in extremes observed at random sampling rates

comes from the need to compare schemes for monitoring systems with breakdowns

or systems with automatic replacement of devices in case of failures. Examples

are encountered, for instance, in ocean engineering. The probabilistic description

of the wave climate in specific sites and ocean areas is an important prerequi-

site for the design and assessment of coastal and offshore structures. The wave

climate is commonly described from time series of sea-state parameters, such as

the significant wave height and the mean zero upcrossing period. These, as well

as other sea-state parameters, provide information about the sea-state that has

occurred and about the way the sea-state evolves with time. Most of the early

available data has been collected by waverider buoys (at present, however, satel-

lite data is becoming widely available and some climate descriptions are based on

this type of data). An important aspect for a correct probabilistic description of

the wave climate is to work with complete records of wave measurements. Miss-

ing values, however, are frequently encountered in time series analysis of wave

measurements, mainly when waverider buoys are used for collecting data sets.

The main reasons are damage by shipping, freak waves which appeared out of a

calm sea and a failure on the reading device. Similar problems arise in environ-

mental studies. For example, extreme value analysis is of particular interest in

assessing the impact of high air pollution levels, because air quality guidelines

are formulated in terms of the high level of permitted emissions. This method-

ology has been used in the analysis of levels of ozone (Smith, [26], Nui, [18], and

Tobias and Scotto, [27]) and nitrogen dioxide (Coles and Pan, [7]). Ozone data

is usually collected from sampling stations integrated within a local automatic

network for the control of atmospheric pollution in a specific area. In this case,

missing observations appear when the equipment is not working properly or it is

out of service.
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As the title of the paper suggest, the aim of this work is to extend the

results known for deterministic sub-sampled processes to random-generated sub-

sampling processes. In particular, we investigate the maximum limiting distri-

bution and its corresponding extremal index, when the underlying process is

represented as a moving average driven by heavy-tailed innovations and the sub-

sampling process is strongly mixing. Our results both exemplify some of the

findings of Hall and Hüsler [12] and offer more precise details for this particular

class of models.

The examples given in the previous paragraphs illustrate the need to ac-

count for non-i.i.d. patterns of missing-values since, in general, when an equip-

ment is out of order its recovery time may be considerably long. In this paper

we also pay special attention to discrete-valued sequences. Motivation to include

discrete data models comes from the need to account for the discrete nature of

certain data sets, often counts of events, objects or individuals. Examples of

applications can be found in the analysis of time series of count data that are

generated from stock transactions (Quoreshi, [20]), where each transaction refers

to a trade between a buyer and a seller in a volume of stocks for a given price, and

also in experimental biology (Zhou and Basawa, [29]), social science (McCabe and

Martin, [17]), international tourism demand (Nordström, [19], Garcia-Ferrer and

Queralt, [10], Brännäs et al. [4], and Brännäs and Nordström, [5]), and queueing

systems (Ahn et al. [1]).

The rest of the paper is organized as follows: Section 2 provides a back-

ground description of basic theoretical results related to conventional and non-

negative integer-valued moving averages with regularly varying tails. Moreover,

a suitable representation for the randomly sub-sampled process is described.

In Section 3 we obtain the limiting distribution of the maximum term of the

sub-sampled moving average sequence and the expression of its extremal index.

Finally, in Section 4 the results are applied to conventional and discrete autore-

gressive processes.

2. PRELIMINARIES

For the purpose of this work we shall consider stationary sequences X =

(Xn)n∈N0 of the form

Xn =

∞
∑

j=0

βj ∗ Zn−j ,(2.1)

where Z = (Zn)n∈Z is an i.i.d. sequence of random variables (rv’s) with distribu-

tion function FZ belonging to the domain of attraction of the Fréchet distribution
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with parameter α > 0, (hereafter FZ ∈ D(Φα)):

(2.2) P (|Z1|> x) = x−αL(x) , x > 0 ,

where L is slowly varying at infinity and

(2.3) lim
x→∞

P (Z1 > x)

P (|Z1|> x)
= p , lim

x→∞

P (Z1 <−x)

P (|Z1|> x)
= q ,

for some p+q = 1 with 0≤ p≤ 1. We further assume that the coefficients (βj)j∈N0

are such that

∞
∑

j=0

|βj |
δ < ∞ , δ < min(α, 1) .(2.4)

Throughout the paper we consider two different cases:

(a) The ∗-operator denotes multiplication and Z is an i.i.d. sequence of

continuous rv’s. In this case X represents a conventional (i.e., continuous-valued)

moving average model.

(b) The ∗-operator denotes binomial thinning, say ◦, and Z represents an

i.i.d. sequence of non-negative integer-valued rv’s; that is

β ◦ Z =

Z
∑

s=1

Bs(β) , β ∈ [0, 1] ,

where (Bs(β)) forms an i.i.d. sequence of Bernoulli rv’s satisfying P [Bs(β)=1] = β.

In this case X represents a discrete analogue of case (a). It is important to stress

the fact that discreteness of the process X is ensured by the ◦-operator since

this operator incorporates the discrete nature of the variates and acts as the

analogue of the standard multiplication used in the continuous-valued moving

average model. Note that thinning is a random operation which reflects the be-

havior of many natural phenomenons. For instance, if Zn represents the number

of individuals of a certain specie at time n, β ◦Zn will represents the number of

survivors at the next time instant with β representing the probability of surviv-

ing. The concept of thinning is well known in classical probability theory and

has been in use in the Bienaymé–Galton–Watson branching processes literature

as well as in the theory of stopped-sum distributions.

We further consider within the discrete case the general class of models

consisting of all stationary sequences defined by (2.1) in which all thinning oper-

ations involved are independent, for each n. Nevertheless, dependence is allowed

to occur between the thinning operators βj ◦Zn and βi ◦Zn, j 6= i (which belong

to Xn+j and Xn+i respectively). We therefore obtain a rich class of discrete

models which share some properties with the conventional case. For particular

examples and estimation procedures see Brännäs and Hall [3].
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The tail properties of Xn have been studied by Davis and Resnick [8] for

the conventional case and by Hall [11] for the discrete case. The result below

summarises the tail behavior of the random variables W = β ∗ Z and Xn, when

FZ ∈ D(Φα).

Theorem 2.1. Let Z be a random variable with FZ ∈ D(Φα), α > 0.

1. For both meanings of the ∗-operator, FW ∈ D(Φα) and

(a) for the conventional case

lim
n→∞

1 − FW (n)

1 − FZ(n)
= p(β+

)
α

+ q(β−
)
α ,

with β+
= max(β, 0) and β−

= max(−β, 0);

(b) for the discrete case

lim
n→∞

1 − FW (n)

1 − FZ(n)
= βα .

2. If FZ ∈ D(Φα) then, for both meanings of the ∗-operator, FX ∈ D(Φα),

and for all τ > 0 and some sequence of constants (un)

lim
n→∞

n
(

1−FZ(un)
)

= τ ′
=⇒ lim

n→∞
n
(

1−FX(un)
)

= τ ,

with

τ ′
=

τ
∑∞

j=0
p(β+

j )α + q(β−
j )α

.(2.5)

for the conventional case and

τ ′
=

τ
∑∞

j=0
βα

j

,(2.6)

for the discrete case.

The result above implies that every random variables Zn contributes to

the tail P (X > x). This contribution depends on the size of the weight βj for

both meanings of the ∗-operator, as well as on the sign of the weight βj in the

conventional case.

Now we define the randomly sub-sampled sequence Y = (Yn)n∈N0 obtained

from X and induced through a strictly increasing function g(n) : N0 → N0 as

follows:

Yn = Xg(n) , n ≥ 0 .

In addition, let U = (Un)n∈N0 be a Bernoulli stationary sequence independent of

X having marginal distribution with parameter γ (0≤ γ ≤ 1). The Un s are used

as indicator variables that signal which observations are sampled whereas the g(·)
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function gives the sampled time, that is the increasing sequence of ns for which

Un = 1. As an example take

U1 = 1, U2 = 0, U3 = 1, U4 = 0, U5 = 0, U6 = 1, U7 = 1, ... ,

providing

g(1) = 1, g(2) = 3, g(3) = 6, g(4) = 7, ... .

The sequences U considered in this paper will either be i.i.d. or strongly mixing.

The study of the extremal properties of stationary sequences is frequently

based on the verification of appropriate dependence conditions which assure that

the limiting distribution of the maximum term is of the same type as the limiting

distribution of the maximum of i.i.d. rv’s with the same marginal distribution F .

For stationary sequences, usual conditions used in the literature are Leadbetter’s

D(un) condition (Leadbetter et al. [15]) and condition D(k)
(un), k ∈N, (Chernick

et al. [6]). For completeness and reader’s convenience the definition of conditions

D(un) and D(k)
(un) are given below.

Definition 2.1. The condition D(un) is said to hold for a stationary se-

quence (Xn)n∈N with marginal distribution F , if for any integers i1 < ... < ip <

j1 < ... < jq < n such that j1− ip ≥ ln we have

∣

∣

∣
Fi1,...,ip,j1,...,jq(un, ..., un) − Fi1,...,ip(un, ..., un)Fj1,...,jq(un, ..., un)

∣

∣

∣
≤ αn,ln

with αn,ln → 0 for some sequence (ln), ln = o(n).

Definition 2.2. The condition D(k)
(un), k ≥ 1, holds for a stationary

sequence (Xn)n∈N if there exist sequences (sn) and (ln) of integers, and (un) of

reals, such that sn → ∞, sn αn,ln → 0, sn ln
n → 0, and

(2.7) lim
n→∞

nP
(

X1 > un ≥M2,k , Mk+1,rn
> un

)

= 0 ,

where rn =

[

n
sn

]

and

Mi,j =

{

−∞ i > j ,

maxi≤t≤j Xt i ≤ j .

The main result is due to Chernick et al. [6], in which the extremal index

is computed by knowledge of the joint distribution of k consecutive terms.

Theorem 2.2 (Chernick et al. [6]). Suppose that for some k ≥ 1 the con-

ditions D(un) and D(k)
(un) hold for un = un(τ), ∀τ > 0. Then, the extremal

index of (Xn)n∈N exists and is equal to θ iff

P
(

M2,k ≤ un |X1 > un

)

→ θ, as n → ∞, ∀ τ > 0 .
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A convenient way to apply the above result may be through the following:

Theorem 2.3 (Chernick et al. [6]). Suppose (Xn)n∈N and (X
(m)

n )n∈N, m≥1,

are stationary sequences defined on the same probability space such that for some

sequence of constants {un}

lim
ǫ→0

lim sup
n→∞

nP
(

(1− ǫ)un < X1 ≤ (1+ ǫ)un

)

= 0 ,

lim
m→∞

lim sup
n→∞

nP
(

|X1− X
(m)

1
| > ǫun

)

= 0 , ǫ > 0 .

Then

1. If condition D(un) holds for (X
(m)

n )n∈N, for each m, then it holds for

(Xn)n∈N as well.

2. If (X
(m)

n )n∈N has extremal index θ(m), (Xk)n∈N has extremal index θ

iff
lim

m→∞
θ(m)

= θ .

3. EXTREMAL BEHAVIOR

The main task of this section is to derive the extremal behavior of the

sub-sampled Y process. The main result is formalized through the following

theorem.

Theorem 3.1. Let X be a moving average process defined as previously.

Assume that (|βj |)j≥0 forms a decreasing sequence. Consider the sub-sampled se-

quence Y obtained by random sub-sampling according to an auxiliary stationary

sequence U. Furthermore, assume that FZ ∈D(Φα) satisfying limn→∞ n(1−FZ(un))

= τ ′ with τ ′ defined as in (2.5) for the conventional case, and defined as in (2.6)

for the discrete case. Then, the distribution of Yk satisfies

lim
n→∞

n
(

1− FY (un)
)

= τ ′ ,

and it holds that:

1. The sequence Y has extremal index

θC =

∑∞
j=1

P
(

g(2) − g(1) = j
) (

∑j−1

i=0
p(β+

i )
α

+ q(β−
i )

α
)

∑∞
j=0

p(β+

j )α + q(β−
j )α

,(3.1)

for the conventional case, with β+

j and β−
j defined as in Theorem 2.1,

and

θD =

∑∞
j=1

P
(

g(2) − g(1) = j
)

∑j−1

i=0
βα

i
∑∞

j=0
βα

j

,(3.2)

for the discrete case.
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2. Moreover the limiting distribution of the maximum Mn(Y ) = max
1≤g(k)≤n

{Yk}

is given by

lim
n→∞

P
(

Mn(Y )≤ un

)

= exp{−θ∗x−α} ,

where θ∗ equals θC for the conventional case and θD for the discrete

case.

Proof: By Theorem 2.3, to prove (3.1) we first obtain the extremal index

of the the auxiliary finite-order sub-sampled moving average sequence

Y
(m)

k =

m
∑

j=0

βj ∗ Zg(k)−j ,

for fixed m > 0. We also temporarily take βj = 0 for j > m. Note that the

local dependence D(m+1)
(un) condition trivially holds for Y(m)

= (Y
(m)

k ). For

simplicity in notation we define M
(m)

2,m+1
= max2≤k≤m+1 Y

(m)

k , and

µ
(m)

m+1
(un) = P

(

Y
(m)

1
> un ≥ M

(m)

2,m+1

)

.

By Theorem 2.2 we have that the extremal index of the sequence Y(m)
, for both

meanings of the ∗-operator, is given by

θ(m)
= lim

n→∞

n µ
(m)

m+1
(un)

nP
(

Y
(m)

1
> un

)

.

Moreover by arguments as in Chernick et al. ([6], Prop. 2.1)

lim
n→∞

n µ
(m)

m+1
(un) = lim

n→∞
n

m
∑

j=0

P
(

M
(m)

2,m+1
≤ un , βj ∗Zg(1)−j > un

)

= lim
n→∞

n

m
∑

j=0

[

P
(

βj ∗Zg(1)−j > un

)

− P
(

M
(m)

2,m+1
> un , βj ∗Zg(1)−j > un

)

]

.

Now

lim
n→∞

nP
(

M
(m)

2,m+1
> un , βj ∗Zg(1)−j > un

)

=

= lim
n→∞











nP

(

M
(m)

2,m+1
> un , βj ∗Zg(1)−j > un ,

∨

0≤i′≤m
2≤t≤m+1

βi′ ∗Zg(t)−i′ > un

)

+ nP

(

M
(m)

2,m+1
> un , βj ∗Zg(1)−j > un ,

∨

0≤i′≤m
2≤t≤m+1

βi′ ∗Zg(t)−i′ ≤ un

)











= lim
n→∞

nP

(

βj ∗Zg(1)−j > un ,
∨

0≤i′≤m
2≤t≤m+1

βi′ ∗Zg(t)−i′ > un

)

,
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since as in Chernick et al. ([6], p. 842) and with the convention that βj = 0 for

j > m it follows that

lim
n→∞

nP

(

M
(m)

2,m+1
≤ un , βj ∗Zg(1)−j > un ,

∨

0≤i′≤m
2≤t≤m+1

βi′ ∗Zg(t)−i′ > un

)

= 0 .

This makes explicit the precise way in which a single large Z asymptotically dom-

inates the behavior of the maximum of the sequence Y(m)
. For the conventional

case, it follows that

lim
n→∞

n µ
(m)

m+1
(un) = lim

n→∞
n

m
∑

j=0

P

(

βj ∗Zg(1)−j > un ,
∨

0≤i′≤m
2≤t≤m+1

βi′ ∗Zg(t)−i′ ≤ un

)

= lim
n→∞

n
m
∑

j=0

P

(

βj ∗Z1 > un ,
∨

2≤t≤m+1

βg(t)−g(1)+j ∗Z1≤ un

)

= lim
n→∞

n
m
∑

j=0



P

(

∨

2≤t≤m+1

β+

g(t)−g(1)+j ∗Z1≤ un)

+ P

(

∨

2≤t≤m+1

β−
g(t)−g(1)+j ∗Z1≤ un

)

− P

(

∨

1≤t≤m+1

β+

g(t)−g(1)+j ∗Z1≤ un

)

− P

(

∨

1≤t≤m+1

β−
g(t)−g(1)+j ∗Z1≤ un

)





= lim
n→∞

n

m
∑

j=0

[

P
(

β+

g(2)−g(1)+j ∗Z1≤ un

)

+ P
(

β−
g(2)−g(1)+j ∗Z1≤ un

)

− P
(

β+

j ∗Z1≤ un

)

− P
(

β−
j ∗Z1≤ un

)

]

,

since (|βj |)j∈N0 forms a decreasing sequence with βj = 0 for j ≥ m+1. Condi-

tioning on V = g(2) − g(1) we obtain

lim
n→∞

n µ
(m)

m+1
(un) =

m
∑

j=0

P
(

g(2)−g(1) = j
)

(

j−1
∑

i=0

p(β+

i )
α

+ q(β−
i )

α

)

.

Following Davis and Resnick [8] the tail behavior of Y
(m)

k is given as follows:

lim
n→∞

P
(

Y
(m)

k > un

)

P
(

Z1 > un

) =

m
∑

j=0

p(β+

j )
α

+ q(β−
j )

α ,
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yielding

θ(m)
=

∑m
j=1

P
(

g(2)−g(1) = j
)(

∑j−1

i=0
p(β+

i )
α

+ q(β−
i )

α
)

∑m
j=0

p(β+

j )α + q(β−
j )α

.

Finally as an application of Lemma 3.1 in Hall and Hüsler ([12], p. 547), condition

D(un) holds for the sub-sampled sequence Y, and hence by Theorem 2.3 the

extremal index θC is

θC = lim
m→∞

θ(m) .

The discrete case follows as an application of the results given in Hall [11] and

Hall et al. [14].

4. EXAMPLES

We now illustrate the effect of random sub-sampling on the extremal index

of an AR(1) process

Xk = β ∗Xk−1 + Zk ,

considering two different cases:

(a) the conventional case with β ∈ (−1, 0) and the sequence of innovations

Z satisfying (2.2) and (2.3);

(b) the discrete case with Z being a sequence of non-negative integer-

valued rv’s.

This type of autoregressive sequence is known as INteger-valued AutoRegressive

process of order one (INAR(1) in short) process and has been considered by

several authors in the literature; see Aly and Bouzar [2] for details. It is worth

noting that in the former case, Hall and Hüsler’s results can not be applied since

condition D′′
(un) does not hold. In contrast, the AR(1) model with β ∈ (0, 1)

satisfies D′′
(un) condition.

Furthermore, for the sequence U two different cases will be considered:

• Independent and identically distributed failure instants: in this case

U forms an i.i.d. sequence with P (Uk =1) = γ = 1−P (Uk = 0), providing

P
(

g(2)−g(1) = j
)

= γ(1− γ)
j−1 , j = 1, 2, ... ;

• Failures via a Markov Chain: within this framework U forms a station-

ary Markov sequence defined by










P
(

Uk = 1 | Uk−1 = 1

)

= η ,

P
(

Uk = 1 | Uk−1 = 0

)

= ν .
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This model defines a system where the probability of failure depends

only on whether there occurred or not a failure just before. Given any

values of η, ν ∈ [0, 1] it is easy to obtain that

P (U1 = 1) =
ν

1− η + ν
.

Note that for a fixed value of κ =
ν

1−η+ν ∈ [0, 1], the parameters ν and η

are not entirely arbitrary since if κ > 1/2 then η ∈ [2 − 1/κ, 1]. The

sequence U is regenerative with finite mean duration of renewal epochs

and hence it is strongly mixing. Moreover

P
(

g(2)−g(1) = j
)

=

{

η j = 1 ,

(1− ν)
j−2

(1− η)ν j ≥ 2 .

4.1. Conventional case with negative parameter

In this case, the sub-sampled sequence Y generated through the i.i.d. se-

quence U has extremal index

θC =
1 − β 2α

1 − (1−γ)β 2α
.(4.1)

When γ = 1, (i.e., no sub-sampling), the extremal index in (4.1) becomes θC =

1− β 2α
which may be derived from the results given in Davis and Resnick [8].

Moreover, if the sub-sampled sequence Y is generated through the stationary

Markov sequence U, the extremal index becomes

θC =

1 − β 2α
[

1 − (ν−η) (1−β 2α
)

]

1 − (1−ν)β 2α
.

4.2. Discrete case

In the discrete case, the extremal index of the sub-sampled sequence Y

generated through the i.i.d. sequence U, takes the form

θD =
1 − βα

1 − (1− γ)βα
;

whereas for the stationary Markov sequence, the extremal index is given by

θC =

1 − βα
[

1 − (ν−η) (1−βα
)

]

1 − (1−ν)βα
.
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1. INTRODUCTION

In many practical situations it is important to compute a two-sided interval

estimate for a population proportion (e.g. acceptance sampling by attributes,

marketing research, survey sampling). The interval estimate may be either a

confidence interval (in the frequentist framework) or a credibility interval (in

the Bayesian framework). This is a well known topic considered in almost every

introductory course on statistics. However, most of the standard methods rely on

asymptotic approximations and the validity of the approximations is not always

stated or differs from author to author (Leemis and Trivedi, 1996, give a survey

of these “rules of thumb”). Moreover, comparisons between methods are usually

based on single cases. We found no recent text book listing the most common

methods and making a general comparison, not even in Fleiss, Levin and Paik

(2003), dedicated exclusively to rates and proportions. A good discussion but

somehow out of date can be found in Santner and Duffy (1989).

Nevertheless, several authors have addressed this subject in the last thirty

years: Ghosh (1979); Fujino (1980); Angus and Schafer (1983); Blyth and Still

(1983); Blyth (1986); Chen (1990); Copas (1992); Vollset (1993); Cohen and

Yang (1994); Newcombe (1994 and 1998); Agresti and Coull (1998); Agresti and

Caffo (2000); Brown, Cai and DasGupta (2001 and 2002); Edwardes (1998); Pan

(2002); Reiczigel (2003); Garćıa-Pérez (2005); Geyer and Meeden (2005), Puza

and O’neill (2006) and Lee (2006). Large comparative studies were presented by

Vollset (1993), Newcombe (1998), Brown, Cai and DasGupta (2001) and, to a

smaller extent, by Agresti and Coull (1998) and Pan (2002).

The present paper considers twenty simple non-iterative methods. Eleven

of these have been included in the aforementioned comparisons: eight of the sev-

enteen considered by Vollset (1993); five of the seven considered by Newcombe

(1998); the four considered by Agresti and Coull (1998); five of the twelve consid-

ered by Brown, Cai and DasGupta (2001) and the four considered by Pan (2002).

The nine (also simple) methods considered here and which were not included in

previous comparisons are: a Bayesian interval with uniform prior; two simple

corrections to the usual interval; four variants of bootstrap intervals not needing

Monte Carlo; and two intervals based on the arcsine transformation followed by

a correction. As with most of the cited recent studies it was decided not to in-

clude methods without explicit solutions and for which there is an explicit almost

equivalent method (this is the case namely of the interval obtained by inverting

the likelihood ratio test).

The results of this work are important for the applied statistician, who in a

particular situation usually wants to use the best method and that this method

is available or can easily be implemented in common statistical software, and for
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teachers of statistics who have to decide which methods to include in a given

course.

Let [L; U ] be an interval estimator of a certain parameter θ and attach to

it a level (confidence or credibility), η ∈ (0; 1). [L; U ] is a good interval estimator

of θ with level η if the probability of containing the unknown θ (the coverage

probability) is in fact η and its length is “small” (usually in a stochastic sense,

for instance, on average). Note, however, that in discrete situations, like the one

considered here, it is not possible to achieve the target coverage probability for all

possible values of the parameter. We will therefore consider two classes of accept-

able methods, those strictly conservative (for which the coverage probability is at

least η) and those correct on average (for which the mean coverage probability is

at least η) and look for small mean expected length within each class. Note also

that it is reasonable to apply the same criteria to both confidence and credibility

intervals.

Attention will be focused primarily on central intervals, that is, with ap-

proximately equal uncertainty associated to each side. This is how practitioners

usually interpret two-sided intervals and matches better with one-sided intervals

(the two-sided being the intersection of upper and lower one-sided intervals with

the appropriate precision). However non-central intervals are also considered for

comparison.

The paper is organized as follows: in Section 2 the twenty selected methods

are described. In Section 3 results regarding coverage probability and expected

length of the different intervals are presented and analyzed, first considering only

the central intervals and at second stage including two optimal non-central inter-

vals. Section 4 is devoted to concluding remarks.

2. DESCRIPTION OF THE METHODS

In order to establish the notation suppose that a random sample of size

n is observed on a large (possibly infinite) population and that X observations

(0 ≤ X ≤ n) belong to a certain category of interest. Let p be the unknown

proportion of the category of interest in the population and suppose that a two-

sided central interval estimate for p is wanted. Note that in order to use the

methods based on the binomial distribution the total sample size must be fixed a

priori and the variable to be observed is the number of successes. If the sampling

plan fixes the number of successes and the total sample size is variable (inverse

or negative binomial sampling) most of the methods can not be applied directly

(see e.g. Lui, 1995, or Cai and Krishnamoorthy, 2005).
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For all the intervals the nominal confidence level is fixed in advance as

100×(1−α)%, meaning that the coverage probability of the random interval

[L; U ] should be 1− α. The random variables L and U depend on X, number

of successes in the random sample, on n and on the method. Twenty methods

are described in the following five subsections and the corresponding solutions

are represented as [Li(X); Ui(X)], where i = I, ..., XX denotes the method. The

final expressions are given in Tables 1 and 2. As in Vollset (1993) it was imposed

that, for all i, 0 ≤ Li(X) and Ui(X) ≤ 1, for all X, and that Li(0) = 0 and

Ui(n) = 1 (this means that for the boundary cases the centrality property is

dropped but it is a natural choice). To be theoretically correct, but otherwise

with no practical effect, the confidence intervals do not include the left (right)

end point if Li(X) = 0 (Ui(X) = 1) but X 6= 0 (X 6= n).

2.1. Exact results

Under the previous conditions X has a Binomial(n, p) distribution. Because

this is a discrete distribution it is not possible to have a confidence interval with

exactly the specified confidence level. But an interval with a coverage probability

of at least 1− α can be obtained by solving

n
∑

j=X

(

n

j

)

Lj
I(1− LI)

n−j
= α′

(2.1)

and

X
∑

j=0

(

n

j

)

U j
I (1− UI)

n−j
= α′′ ,(2.2)

where α′
and α′′

, such that α′
+α′′

= α, are fixed in advance and do not depend

on X. If different values of α′
and α′′

are chosen for each X, for instance those

minimizing the length of the interval, the exactness, meaning a coverage proba-

bility of at least 1− α can no longer be guaranteed for every p. α′
= α′′

= α/2

corresponds to the inversion of the two sided exact binomial test and leads to

the central exact interval, usually called Clopper–Pearson interval (Clopper and

Pearson, 1934). For X= 0 and X= n the solutions of (2.1) and (2.2) are explicit:

(2.3) LI(0) = 0, UI(0) = 1 − (α/2)
1/n, LI(n) = (α/2)

1/n, UI(n) = 1 .

Otherwise, the solution of (2.1) and (2.2) is easy to obtain by using the relation

(see for instance Johnson and Kotz 1969, pp. 58–59, or Stevens, 1950)

n
∑

j=k

(

n

j

)

pj
(1− p)

n−j
=

∫ p

0

fB(t) dt ,



170 Ana M. Pires and Conceição Amado

where fB denotes the p.d.f. of a Beta(k, n−k−1) random variable. In this way

the extremes of the interval are appropriate quantiles of that Beta distribution

(see Table 1) and can easily be obtained in most statistical packages. For instance,

in S-plus or R the appropriate commands are LI<-qbeta(alfa/2,X,n-X+1) and

UI<-qbeta(1-alfa/2,X+1,n-X). If the percentiles of the Beta distribution are

not available then the relation of those with the percentiles of the F distribution

can be used, eventually in tables (this is again mentioned in Johnson and Kotz,

1969, and e.g. in Armitage and Berry, 1987).

It is worth noting that from the papers referred in the Introduction and ad-

dressing the same issue only Blyth (1986), Agresti and Coull (1998), Newcombe

(1998), Brown, Cai and DasGupta (2001) and Garćıa-Pérez (2005) mention the

relation with the Beta distribution while some of the others consider approxima-

tions to the percentiles of the F distribution (e.g. Fujino, 1980). Vollset (1993)

proposes a very sophisticated numerical method (the “Pratt” approximation)

which turns out to be completely unnecessary.

Other exact intervals, in the sense of having coverage probability of at least

1− α, based on the binomial probabilities have been considered in the litera-

ture but are not central and do not have explicit solutions (Sterne, 1954, Crow,

1956, Clunies-Ross, 1958, see also Blyth and Still, 1983, and Reiczigel, 2003).

As mentioned in the Introduction, an interval of this type will be considered in

Subsection 3.2 for comparative purposes.

As a second alternative in the class of exact methods we consider a Bayesian

credibility interval. This method is exact in the second sense because it guar-

antees a mean coverage probability of 1− α under the specified prior distribu-

tion for p. If this prior is the uniform distribution in (0, 1) or Beta(1, 1), which

is non-informative, we have that a posteriori p follows a Beta(X+1, n−X+1)

distribution. Brown, Cai and DasGupta (2001) have chosen the Jeffreys prior,

Beta(1/2, 1/2), which is also non-informative. The results shall not differ consid-

erably, but the uniform prior seems more intuitive.

In order to obtain a central interval, equal credibility tails (α/2) are con-

sidered, except for the boundary cases, X = 0 and X = n. The explicit results are

again shown is Table 1 (Method II). The similarity between these results and the

results for the Clopper–Pearson interval is a consequence of the chosen a priori

distribution.

In the Bayesian framework the optimal exact interval (that is of minimal

length) is the HPD interval, but this again is non-central and has no explicit

solution, and will be considered only in Subsection 3.2.
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Table 1: Explicit limits of the intervals for Methods I to X.

i Li(X) Ui(X)

(Method) (Lower limit) (Upper limit)

I
(a)

0 if X= 0, (α/2)
1/n

if X= n, 1− (α/2)
1/n

if X= 0, 1 if X= n,

BX,n−X+1;α/2 if 0 <X< n BX+1,n−X;1−α/2 if 0 <X< n

II
(a)

0 if X= 0, α1/(n+1)
if X= n, 1 − α1/(n+1)

if X= 0, 1 if X= n,

BX+1,n−X+1;α/2 if 0 <X< n BX+1,n−X+1;1−α/2 if 0 <X< n

III
(b)

2X+c2−c
√

c2 +4X(1−X/n)

2(n+c2)

2X+c2
+c
√

c2 +4X(1−X/n)

2(n+c2)

IV
(b)

0 if X= 0, 1 if X= n,
otherwise otherwise

2X+c
2−1−c

√
c2−(2+1/n)+4X(1−X/n+1/n)

2(n+c2)

2X+c
2
+1+c

√
c2+(2−1/n)+4X(1−X/n−1/n)

2(n+c2)

V
(b)

max

{

X

n
− c

√

X

n2

(

1− X

n

)

; 0

}

min

{

X

n
+ c

√

X

n2

(

1− X

n

)

; 1

}

VI
(b)

max

{

X

n
− c

√

X

n2

(

1− X

n

)

− 1

2n
; 0

}

min

{

X

n
+ c

√

X

n2

(

1− X

n

)

+
1

2n
; 1

}

VII
(b)

0 if X= 0, (α/2)
1/n

if X= n, 1− (α/2)
1/n

if X= 0, 1 if X= n,

otherwise otherwise

max

{

X

n
− c

√

X

n2

(

1− X

n

)

; 0

}

min

{

X

n
+ c

√

X

n2

(

1− X

n

)

; 1

}

VIII
(b)

0 if X= 0, (α/2)
1/n

if X= n, 1− (α/2)
1/n

if X= 0, 1 if X= n,

otherwise otherwise

max

{

X

n
− c

√

X

n2

(

1− X

n

)

− 1

2n
; 0

}

min

{

X

n
+ c

√

X

n2

(

1− X

n

)

+
1

2n
; 1

}

IX
(b)

0 if X= 0, (α/2)
1/n

if X= n, 1 − (α/2)
1/n

if X= 0, 1 if X= n,

otherwise otherwise

max

{

X+c
2
/2

n+c2 −c

√

X

n2

(

1− X

n

)

; 0

}

min

{

X+c
2
/2

n+c2 + c

√

X

n2

(

1− X

n

)

; 1

}

X
(b)

0 if X= 0, (α/2)
1/n

if X= n, 1 − (α/2)
1/n

if X= 0, 1 if X= n,

otherwise otherwise

max

{

X+c
2
/2

n+c2 −c

√

X

n2

(

1−X

n

)

− 1

2n
; 0

}

min

{

X+c
2
/2

n+c2 +c

√

X

n2

(

1−X

n

)

+
1

2n
; 1

}

(a) Bθ1,θ2;γ is the γ percentile of the Beta(θ1, θ2) distribution.
(b) c = z1−α/2 where zγ is the γ percentile of the N (0, 1) distribution.
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Table 2: Explicit limits of the intervals for Methods XI to XX.

i Li(X) Ui(X)

(Method) (Lower limit) (Upper limit)

XI
(a)

0 if X= 0, (α/2)
1/n

if X= n, 1− (α/2)
1/n

if X= 0, 1 if X= n,

otherwise
Binn,X/n;α/2

n
otherwise

Binn,X/n;1−α/2

n

XII
(a)

0 if X= 0, (α/2)
1/n

if X= n, 1− (α/2)
1/n

if X= 0, 1 if X= n,

otherwise max

{

Binn,X/n;α/2

n
− 1

2n
; 0

}

otherwise min

{

Binn,X/n;1−α/2

n
+

1

2n
; 1

}

XIII
(a)(b)

0 if X= 0, (α/2)
1/n

if X= n, 1− (α/2)
1/n

if X= 0, 1 if X= n,

otherwise
Binn,X/n;α′

n
otherwise

Binn,X/n;α′′

n

XIV
(a)(b)

0 if X= 0, (α/2)
1/n

if X= n, 1− (α/2)
1/n

if X= 0, 1 if X= n,

otherwise max

{

Binn,X/n;α′

n
− 1

2n
; 0

}

otherwise min

{

Binn,X/n;α′′

n
+

1

2n
; 1

}

XV
(c)

0 if X= 0, 1 if X= n,

otherwise sin
2

(

arcsin

√

X

n
− c

2
√

n

)

otherwise sin
2

(

arcsin

√

X

n
+

c

2
√

n

)

XVI
(c)

0 if X= 0, otherwise 1 if X= n, otherwise

otherwise sin
2

(

arcsin

√

X−0.5

n
− c

2
√

n

)

otherwise sin
2

(

arcsin

√

X+0.5

n
+

c

2
√

n

)

XVII
(c)

0 if X= 0, 1 if X= n,
otherwise otherwise

sin
2

(

arcsin

√

3/8+X−0.5

n+3/4
− c

2

√
n+1/2

)

sin
2

(

arcsin

√

3/8+X+0.5

n+3/4
+

c

2

√
n+1/2

)

XVIII
(c)

max

{

X+2

n+4
−c

√

X+2

(n+4)2

(

1− X+2

n+4

)

; 0

}

min

{

X+2

n+4
+ c

√

X+2

(n+4)2

(

1− X+2

n+4

)

; 1

}

XIX
(d)

max

{

X

n
− t′
√

X

n2

(

1− X

n

)

; 0

}

min

{

X

n
+ t′
√

X

n2

(

1− X

n

)

; 1

}

XX
(d)

max

{

X+2

n+4
− t′′

√

X+2

(n+4)2

(

1− X+2

n+4

)

; 0

}

min

{

X+2

n+4
+ t′′

√

X+2

(n+4)2

(

1− X+2

n+4

)

; 1

}

(a) Binn,θ;γ is the γ percentile of the Bin(n, θ) distribution.
(b) α′ and α′′ are given by equations (2.5) and (2.6) in the text, respectively.
(c) c = z1−α/2 where zγ is the γ percentile of the N (0, 1) distribution.
(d) t′ and t′′ are percentiles (1−α/2) of t-distributions with degrees of freedom given by

equations (2.8) and (2.9) in the text, respectively.
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2.2. Normal approximations

The most referred methods are based on the approximation of the Bino-

mial(n, p) by the N
(

np, np(1−p)
)

distribution, that is on

X − np
√

np (1− p)
=

X
n − p
√

p(1−p)

n

d
−→ N (0, 1)

and

(2.4) P



−z1−α/2 ≤
X
n − p
√

p(1−p)

n

≤ z1−α/2



 ≃ 1− α ,

where zγ denotes the γ percentile of the N (0, 1) distribution.

From (2.4) one can obtain, solving a second degree equation, the score

or Wilson (1927) interval (Method III in Table 1). Note that LIII (X) > 0 and

UIII (X) < 1 for every 0 < X < n and that LIII (0) = 0 and UIII (n) = 1.

A modification of the score method is obtained by introducing a continuity

correction (cc) of ±1/(2n) in the numerator of the central expression of (2.4),

which is expected to improve the approximation (Method IV in Table 1). For the

boundary cases one obtains LIV (0) > 0 and UIV (n) < 1, which are corrected in

the obvious way.

Most of the elementary text books do not present the previous methods,

considering instead a second approximation in expression (2.4),

P



−c ≤
X
n − p

√

X
n2

(

1− X
n

)

≤ c



 ≃ 1− α ,

leading to the Wald interval (Method V in Table 1). Method VI is similar but

with continuity correction.

Noting that, when X = 0 or X = n, the Wald interval has zero length,

something an applied statistician will be reluctant to present, it is wise to consider

replacing it, just in these two cases, by the exact Clopper–Pearson expressions

(2.3). This is denoted Method VII (without continuity correction). Method VIII

is just the same but with continuity correction. Vollset (1993) also considered

these two modifications of the Wald interval.

Another possibility for correcting the Wald interval (mentioned for instance

by Brown, Cai and DasGupta, 2002) is to recenter it at the center of the score

interval, which is given by (X + c2/2)/(n + c2
), see Table 1. This modification is

considered here together with the previous one, both without and with continuity

correction (Methods IX and X, respectively).
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2.3. Bootstrap methods

It was considered interesting to include in this study some bootstrap meth-

ods because, in this particular situation, it is not necessary to use a Monte Carlo

approximation, and also because this example is not usually mentioned in the

bootstrap literature (the only reference found was Hjorth, 1994, pp. 110–111, and

not with the options taken here).

The non-parametric bootstrap method introduced by Efron (1979), con-

sists on making inferences about a population using solely the empirical distri-

bution of the observed sample. In the present context, as the sample consists on

X successes and n −X failures, the empirical distribution function is given by

Fn(y) =















0, y < 0

1−
X

n
, 0≤ y < 1

1, y ≥ 1

,

that is, the distribution function of a Bernoulli
(

X
n

)

random variable. Considering

the estimator of p, p̂ =X/n, we obtain the bootstrap distribution of this estimator

by noting that the bootstrap distribution of np̂ is the distribution of the number

of successes on a random sample of size n from a Bernoulli
(

X
n

)

population, that

is, Binomial
(

n, X
n

)

.

Given this distribution several methods can be used to obtain two-sided

confidence intervals for the parameter of interest, p. One of those methods is the

Percentile Method, which in this case consists on taking the percentiles α/2 and

1− α/2 of the bootstrap distribution of p̂, leading to Method XI in Table 2.

Since the parameter p varies continuously in [0, 1] and the quantities given

by LXI (X) and UXI (X) vary discontinuously by 1/n it makes sense to introduce

here a kind of continuity correction. This is called Method XII (see Table 2).

The Percentile Method is usually considered to have some drawbacks, and

several corrections have been proposed for it. One is the BCP (Bias Corrected

Percentile, see e.g. Shao and Tu 1995) which consists on replacing the previous

percentiles (α/2 and 1−α/2) by other percentiles accounting for the asymmetry

of the bootstrap distribution. Thus, α/2 is replaced by

α′
= Φ

(

zα/2 + 2×Φ
−1

(

KB

(

X

n

))

)

(2.5)

and 1− α/2 by

α′′
= Φ

(

z1−α/2 + 2×Φ
−1

(

KB

(

X

n

))

)

,(2.6)
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where KB denotes the bootstrap distribution function. Due to the discrete nature

of this distribution a further correction must be applied and the one used was

KB

(

X

n

)

=

[

F
Bin(n, X

n )
(X) + F

Bin(n, X
n )

(X−1)

]/

2 .

Note that if the bootstrap distribution is symmetric (which happens when X/n ≃

0.5) then KB(X/n) ≃ 0.5, α′ ≃ α/2 and α′′ ≃ 1− α/2, and there is practically

no correction to the raw percentile method. Method XIII refers to the boot-

strap BCP method and Method XIV is similar but with the continuity correction

introduced above.

In Methods XI to XIV the zero length intervals for X = 0 and X = n

have been replaced by the exact Clopper–Pearson expressions (as it was done

for Methods VII to X).

2.4. Normal approximations after a transformation

The next methods considered are based on the approximate normal distri-

bution after the variance stabilizing transformation, that is on

arcsin

√

X

n

d
−→ N

(

arcsin
√

p,
1

4n

)

.

Solving for p and correcting for inconsistencies in the extremes one obtains

Method XV in Table 2. Introducing a continuity correction leads to Method XVI.

A refinement of this method using a correction due to Anscombe (1948) is also

considered (Method XVII).

2.5. Other approximations

This subsection introduces the last three methods consisting on very recent

suggestions.

Agresti and Coull (1998) noting that the score interval has very good pro-

perties (confirmed in the comparative studies of Vollset 1993, Newcombe 1998,

and again in the next section of this paper), that it is centered around

(2.7) p̃(c) =
X + c2/2

n + c2
,

and that for 95% confidence c2 ≃ 4, suggested a simple, yet effective, method:
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add 4 observations to the sample, two successes and two failures, and then use

the Wald formula (Method V). This method will be referred as Add 4 or Method

XVIII. They also propose the use of p̃(2) as point estimator and call it the Wilson

point estimator, since Wilson (1927) was the first statistician recommending it

(as a curiosity note that p̃(
√

2) is also an old estimator, the Laplace estimator).

Pan (2002) proposes a further modification, both on the Wald interval and

the Add 4 interval, which consists on using percentiles of a suitable t-distribu-

tion instead of the normal. The modification of the Wald interval is denoted

Method XIX whereas the one for the Add 4 interval is referred as Method XX.

Let V (p, n) = p(1−p)/n be the variance of p̂. By introducing a scaled chi-square

distribution and matching its first two moments with those of V (p̂, n), Pan (2002)

concludes that for the Wald-t interval the appropriate degrees of freedom are

given by

(2.8) ν =
2 V (p̂, n)

2

Ω(p̂, n)
,

and that for the Add 4-t those are given by

(2.9) ν =
2 V
(

p̃(2), n+4
)2

Ω
(

p̃(2), n+4
) ,

where

Ω(p, n) =
p−p2

n3
+

p + (6n−7)p2
+ 4(n−1)(n−3)p3− 2(n−1)(2n−3)p4

n5

− 2
p + (2n−3)p2 − 2(n−1)p3

n4
.

3. COMPARISON OF THE METHODS

3.1. Central intervals

In order to evaluate and compare the performance of the twenty methods

presented in Section 2, the coverage probability and the corresponding expected

length have been computed for 5000 values of p, equally spaced in [0.0001, 0.5],

for every 10 ≤ n ≤ 1000 and for α = 0.05, 0.01.

The coverage probability, function of p, n and the method, i = I, ...,XX,

is given by

(3.1) CP
(

p, n, i
)

=

n
∑

j=0

(

n

j

)

pj
(1− p)

n−j I[Li(j),Ui(j)](p) ,
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where I[a,b](p) denotes the indicator function of the interval [a, b], i.e. I[a,b](p) = 1,

if p ∈ [a, b], and I[a,b](p) = 0, if p /∈ [a, b]. The expected length is

(3.2) EL
(

p, n, i
)

=

n
∑

j=0

(

n

j

)

pj
(1− p)

n−j
(

Li(j) − Ui(j)
)

.

The above computations were performed in R (code available upon request). The

results are exact, within machine accuracy, and shall therefore not be interpreted

as Monte Carlo results (from the papers cited before the only one giving Monte

Carlo results is Garćıa-Pérez, 2005).

Figures 1 and 2 show plots of the coverage probability for two non ex-

treme cases, n = 50 and n = 500, with α = 0.05. The plots for other values of

n and for α = 0.01 are qualitatively similar to these two. The non-smooth as-

pect is expected due to the presence of the indicator function in expression (3.1).

In fact, the coverage probability, as a function of p, has as many discontinuity

points as the number of distinct values of Li and Ui, about 2n in (0, 1). Between

the discontinuity points CP(p, n, i) is a polynomial of degree n.

Since it is impossible to analyze the several thousands of plots that could

be produced, the results for the coverage probability were summarized in terms

of observed minimum and mean on p for each n, and then plotted as a function

of n. These plots are shown in Figures 3, 4, 5 and 6.

Considering the criteria described in Section 1, a possible classification of

the methods is the following:

1st. Group – Strictly conservative methods, i.e. methods for which the

minimum coverage probability is, for all n ≥ 10 and for

all p, greater or equal to 1− α − 0.005 (nominal coverage

probability rounded to two decimal places):

i : min
p

CP
(

p, n, i
)

≥ 1− α − 0.005 , ∀n≥10 .

2nd. Group – Methods not strictly conservative but correct on average,

i.e. with mean coverage probability, for all n ≥ 10, greater

or equal to 1− α − 0.005:

i :

∫

1

0

CP
(

p, n, i
)

dp ≥ 1− α − 0.005, ∀n≥10 .

3rd. Group – Methods which are neither strictly conservative nor correct

on average.
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Figure 1: Coverage probability for each method as a function of p
for n = 50 and α = 0.05.
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Figure 2: Coverage probability for each method as a function of p
for n = 500 and α = 0.05.
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Figure 3: Minimum coverage probability for each method as a function of n
(10 ≤ n ≤ 1000) for 95% confidence.
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Figure 4: Mean coverage probability for each method as a function of n
(10 ≤ n ≤ 1000) for 95% confidence.
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Figure 5: Minimum coverage probability for each method as a function of n
(10 ≤ n ≤ 1000) for 99% confidence.
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Figure 6: Mean coverage probability for each method as a function of n
(10 ≤ n ≤ 1000) for 99% confidence.
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Table 3 summarizes the classification. 2% exceptions were allowed for clas-

sifying a method in the first group. The methods in the first group are shown by

increasing order of mean coverage probability whereas those in the second group

are shown by decreasing order of the minimum of the coverage probabilities over-

all n and p (shown into brackets). The composition of the groups depends slightly

on the minimum value of n considered in this evaluation (n ≥ 10). If the crite-

rion was much less stringent, for instance n ≥ 200 then: for 95% confidence Boot

BCP cc and Arcsin cc would move to the first group and Wald cc and Boot P

would enter the second group; for 99% confidence Add 4 would move to the first

group and Boot P would enter the second group.

Table 3: Classification of the methods: strictly conservative (1
st

group);

average correct (2
nd

group) (overall minimum of the coverage

probabilities). Methods shown in boldface have not been con-

sidered in other comparative studies in the literature.

Group 95% confidence 99% confidence

1st I – Clopper Pearson XX – Add 4-t
IV – Score cc XVII – Arcsin cc Anscombe

XVII – Arcsin cc Anscombe I – Clopper Pearson

2nd XVI – Arcsin cc (93%) XVIII – Add 4 (98%)
XX – Add 4-t (93%) IV – Score cc (97%)
XVIII – Add 4 (92%) XIV – Boot. BCP cc (96%)
XIV – Boot. BCP cc (90%) XII – Boot. P cc (95%)

XII – Boot. P cc (88%) XIII – Boot. BCP (94%)
VIII – Wald-I cc (87%) VIII – Wald-I cc (93%)
XIII – Boot. BCP (85%) II – Bayesian uniform prior (90%)
III – Score (84%) III – Score (89%)
II – Bayesian uniform prior (79%) XVI – Arcsin cc (76%)
X – Wald-I rec. cc (64%) X – Wald-I rec. cc (32%)

It is worth noting that seven out of the thirteen methods classified in the

first and second groups were not considered in the largest comparative studies in

the literature (Vollset 1993, Newcombe 1998, Agresti and Coull 1998, Pan 2002).

Note that Method II is exact on average due to the coincidence between the

prior distribution admitted and the distribution of p actually used to compute

the mean coverage probability. The performance of this method is not so good

due to the rather small value of the minimum coverage probability. If we had

chosen the Jeffreys prior instead this aspect would have improved a little: 87%

for 95% confidence (placing it between Methods VIII and XIV) and 96% for 99%

confidence (between Methods IV and XIV).

It is also remarkable that some of the intervals maintain their good behavior

for n as low as 10, in spite of being based on asymptotic results. It is the case
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namely of the score intervals (with and without continuity correction) and the

ones based on the arcsine transformation.

Another interesting feature revealed by these results is that an apparently

small modification may have a great impact in the performance of a method. For

instance, the Wald method was completely disqualified in the vast majority of

the papers mentioned in the introduction, however a simple modification at the

boundary values and the simultaneous use of the continuity correction leads to

an acceptable method, with better performance than the score or the Bayesian

intervals. Figure 7 shows three plots illustrating this aspect for some values of n

and α referred as “unlucky” by Brown, Cai and DasGupta (2001, 2002).
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Figure 7: Coverage probability of the Wald interval (Method V, dashed)

and the Wald interval with a modification at the boundary and

continuity correction (Method VIII, solid) for some “unlucky”

values of n and α.

Not surprisingly it is observed that the methods with continuity correc-

tion are always better in terms of coverage probability than the corresponding

ones without that correction. It is also possible to verify that the bootstrap BCP

method is slightly better than the percentile method and that both of these meth-

ods outperform the Wald methods. The results also show that the t correction

of the Wald method proposed by Pan (2002) does not achieve its aim and it is in

fact less effective than the usual continuity correction.

After this analysis of the coverage probabilities it is important to compare

the expected lengths of the intervals. This comparison makes sense only within

each group and only for the first and the second groups. Taking as reference

Method I (Clopper–Pearson or exact) the ratio between the expected length of

the intervals obtained using the other methods in the first group and the expected

length by Method I was computed. The same was done with the first four methods

in the second group (considering that the remaining, in spite of being correct

on average, have an undesirable behavior in terms of the minimum coverage
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probability). Figure 8 shows the corresponding plots for n = 100. The plots for

other values of n are qualitatively similar, but with the differences between the

methods decreasing with n, especially at medium values of p.
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Figure 8: Ratio between the expected length of the conservative intervals

and the expected length of the Clopper–Pearson interval (top)

for n = 100. Ratio between the expected length of the first

four top average correct intervals and the expected length of

the Clopper–Pearson interval (bottom) for n = 100.

For the first group (top plots of Figure 8) the conclusion is that the Arcsine

method with Anscombe’s continuity correction is almost equivalent to the exact

Clopper–Pearson interval in terms of length (and degree of conservativeness)

but the Add 4-t is unnecessarily wide (or conservative).
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In the second group (bottom plots of Figure 8) the conclusions are not

so straightforward because there are more methods involved. However, for 95%

confidence, it is possible to conclude that Method XVI (Arcsin cc) dominates

Method XIV (Boot. BCP cc), having both better coverage and length. Method

XVIII (Add 4) almost dominates Method XX (Add 4-t), it has better length

but slightly smaller coverage probability. The choice between the dominating

two methods is not so easy and depends on prior knowledge of the true p, if p

is not small or large, Method XVIII is better because it leads to smaller length,

if, on the contrary, p is either small or large, Method XVI is better. What is

“small” or “large” depends on n and may not be easy to choose but after all

it is not so important because any of these methods will produce a reasonable

and safe interval whatever the value of p. For 99% confidence the conclusion is

that Method XVIII (Add 4) dominates Method IV (Score cc) because of better

length and coverage probability. The other two may lead to smaller lengths but

at the cost of undesirably small minimum coverage probability. The best choice

appears, therefore, to be the Add 4 method.

3.2. Non-central intervals

If one feels comfortable with the concept of a non-central interval then

there are only two methods to choose from: the exact method according to the

two criteria (minimum coverage probability of at least 1− α or mean coverage

probability equal to 1− α) and minimizing length.

To meet the first criterion and minimize the length of the interval one has to

invert the test H0 : p = p0 versus H1 : p 6= p0 with size α, choosing for each p0 the

acceptance region, An(p0)≤X≤Bn(p0), with smallest length. Then, given X,

the confidence region is the set of those p0 for which X is in the corresponding

acceptance region. This is not an easy task and in fact many authors have ad-

dressed it (Sterne, 1954, Crow, 1956, Clunies-Ross, 1958, Blyth and Still, 1983,

Casella, 1986, Reiczigel, 2003, see also the discussion in Santner and Duffy, 1989).

The method we have implemented is based on Sterne’s proposal (the accep-

tance interval for p = p0 is made by including the most probable value of X,

then the next most probable, ..., until the sum of their probabilities is greater

than 1− α) with a slight modification. This modification is needed because al-

though the acceptance region is always an interval the inverted region for p is not.

We simply fill in the holes when they appear, which reduces to compute the in-

terval by

LSt(X) = min

{

p : An(p) ≤X ≤ Bn(p)

}

and

USt(X) = max

{

p : An(p) ≤X ≤ Bn(p)

}

.
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The slight modification has a very small practical effect: when compared with

the intervals given in Table 2 of Blyth and Still (1983) for n ≤ 30 there is only

one different.

Figure 9 represents the results corresponding to Figures 1 and 2. It is clear

that the Sterne interval is closer to the desired coverage than the Clopper–Pearson

interval (it is less conservative but its coverage is still always over 1− α as it

should). This translates into smaller mean coverage probability (see Figure 10).
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Figure 9: Coverage probability for the two exact frequentist intervals

(non-central and central) as a function of p for n = 50 and

n = 500 (α = 0.05).

Figure 11 reproduces the top two plots of Figure 8 with the curve corre-

sponding to the Sterne interval. It does not come as a surprise that this interval

has smaller expected length than the Clopper–Pearson interval except for values

of p very close to the boundary.
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Figure 10: Mean coverage probability for the two exact frequentist intervals

(non-central and central) as a function of n (10 ≤ n ≤ 1000) for

95% and 99% confidence.
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When considering the second criterion (or mean coverage probability equal

to 1 − α) minimal length is achieved at ease by computing an HPD credibility

interval. Given X, the HPD interval for the a posteriori Beta(X + 1, n− X + 1)

distribution can be determined in the following way: for every possible value of

the left credibility tail, 0 ≤ α′ ≤ α, define

L(X, α′
) = BX+1,n−X+1;α′ and U(X, α′

) = BX+1,n−X+1;1−(α−α′)

and determine α′
(X) such that U(X, α′

) − L(X, α′
) is minimum and denote it

α′
(X). The interval is given by LHPD(X) = L(X, α′

(X)) and UHPD(X) =

U(X, α′
(X)). Note that, as mentioned in Subsection 2.1, we have α′

(0) = 0,

LHPD(0) = 0, UHPD(0) = 1 − α1/(n+1)
; and α′

(n) = α, LHPD(n) = α1/(n+1)
,

UHPD(n) = 1.
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Figure 12: Coverage probability for the two Bayesian intervals with uni-

form prior (HPD and equal credibility tails) as a function of p
for n = 50 and n = 500 (α = 0.05).
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Figure 12 represents the results corresponding to Figures 1 and 2. For both

intervals the coverage fluctuates around the target value but the HPD does not

have the downward spikes lose to the boundaries. This is also evident from the

minimum coverage probability plots (see Figure 13).
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Figure 13: Minimum coverage probability for the two Bayesian intervals

with uniform prior (HPD and equal credibility tails) as a func-

tion of n (10 ≤ n ≤ 1000) for 95% and 99% confidence.

Figure 14 reproduces the bottom two plots of Figure 8 with the curves

corresponding to the two Bayesian intervals. As expected the HPD interval has

smaller expected length than the other intervals except for values of p very close

to the boundary (only for 99% confidence).

We have thus verified the optimality of the two exact procedures. What the

statistician must decide is whether the reduction in expected length (of approxi-

mately 2% or 3% in the strictly conservative case and of approximately 5% or 7%

in the average correct case) is worth the complications involved in the computa-

tions and the somehow different interpretation associated to non-central intervals.
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Figure 14: Ratio between the expected length of the first four top aver-

age correct central intervals and the expected length of the

Clopper–Pearson interval for n = 100 (solid thin lines) together

with the same ratio for the central Bayesian interval (dashed

thick lines) and for the HPD interval (solid thick lines).

4. CONCLUDING REMARKS

The results reported in this paper have brought new insight into the appar-

ently easy problem of determining an interval estimate for a binomial proportion.

Although there is not a unique uniformly best choice, it is now easier to answer

the two questions posed in the introduction and related, respectively, to applica-

tions and teaching.

4.1. Applications

When considering the computation of an interval estimate for a binomial

proportion the first decision the applied statistician must take is related to the

balance between degree of conservativeness and efficiency (equivalent in this case

to the length of the intervals). Let us consider the two extreme options and only

the class of central intervals:

(i) If strict conservativeness is mandatory than he or she must choose the

Clopper–Pearson interval, or, almost equivalently, the arcsine interval

with Anscombe’s correction.
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(ii) If strict conservativeness is not a major concern then length must be,

subject to being at least correct on average. It is also wise to limit

the “damage” measured by the overall minimum of the coverage

probabilities and the recommendation is to choose, in the case of

95% confidence, either the Arcsin cc method or the Add 4 method.

For 99% confidence the recommended method is the Add 4.

The score interval with continuity correction remains a valid choice, except

that it may be too wide if the true p is close to 0 or to 1.

4.2. Teaching

In addition to the concerns of the applied statistician the teacher of statis-

tics must also take into account the nature of the course and this may complicate

the decision.

In a course for future statisticians the recommendations given in the pre-

vious subsection apply. The various methods should be taught and thoroughly

discussed.

For elementary courses, typically less mathematically oriented and often

unique, simplicity and lack of time for in depth discussions are a major concern.

The Add 4 method of Agresti and Coull (1998) appears as a good choice, its

properties are good and it is easy to compute. If, maybe for other reasons, one

wants to stick to the Wald method then at least the continuity correction and

the boundary modification should always be included.

4.3. Software

Four major statistical packages (SAS 9.1.3, S-Plus 8, SPSS 15 and R 2.6)

were analyzed concerning the availability and correct implementation of interval

estimates for the binomial parameter.

SAS provides, through PROC FREQ, the Wald interval, with and without

continuity correction, and the exact Clopper–Pearson interval obtained with the

percentiles of the F distribution.

In S-Plus there are two commands related to binomial proportions. The

prop.test command gives the normal based hypotheses tests and the score

intervals, with and without continuity correction. However, when using the conti-

nuity correction and when X = 0 or X = n, the intervals given by this command



194 Ana M. Pires and Conceição Amado

are wrong, leading to L(0) > 0 or L(n) < 1. Another undesirable feature of

this command is that it never applies the continuity correction when X = n/2,

even when this option is set to TRUE. These apparently small details may have a

strong visual impact and determine the classification of the method (see Figure 9).

The binom.test command gives only the exact hypothesis test but could be

easily modified in order to provide the exact Clopper–Pearson interval.

SPSS provides the asymptotic and the exact tests for binomial proportions

but no confidence intervals (unlike other situations for which both the test and

the confidence interval are provided, e.g. t test for the mean). Separately, there

is a document describing how to compute the equal-tailed Jeffreys prior intervals

(which are represented in bar charts).

The R software has commands with the same names as those of S-Plus

(prop.test and binom.test), but the first makes the boundary correction and

the second also gives the exact Clopper–Pearson interval. However the prop.test

has the same problem with the continuity correction when X= n/2 (see Figure 15

and also Figure 1 of Geyer and Meeden, 2005).
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Figure 15: Effect of forcing no continuity correction for X = n/2 on the

coverage probability of the Score cc interval (95% confidence).

Correct implementation of the method (solid line) and imple-

mentation with the command prop.test of R and S-Plus

(dashed line). The dashed-dotted line represents the results

for prop.test of S-Plus at the extremes (no boundary cor-

rection when X = 0 or X = n).

In summary, the analyzed statistical packages do not treat the subject

uniformly. This is perhaps a reflection of the recent spread of publications in the

area. We hope that in the near future a consensus is reached and that it will be

reflected in the software. This paper aims at contributing in that direction.
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