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Abstract:

• This article studies the robustness of different likelihood ratio tests proposed by
Quandt ([1]) and ([2]), (Q-Test), Kim and Siegmund ([3]), (KS-Test), and Kim ([4]),
(K-Test), to detect a change in simple linear regression models. These tests are eval-
uated and compared with respect to their performance taking into account different
scenarios, such as, different error distributions, different sample sizes, different loca-
tions of the change point and departure from the homoscedasticity. Two different
alternatives are considered: i) with a change in the intercept from one model to the
other with the same slope and ii) with a change in both the intercept and slope.
The simulation results reveal that the KS-Test is superior to the Q-Test for both
models considered while the K-Test is more powerful than the other two tests for
nonhomogeneous models with a known variance.

Key-Words:

• segmented regression models; likelihood ratio tests; robustness.

AMS Subject Classification:

• 62J02, 62F03.



2 Diniz and Brochi



Robustness of two-phase regression tests 3

1. INTRODUCTION

The use of models involving a sequence of submodels has been widely ap-
plied in areas such as economics, medicine and biology, among others. These
types of models, denoted by segmented (or switching or multi-phase) regression
models, are useful when it is believed that the model parameters change after an
unknown time or in some region of the domain of the predictor variables.

A simple segmented regression model, in the case that a sequence of obser-
vations (xi, yi), i=1, 2, ..., n, is considered, can be written in the following way

yi =

{
α1 + β1xi + εi, if xi � r

α2 + β2 xi + εi, if xi > r ,
(1.1)

where α1, α2, β1, β2 and r are unknown parameters and the errors εi have distri-
bution N(0, σ2). The submodels in (1.1) are referred to as regimes or segments
and the point r as the change point.

Segmented regression models are divided into two types. One where the
model is assumed to be continuous at the change point, and the other where
it is not. The inferential theory is completely different for each type of model
(Hawkins ([5])). The emphasis in this article is on the discontinuous model.

The linear-linear segmented regression model proposed by Quandt ([1]) is
similar to model (1.1), except that the change point is identified by the observa-
tion order instead of the observation value as above. Moreover, the model (1.1)
assumes homoscedasticity while the Quandt model assumes heteroscedasticity.

Considering a sequence of observations (xi, yi), i = 1, 2, ..., n, the Quandt
two-phase regression model is given by

yi =

{
α1 + β1xi + εi, if i = 1, ..., k

α2 + β2 xi + εi, if i = k+1, ..., n ,
(1.2)

where the εi have independent normal distributions with mean zero and variance
σ2

1 if i� k and variance σ2
2 if i>k. The parameters α1, α2, β1, β2 and k are all

unknown.

Various tests for the presence of a change point based on the likelihood
ratio are discussed in the statistics literature. Quandt ([1], [2]) was the first
to propose a likelihood ratio test to detect the presence of a change point in
a simple linear regression model. Hinkley ([6]) derived the asymptotic distri-
bution of the maximum likelihood estimate of a change point and the asymp-
totic distribution of the likelihood ratio statistics for testing hypotheses of no
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change in (1.2), where the independent observations x1, ..., xn, are ordered, the
change point k is unknown and the errors εi are considered uncorrelated N(0, σ2).
Furthermore, it is assumed that xk �γ�xk+1, where γ = (α1− α2)/(β2 − β1)
is the intersection of the two regression lines. Hinkley ([7]) discussed infer-
ence concerning a change point considering the hypothesis H0 : k = k0 versus the
one-sided alternative H1 : k > k0 or versus the two-sided alternative H2 : k �= k0.
Brown et al. ([8]) described tests for detecting departures from constancy of re-
gression relationships over time and illustrated the application of these tests with
three sets of real data. Maronna and Yohai ([9]) derived the likelihood ratio test
for the hypothesis that a systematic change has occurred after some point in the
intercept alone. Worsley ([10]) found exact and approximate bounds for the null
distributions of likelihood ratio statistics for testing hypotheses of no change in
the two-phase multiple regression model

yi =

{
x

′
i β + εi, if i = 1, ..., k

x
′
i β

∗ + εi, if i = k+1, ..., n ,
(1.3)

where p � k � n−p, xi is a p-component vector of independent variables and β

and β∗ are p-component vectors of unknown parameters. His numerical results
indicated that the accuracy of the approximation of the upper bound is very
good for small samples. Kim and Siegmund ([3]) consider likelihood ratio tests
for change point problems in simple linear regression models. They also present
a review on segmented regression models and some real problems that motivated
research in this area. Some of these problems are examined using change point
methods by Worsley ([11]) and Raferty and Akman ([12]). Kim ([4]) derived
the likelihood ratio tests for a change in simple linear regression with unequal
variances. Kim and Cai ([13]) examined the distributional robustness of the like-
lihood ratio tests discussed by Kim and Sigmund ([3]) in a simple linear regression.
They showed that these statistics converge to the same limiting distributions re-
gardless of the underlying distribution. Through simulation the observed distri-
butional insensitivity of the test statistics is observed when the errors follow a
lognormal, a Weibull, or a contaminated normal distribution. Kim ([4]), using
some numerical examples, examined the robustness to heteroscedasticity of these
tests.

In this paper different likelihood ratio tests (Quandt ([1]) and ([2]), Kim and
Siegmund ([3]) and Kim ([4])) to detect a change on a simple linear regression,
are presented. The tests are evaluated and compared regarding their perfor-
mance in different scenarios. Our main concern is to assist the user of such tests
to decide which test is preferable to use and under which circumstances. The
article is organized as follows. In Section 2, the likelihood ratio tests proposed by
Quandt ([1]) and ([2]), Kim and Siegmund ([3]) and Kim ([4]) will be described.
In Section 3, via Monte Carlo simulations, the performance of the tests discussed
in Section 2 will be assessed and compared. Final comments on the results,
presented in Section 4, will conclude the paper.
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2. TEST STATISTICS

In this Section the likelihood ratio tests proposed by Quandt ([1]) and ([2]),
Kim and Siegmund ([3]) and Kim ([4]) are described in more detail. In all the
cases the model (1.2) is considered.

2.1. Likelihood Ratio Test by Quandt (Q-Test)

The test described by Quandt ([1]) and ([2]) is used for testing the hy-
pothesis that no change has occurred against the alternative that a change took
place. That is, H0 : α1 = α2, β1 = β2, σ1 = σ2 against H1 : α1 �= α2 or β1 �= β2 or
σ1 �= σ2. The error terms εi are independently and normally distributed N(0, σ2

1)
for i = 1, ..., k and N(0, σ2

2) for i = k+1, ..., n.

The likelihood ratio λ is defined as

λ =
l(k)
l(n)

,

where l(n) is the maximum of the likelihood function over only a single phase
and l(k) is the maximum of the likelihood function over the presence of a change
point. That is,

λ =
exp

[
− log(2π)

n
2 − log σ̂n − n

2

]
exp

[
− log(2π)

n
2 − log σ̂k

1 − log σ̂n−k
2 − n

2

]
=

σ̂k
1 σ̂n−k

2

σ̂n
,

where σ̂1 and σ̂2 are the estimates of the standard errors of the two regression
lines, σ̂ is the estimate of the standard error of the overall regression based on all
observations and the constant k is chosen in order to minimize λ. On the basis
of empirical distributions resulting from sampling experiments, Quandt ([1]) con-
cluded that the distribution of −2 log λ can not be assumed to be χ2 distribution
with 4 degrees of freedom.

2.2. Likelihood Ratio Tests by Kim and Siegmund (KS-Test)

Kim and Siegmund ([3]), assuming the model (1.2) with homoscedasticity,
consider tests of the following hypotheses:
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H0 : β1 = β2 and α1 = α2 against the alternatives

(i) H1 : β1 = β2 and there exists a k (1�k<n) such that α1 �= α2 or

(ii) H2 : there exists a k (1�k<n) such that β1 �= β2 and α1 �= α2.

The alternative (i) specifies that a change has occurred after some point in
the intercept alone and alternative (ii) specifies that a change has occurred after
some point in both intercept and slope.

The likelihood ratio test of H0 against H1 rejects H0 for large values of

max
n0�i�n1

|Un(i)| /σ̂ ,

where nj = ntj , j =0, 1, for 0<t0 <t1 <1, and

Un(i) = (α̂i − α̂∗
i )

(
i (1− i/n)

1 − i(x̄i − x̄n)2/
{
Qxxn(1 − i/n)

})1/2

.

The likelihood ratio test of H0 against H2 rejects H0 for large values of

σ−2 max
n0�i�n1

{
n i (ȳi − ȳn)2

n − i
+

Q2
xyi

Qxxi
+

Q∗2
xyi

Q∗
xxi

− Q2
xyn

Qxxn

}
,

where, following Kim and Siegmund ([3]) notation,

x̄i = i−1
i∑

k=1

xk , ȳi = i−1
i∑

k=1

yk , α̂i = ȳi − β̂ x̄i , α̂∗
i = ȳ∗i − β̂ x̄∗

i ,

x̄∗
i = (n−i)−1

n∑
k=i+1

xk , ȳ∗i = (n−i)−1
n∑

k=i+1

yk , Qxyi =
i∑

k=1

(xk− x̄i) (yk− ȳi) ,

Qxxi =
i∑

k=1

(xk− x̄i)
2 , Q∗

xxi =
n∑

k=i+1

(xk− x̄∗
i )

2 , ... ,

Qxxn =
n∑

k=1

(xk− x̄n)2 , Qxyn =
n∑

k=1

(xk− x̄n) (yk− ȳn) ,

β̂ = Qxyn/Qxxn and σ̂2 = n−1
(
Qyyn − Q2

xyn/Qxxn

)
.

In these tests and in the tests by Kim, the values for t0 and t1 depend on
the feeling we have concerning the location of the change point. This impression
comes from a scatterplot of y and x. In this study we will use t0 = 0.1 and t1 = 0.9.
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2.3. Likelihood Ratio Tests by Kim (K-Test)

Kim ([4]) studied likelihood ratio tests for a change in a simple linear re-
gression model considering the two types of alternatives presented in the previous
subsection. It is assumed that the error variance is non-homogeneous, that is, the
error terms follow N(0, σ2

i ), where σ2
i =σ2/wi and the wi’s are positive constants.

The likelihood ratio statistics is denoted by weighted likelihood ratio statistics.

The weighted likelihood ratio statistics to test H0 against H1, (WLRS1),
is given by

σ̂−1 max
n0�i�n1

|Uw,n(i)|(2.1)

where

Uw,n(i) =

⎛⎜⎜⎜⎝
i∑

k=1

wk

n∑
k=1

wk

n∑
k=i+1

wk

⎞⎟⎟⎟⎠
1
2

⎛⎜⎜⎜⎜⎜⎝
ȳw,i − ȳw,n − β̂w · (x̄w,i − x̄w,n)[

1−
{

i∑
k=1

wk

n∑
k=1

wk

/ n∑
k=i+1

wk

}
(x̄w,i− x̄w,n)2

/
Qxxn

]1
2

⎞⎟⎟⎟⎟⎟⎠ .

The weighted likelihood ratio statistics to test H0 against H2, (WLRS2), is given
by

σ̂−2 max
n0�i�n1

|Vw,n(i)| ,(2.2)

where

Vw,n(i) =

i∑
k=1

wk

n∑
k=1

wk

n∑
k=i+1

wk

(ȳw,i − ȳw,n)2 +
Q2

xyi

Qxxi
+

Q∗2
xyi

Q∗
xxi

− Q2
xyn

Qxxn
.

In both tests nj = ntj , j =0, 1, for 0 < t0 < t1 < 1, and following Kim ([4])
notation,

x̄w,i =

(
i∑

k=1

wk

)−1 i∑
k=1

wk xk , x̄∗
w,i =

(
n∑

k=i+1

wk

)−1 n∑
k=i+1

wk xk ,

ȳw,i =

(
i∑

k=1

wk

)−1 i∑
k=1

wk yk , ȳ∗w,i =

(
n∑

k=i+1

wk

)−1 n∑
k=i+1

wk yk ,
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Qxxi =
i∑

k=1

wk (xk− x̄w,i)
2 , Q∗

xxi =
n∑

k=i+1

wk

(
xk− x̄∗

w,i

)2
,

Qyyi =
i∑

k=1

wk (yk− ȳw,i)
2 , Q∗

yyi =
n∑

k=i+1

wk

(
yk− ȳ∗w,i

)2
,

Qxyi =
i∑

k=1

wk (xk− x̄w,i) (yk− ȳw,i) ,

Qxxn =
n∑

k=1

wk (xk− x̄w,n)2 , Qxyn =
n∑

k=1

wk (xk− x̄w,n) (yk− ȳw,n) ,

β̂w = Qxyn/Qxxn and σ̂2 = n−1
(
Qyyn − Q2

xyn/Qxxn

)
.

Kim ([4]) also presents approximations of the p-values of the WLRS (2.1)
and (2.2).

3. PERFORMANCE OF THE TESTS

To assess and compare the performance of the tests described in the pre-
vious section we carried out a Monte Carlo simulation taking into account dif-
ferent scenarios, such as, different error distributions, different sample sizes, dif-
ferent locations of the change point and departure from the homoscedasticity as-
sumption. In all the cases two different alternative hypotheses were considered:
i) with a change in the intercept from one model to the other with the same slope,
and ii) with a change in both intercept and slope.

In the simulation process, for each model, the sequence of observations
(x1, y1) , ..., (xn, yn), where xi = i/n, i=1, ..., n and yi satisfying the model (1.2),
were generated 5,000 times. To calculate the distributional insensitivity of the
tests the following distributions for the errors were considered: N(0, 1), N(0, 1)
for one regime and N(0, 4) for the other, normal with variance given by 1/wi,
where wi = (1 + i/n)2, contaminated normal using the mixture distribution
0.95N(0, 1) + 0.5N(0, 9), exponential(1), Weibull(α,γ), with α = 1.5 and γ =
1/(21/2α{Γ(2/α + 1) − Γ2(1/α + 1)}0.5), and lognormal(α, γ), with α = 0.1 and
γ = {exp(2α) − exp(α)}−0.5. For more details for the choice of these parameters
interested readers can see Kim and Cai (1993).
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To generate the Weibull and lognormal random errors we use the methods
presented in Kim and Cai (1993). The Weibull random errors are generated
by the transformation ε = γ(Z2

1 + Z2
2 )1/α, where Z1 and Z2 are independent and

follow standard normal distributions. The lognormal random errors are generated
considering ε = γ exp(

√
α Z1). The exponential and the normal random variables

are generated using SAS/IML functions. The N(0, 1/wi) distribution for the
errors implies that each observation has a different variance determined by the
value wi; it is used to compare the K-Test with the other tests. The K-Test is
applied only in models in which a change can occur in the intercept alone.

Following Zhang and Boss ([14]), Monte Carlo estimates of critical values
are used to create adjusted power estimates. It allows for comparisons among
the competing tests under the same scenarios.

3.1. A Change in the Intercept

We start with the analysis of the performance of the Q-Test for models
with a change in the intercept alone. Figure 1 – panel (a) shows the power of the
Quandt test for different sample sizes and different locations of the change point
considering models with errors following normal distributions. In all the cases
the critical values are the 95th percentiles under H0, estimated by Monte Carlo
simulations. The best performance of the test occurs when the change point is
not at the central position, that is, when the number of observations in a regime
is much smaller than the number of observations in the other, and also when the
sample size increases.

Figure 1 – panel (b) shows the performance of the Q-Test for homogeneous
error variance models with different distributions for the errors. In these cases
the sample size is 20 and the change point is located at k = 15. It can be con-
cluded that the likelihood ratio test of Quandt achieves almost the same power
for the four different distributions for the errors. Similar results are reached for
other different sample sizes and different locations of the change point. The per-
formance of the Q-Test for non-homogeneous error variance models is showen in
Figure 1 – panel (c), for n = 20 and k = 15, when the errors have normal distribu-
tions with different variances from one regime to the other and when the errors
have contaminated normal distribution with each observation having a different
variance. The standard normal distribution model is also presented. The power
of the likelihood ratio test of Quandt achieves almost the same power for the
three distributions when the difference between the intercepts of the two regimes
is less than 2, after that the behavior of the power functions are different. Other
sample sizes and locations of the change point were explored and the results were
similar.
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The performance of the KS-Test for models with a change in the intercept
alone is now analyzed. Figure 2 – panel (a) shows the power of the KS-Test for
models with errors following N(0, 1) considering different sample sizes and dif-
ferent locations of the change point in both regimes. This test performs well in
those cases where the changes occurred far from the center. This is in broad
agreement with the results of Kim and Cai ([13]). The Figure 2 – panel (b) shows
the robustness of the KS-Test concerning different distributions of the errors but
with homogeneous variances. However, for non-homogeneous models, as shown
in Figure 2 – panel (c), the performance of the KS-Test depends on the distribu-
tion of the errors. For the cases where the errors follow non-homogeneous normal
(different variances for each regime) and contaminated normal distribution the
performance of the test is clearly inferior to the performance when the errors
follow homoscedastic distributions. When the considered distribution is the het-
eroscedastic normal the performance of the test is worse than in the contaminated
normal distribution case.

The non-homogeneous models considered in this study were the models in
which the variances of the error terms are proportional to the square of a linear
combination of the regressor variables. That is, the models have errors follow-
ing a N(0, 1/wi), with wi = (1 + i/n)2. Models with this type of heteroscedas-
ticity, known as additive heteroscedastic error models, have been discussed by
Rutemiller and Bowers ([15]) and Harvey ([16]). These models were submitted
to the Q, KS and K-Tests. The test powers are shown in Figure 3. Note that
the Q-Test does not present a good performance in these cases. The KS-Test
is better than the Q-Test but sensibly worse than the K-Test. Comparing such
results with the results presented previously, the non robustness of the Q and
KS-Tests is evident when applied to non-homogeneous models, mainly when the
variances of the errors are different from an observation to another and not only
from a regime to another. The K-Test is more powerful in the case where the
variances of the error terms are different but known. In the cases of contaminated
normal and heteroscedastic normal distributions, where the wi is unknown, the
application of the K-Test can be accomplished by taking wi =1, for i=1, 2, ..., n,
which would make such a test equivalent to the KS-Test, or by estimating these
weights from data.

Comparatively, the Q-Test and KS-Test presented very different results for
samples of size 20. The performance of the KS-Test is superior to the perfor-
mance of the Q-Test. That superiority is noticed practically in all the considered
differences between intercepts. It is important to point out that even when we
considered the non-homogeneous error variance models submitted to the KS-Test,
the results are better than the one of the Q-Test in homogeneous error variance
models. Analyzing the Figures 1 and 2, a similar performance of the Q-Test and
KS-Test when the samples are of size n = 40 is noticed. The K-Test is more
efficient than the others in non-homogeneous error variance models with known
variance.
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(a) (b)

(c)

Figure 1: Power of the Q-Test in three scenarios:
Panel (a) for models with error terms following N(0, 1) considering different
sample sizes and different locations of the change point. In this case the
best performance of the test occurs when the change point is not at the
central position.
Panel (b) for homogeneous error variance models supposing the error terms
have normal, lognormal, Weibull and exponential distribution, with n = 20
and k = 15. Note that the likelihood ratio test of Quandt achieves almost
the same power for the four different distributions.
Panel (c) for models with error terms following N(0,1), nonhomogenous
normal and contaminated normal distribution, with n = 20 and k = 15.
The power of the Q-Test achieves almost the same power for the three
distributions when the difference between the intercepts of the two regimes
is less than 2. Afterwards that, the behavior of the power functions are
different.
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(a) (b)

(c)

Figure 2: Power of the KS-Test in three scenarios:
Panel (a) for models with error terms following N(0,1) considering different
sample sizes and different locations of the change point. This test performs
well in those cases where the changes occurred far from the center.
Panel (b) for homogeneous error variance models supposing the error terms
follow N(0,1), lognormal, Weibull or exponential distribution, with n = 20
and k = 15. It shows the robustness of the KS-Test regarding the four
different distributions.
Panel (c) for models with error terms following N(0,1), non-homogenous
normal and contaminated normal distributions, with n = 20 and k = 15.
In this case the performance of the KS-Test depends on the distribution of
the errors.
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Figure 3: Power of the Q, KS and K-Tests for models with errors following N(0, 1/wi),
where wi = (1 + i/n)2, for i = 1, 2, ..., n. The Q-Test does not present
a good performance in these cases. The KS-Test is better than the Q-Test
but sensibly worse than the K-Test.

3.2. Change in both Intercepts and Slope

The cases considered in the previous section are analyzed here but with
different slopes on the first and second regimes of each model. The difference
between these slopes considered in the simulations are 0.5 and 1.0. The tests
will continue to be denominated Q-Test and KS-Test but taking into account the
versions that consider models with different intercepts and slopes between the
regimes. Recall that the K-Test is applied only to models in which a change can
occur in the intercept alone.

The Figures 4 – panel (a) and 4 – panel (b) present the results obtained with
the Q-Test in models with distribution N(0, 1), considering the differences be-
tween the slopes 0.5 and 1.0, respectively. The test is sensitive to the change in
the difference between such slopes. Besides, as it happened with models where
only the intercepts change, the results are clearly better when the change point is
on a non central region. Moreover in these cases, the performance of the Q-Test
improves as the sample size increases from 20 for 40.

The Figures 4 – panel (c) and 4 – panel (d) present the results obtained with
the Q-Test in homogeneous error variance models considering several distribu-
tions for the error terms with n = 20 and k = 15. Here it is also clear that the
test is sensitive to the increase of the difference between the slopes. Both Figures
evidence the robustness of the test in relation to the considered distributions of
the errors.
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(a) (b)

(c) (d)

Figure 4: Power of the Q-Test in four scenarios:
Panel (a) for models with error terms following N(0, 1) considering different
sample sizes, different locations of the change point and β2 − β1 = 0.5.
Panel (b) for models with error terms following N(0, 1) considering differ-
ent sample sizes, different locations of the change point and β2 − β1 = 1.0.
In both cases the test is sensitive to the change in the difference between
such slopes and improves as the sample size increases from 20 for 40.
Panel (c) for homogeneous error variance models supposing the error terms
follow distribution N(0, 1), lognormal, Weibull and exponential, n = 20,
k = 15 and β2 − β1 = 0.5.
Panel (d) for homogeneous error variance models supposing the error terms
follow distributions N(0, 1), lognormal, Weibull and exponential, n = 20,
k = 15 and β2 −β1 = 1.0. Both Figures evidence the robustness of the test
in relation to the considered distributions of the errors.
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The performance of the Q-Test in non-homogeneous error variance models
in comparison to the case N(0, 1) can be seen in Figures 5 – panel (a) and
5 – panel (b), these also evidence that the test is sensitive to the increase of the
difference between the slopes. Once again, the non robustness of the test studied
in relation to the presence of heteroscedasticity can be clearly seen.

(a) (b)

Figure 5: Power of the Q-Test in two scenarios:
Panel (a) for models with error terms following N(0, 1), non-homogenous
normal and contaminated normal distributions, n = 20, k = 15 and
β2 − β1 = 0.5.
Panel (b) for models with error terms following N(0, 1), non-homogenous
normal and contaminated normal distributions, n = 20, k = 15 and
β2 − β1 = 1.0. In both cases there is evidence that the test is sensitive
to the increase of the difference between the slopes.

The KS-Test when applied to models in which changes occurs in both in-
tercept and slope is sensitive to the increase in the difference between the slopes
and its best performance happens when the structural change occurs in a non
central region. Another property of the KS-test is the non robustness concerning
the heteroscedasticity of the model. Such properties were verified by the analysis
of the plots (not shown here) which present the power of the KS-Test applied to
the same models submitted to the Q-Test.

When the difference between intercepts is less than 1.0, the KS-Test presents
superior performance, in both cases β2 − β1 = 0.5 and β2 − β1 = 1.0, in non-
homogeneous normal models in relation to the N(0, 1) models. However, when
the difference between intercepts is larger than 1.0, such superiority is total and
completely reverted in favor of the cases N(0, 1), also in both cases β2 −β1 = 0.5
and β2 − β1 = 1.0.
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Q-Test and KS-Test are sensitive to the alterations of differences between
intercepts and differences between slopes, besides both tests present better per-
formances when the structural change happens in a non central region. Another
characteristic of the Q-Test and KS-Test is the non robustness of their perfor-
mance in non-homogeneous error variance models in relation to the homogeneous
models.

In all the presented cases the KS-Test performs better than the Q-Test.
Both are shown to be robust regarding the different distributions considered in
homogeneous models, except the KS-Test when applied in models with error
following exponential distribution. However, even presenting inferior power in
the exponential case, the KS-Test has more power than the Q-Test in all the
homogeneous cases.

4. WORKING WITH OUTLIERS

In this section a small investigation of the sensitivity of the tests referring
to outlying observations is presented. New data sets, contaminated with outliers,
are simulated from the model (1.2) and the power results for the three tests,
for some scenarios, are explored. This investigation involves the power of the
Q-test, KS-Test and K-test considering data sets with and without outliers, dif-
ferent sample sizes and different locations of the change point, for errors following
normal distributions. In all the cases the critical values are the 95th percentiles
under H0, estimated by Monte Carlo simulations.

(a) (b)

Figure 6: Power of the Q-Test for models with error terms following N(0, 1) consider-
ing data sets with and without outliers, different sample sizes and different
locations of the change point. Panel (a) β2−β1=0. Panel (b) β2−β1 =1.0.
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For the Q-Test and KS-Test, if the outliers are clearly present in one of
the regimes, inspection of the results reveals that the cases without outliers have
slightly more power when compared to the cases with outliers, but for the K-test
the power of cases with and without outliers are comparable.

For the three studied tests, the cases where the outliers are clearly in the
change point region are slightly more powerful than those cases without outliers.
The reason for that can reside in the fact that the simulated outliers reinforced
the presence of change points.

5. CONCLUDING REMARKS

The robustness of different likelihood ratio tests was investigated under
different scenarios via a simulation study as presented in Section 3. With the
exception of the study by Kim and Cai ([13]) there has been little work done
for a comprehensive discussion of the performance of these tests including the
important question of deciding which test should be considered and under which
circumstances. The simulation results suggested that the KS-Test is superior
to the Q-Test when small to moderate sample sizes are considered for both ho-
mogeneous and non-homogeneous models with a change in the intercept alone.
However, the K-Test is more powerful than the other two tests for non-homo-
geneous models with a known variance. The Q-Test and KS-Test are both
robust regarding different distributions of the errors for homogeneous models.
When there is a change point in both intercept and slope the KS-Test is superior
to the Q-Test in all investigated scenarios.
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Bôıte 158, 175 rue du Chevaleret
75013 Paris (guillou@ccr.jussieu.fr)

Received: November 2003 Revised: October 2004 Accepted: December 2004

Abstract:

• The P.O.T. (Peaks-Over-Threshold) approach consists of using the generalized Pareto
distribution (GPD) to approximate the distribution of excesses over thresholds.
We use the maximum likelihood estimators, or some other ones satisfying regularity
conditions, to estimate the parameters of the approximating distribution. We study
the asymptotic bias of these estimators and also the functional bias of the estimated
GPD.

Key-Words:

• Extreme values; domain of attraction; excesses; generalized Pareto distribution;
maximum likelihood estimators.

AMS Subject Classification:

• 60G70, 62G20.



20 Jean Diebolt and Armelle Guillou



Asymptotic Behaviour of Regular Estimators 21

1. INTRODUCTION

In many statistical applications it is necessary to make inferences about
the tail of a distribution, where little data is available. For instance, one is often
interested in the probability that the maximum of n random variables exceeds a
given threshold or, vice versa, one wants to determine a level such that the ex-
ceedance probability is below a given small value. As an example, an hydraulics
engineer has to estimate the necessary height of a dike such that the probability
of a flooding in a given year is less than 10−4 (cf. Dekkers and de Haan, 1989).
This interest has given rise to a rapid development of extreme value theory
in the last thirty years (see e.g. Galambos, 1978, Leadbetter et al., 1983).
The traditional approach to the analysis of extreme values in a given popula-
tion is based on the family of generalized extreme value (GEV) distributions.
More precisely, Gnedenko (1943) showed that the limit distribution of the max-
imum Xn,n of a sample of independent and identically distributed variables
X, X1, ..., Xn from a distribution F , properly centred and normalized, is neces-
sarily of extreme value type, i.e. for some γ ∈ R, there exists sequences of con-
stants σn > 0 and αn∈ R such that

lim
n→∞

P

(
Xn,n − αn

σn
≤ x

)
−→ Hγ(x) ,(1.1)

for all continuity points of the extreme value distribution function Hγ , defined as

Hγ(x) =

⎧⎨⎩ exp
(− (1 + γx)−

1
γ
)

for γ �= 0 and 1 + γx > 0 ,

exp
(− exp(−x)

)
for γ = 0 and x ∈ R .

The distribution function F is said to belong to the maximum domain of
attraction of Hγ . The real-valued parameter γ is referred to as the extreme value
index (EVI) of F . Most common continuous distribution functions satisfy this
weak condition. Distributions with γ > 0 are called heavy-tailed, as their tail
F̄ typically decays slowly as a power function. Examples in this Fréchet class
are the Pareto, Burr, Student’s t, α-stable (α < 2) and loggamma distributions.
The Gumbel class of distributions with γ = 0 encompasses the exponential, nor-
mal, lognormal, gamma and classical Weibull distributions, the tail of which
diminishes exponentially fast. Finally, the Weibull class consists of distributions
with γ < 0, which all have a finite right endpoint s+(F ) := sup{x : F (x) < 1}.
Examples in this class are the uniform and reverse Burr distributions.

The problem of estimating the so-called extreme value index γ, which de-
termines the behaviour of the underlying distribution function F in its upper tail,
has received much attention in the literature. An extensive motivation of this
estimation problem can be found in Galambos (1978). The GEV distribution is
appropriate when the data consist of a set of maxima. However, there has been
some criticism of this approach, because using only maxima leads to the loss of
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information contained in other large sample values in a given period. This prob-
lem is remedied by considering several of the largest order statistics instead of
just the largest one: that is, considering all values larger than a given threshold.
The differences between these values and a given threshold are called excesses
over the threshold. Denote by Fu(x) := P(X− u ≤ x | X >u) the distribution of
the excesses of X over u, given that u is exceeded, and by Gγ,σ the generalized
Pareto distribution (GPD) defined, for all x ≥ 0, as

Gγ,σ(x) =

⎧⎪⎪⎨⎪⎪⎩
1−

(
1 +

γx

σ

)− 1
γ for γ �= 0 and 1 + γx/σ > 0 ,

1 − exp
(
− x

σ

)
for γ = 0 ,

where σ and γ are the scale and shape parameters.

Pickands’ and Balkema and de Haan’s result (see Pickands (1975) and
Balkema and de Haan (1974)) on the limiting distribution of excesses over a
high threshold states that condition (1.1) holds if and only if

lim
u→s+(F )

sup
0<x<s+(F )−u

∣∣Fu(x) − Gγ,σ(u)(x)
∣∣ = 0

for some positive scaling function σ(u) depending on u.

Thus, if, for some n, one fixes a high threshold un and selects from a
sample X1, ..., Xn only those observations Xi1 , ..., XiNn

that exceed un, a GPD
with parameters γ and σn = σ(un) is likely to be a good approximation for the
distribution Fun of the Nn excesses Yj := Xij − un, j = 1, ..., Nn. This is called
the Peaks-Over-Threshold (P.O.T.) method.

Several methods have been proposed for estimating the parameters of the
GPD, for example the method of moments, of the probability-weighted moments
introduced by Hosking and Wallis (1987) or the maximum likelihood method
(Smith, 1987). In this paper, we look in more details at the maximum likeli-
hood estimators, but also we derive the more general conditions required on the
estimators (γ̂n, σ̂n) in order to obtain our results.

In all the sequel, we denote by

An,un(x) =
1

Nn

Nn∑
j=1

1l{Yj≤x}

the empirical distribution function of the excesses.

It is of course very important to measure the error between F̄un := 1−Fun

(unknown) and its estimator Ḡγ̂n,σ̂n := 1 − Gγ̂n,σ̂n . This error can be splitted
into two parts: an approximation error and an estimation error. The first one,
also called bias of approximation, is justified by the fact that the distribution of
the excesses over un is only approximated by a GPD, which implies a systematic
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error studied in Worms (2000). Since the distribution of the excesses over un is
Fun and not Gγ,σn , the error due to the estimation of (γ, σn) is also divided into
an approximation error due to the bias of approximation and a random term due
to fluctuations.

Note that Nn follows a binomial distribution B(n, 1−F (un)). We suppose,
in all the sequel, that n(1 − F (un)) → ∞ as n → ∞, that is Nn → ∞ in proba-
bility. In such a case, Nn

n(1−F (un)) → 1 in probability, as n → ∞.

Let

F ∗
un

(y) = Fun(σny) and A
∗
n,un

(y) = An,un(σny)

for all y ∈ R+. We will study the asymptotic behaviour of

F̄un(x) − Ḡγ̂n,σ̂n(x)

where γ̂n and σ̂n are the maximum likelihood estimators, or other regular esti-
mators with properties specified later on.

In what follows, we suppose that F is twice differentiable and that its
inverse F−1 exists. Let V and A be two functions defined as

V (t) = F̄−1(e−t) and A(t) =
V ′′(ln t)
V ′(ln t)

− γ .

We suppose the following first and second order conditions:

lim
t→+∞

A(t) = 0 ,(1.2)

and

A is of constant sign at ∞ and there exists ρ≤0 such that |A|∈RVρ ,(1.3)

(see Bingham et al., 1987).

Under these assumptions, it is proved in Worms (2000) (Theorem 1.4, p. 43)
that as un→ s+(F )

F̄un(σny) − Ḡγ(y) = an Dγ, ρ(y) + o(an), as n → +∞ ,(1.4)

for all y, when

σn := σ(un) = V ′(V −1(un)
)

, an := A
(
eV −1(un)

)
Ḡγ(y) := 1 − Gγ, 1(y) ,

and

Dγ,ρ(y) =

⎧⎪⎨⎪⎩
C0,ρ(y), if γ = 0 ,

Cγ,ρ

(
1
γ

ln(1 + γy)
)

if γ �= 0 ,
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where

Cγ,ρ(y) := e−(1+γ)y Iγ,ρ(y) and Iγ,ρ(y) :=
∫ y

0
eγu

∫ u

0
eρs ds du .

We also assume that

lim
n→∞

√
n (1−F (un)) an = λ ∈ R .(1.5)

This is equivalent to suppose that
√

Nn an tends to λ in probability,
as n → ∞.

The main result of this paper is the following. For a regular class of es-
timators, when ρ is equal to 0, the error due to the fact that F̄un is replaced
by Ḡγ̂n,σ̂n is of smaller order than the same error in the case ρ �= 0. This re-
sult is closely linked to the penultimate approximation for the distribution of the
excesses established in Worms (2002) (Gomes and de Haan (2000), generalizing
Cohen (1982), Gomes (1984) and Gomes and Pestana (1987), studied penulti-
mate approximation for the distribution of the maximum). At first sight, it can
appear a bit strange since it is well known that, if we consider only the problem
of the estimation of the index γ, the smaller |ρ|, the more difficult it is to estimate
the index. This problem of bias in the estimation of the index has been widely
studied recently in the literature and justified in particular the work on regression
model by Beirlant et al. (1999). This paper proves that, on the contrary, if we
consider the problem of the estimation of the tail distribution, we do not need
to construct asymptotically unbiased estimators, which is essential in the other
estimation problem.

The remainder of our paper is organized as follows. In Section 2, we give
our main results and the general conditions on the estimators (γ̂n, σ̂n) that we
need to obtain our results. Then, in Section 3, we study the asymptotic bias and
also the functional bias of the estimated GPD in the case of maximum likelihood
estimation with γ > 0. The details of the proofs are postponed to the appendix.

2. MAIN RESULT

We restrict our attention to a class of estimators that we call “regular
estimators” of the couple (γ, σ). We say that an estimator is regular if it has the
form T (Ān,un) =: (T1(Ān,un), T2(Ān,un)), where T satisfies:

(A1) T (Ḡγ, σ) =
(
T1(Ḡγ, σ), T2(Ḡγ, σ)

)
= (γ, σ).

(A2) A form of Hadamard differentiability, namely the existence of linear forms
DT (Ḡγ) =: (DT1(Ḡγ), DT2(Ḡγ)), where

DTk(Ḡγ)[H] =
∫ ∞

0
H dμk,γ , k = 1, 2 ,(2.1)
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for some Borelian measures μk,γ and all H ∈ L1(R+, μ1,γ) ∩ L1(R+, μ2,γ)
such that under assumption (1.5) we have

lim
n→+∞

T (F̄ ∗
un

) − T (Ḡγ)
an

= DT (Ḡγ)[Dγ, ρ] ,(2.2)

lim
n→+∞

√
Nn

(
T

(
F̄ ∗

un
+

1√
Nn

αNn◦ F̄ ∗
un

)
− T (F̄ ∗

un
)

)
= DT (Ḡγ) [B ◦ Ḡγ ] ,(2.3)

in distribution, where αk denotes the uniform empirical process and
B a Brownian bridge, and

lim
n→+∞

T (Ḡγ+an) − T (Ḡγ)
an

= DT (Ḡγ)
[
∂Ḡγ

∂γ

]
.(2.4)

Clearly, condition (A2) requires that Dγ,ρ, B ◦ Ḡγ and ∂Ḡγ

∂γ are in
L1(R+, μ1,γ) ∩ L1(R+, μ2,γ) .

(A3) A scale invariance property, namely for all F̄ such that T (F̄ ) is defined
and all σ > 0,

T1

(
F̄
( •

σ

))
= T1(F̄ ) and T2

(
F̄
( •

σ

))
= σ T2(F̄ ) .(2.5)

As in the Introduction, we use the notation σn = σ(un). Then, if we denote
by (γb

n, σb
n) = T (F̄un) the values of γ and σ obtained when Ḡγ,σn has been

substituted by the true distribution function F̄un of the excesses, we deduce from
(2.2)–(2.5) that

1
an

(
γb

n − γ,
σb

n

σn
− 1

)
−→ DT (Ḡγ)[Dγ, ρ] =:

(L1(γ, ρ), L2(γ, ρ)
)

,(2.6)

and √
Nn

(
γ̂n − γb

n,
σ̂n

σn
− σb

n

σn

)
d−→(2.7)

d−→
(∫ ∞

0
B ◦ Ḡγ dμ1,γ ,

∫ ∞

0
B ◦ Ḡγ dμ2,γ

)
=: (Z1, Z2) .

Consequently,√
Nn

(
γ̂n − γ,

σ̂n

σn
− 1

)
d−→ (Z1, Z2) + λ

(L1(γ, ρ), L2(γ, ρ)
)

.(2.8)

Note that (2.6) contains the bias of approximation of γ and σ, whereas
(2.7) involves the limiting distribution of γ̂n and σ̂n. This shows that the bias of
approximation on the parameters is of order an and under (1.5), γ̂n and σ̂n/σn are
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asymptotically biased when λ �= 0. In this paper, we will focus on the asymptotic
functional bias of approximation, defined as:

AE(x) := lim
n→∞

F̄ ∗
un

(x) − Ḡγb
n, σb

n/σn
(x)

an
.

This quantity is important since it measures the first order non stochastic
discrepancy between the unknown target tail function, F̄ ∗

un
, and its observable

counterpart, Ḡγ̂n,σ̂n/σn
. This bias is important to statisticians who are more

interested in estimating small tail probabilities than in estimating γ (as Drees
(1998) and Drees et al. (2004) who have studied the asymptotic behaviour of the
maximum likelihood estimators (γ̂n, σ̂n)).

Using (1.4) and a Taylor expansion, it can easily be proved that

AE(x) = Dγ, ρ(x) − L1(γ, ρ)
∂Ḡγ

∂γ
(x) + L2(γ, ρ)x

∂Ḡγ

∂x
(x) .(2.9)

This expression contains both the bias of approximation (1.4) and the error of
approximation on the parameters (2.6).

This result has been first established in Diebolt et al. (2003) in the spe-
cial case of the probability-weighted moments estimators of Hosking and Wallis
(1987).

Our main result is summarized in the following theorem.

Theorem 1. Under assumptions (A1)–(A3) and (1.5), we have

AE ≡ 0 when ρ = 0 .

Proof: From (A1), we clearly have that ∂T (Ḡγ,σ)
∂γ = (1, 0) and from (2.4)

we deduce that ∂T (Ḡγ,1)
∂γ = DT (Ḡγ)

[
∂Ḡγ

∂γ

]
. Therefore, in the case ρ = 0,

since Dγ,0 = ∂Ḡγ

∂γ , we derive that L1(γ, 0) = 1 and L2(γ, 0) = 0. Consequently,

AE(x) = Dγ,0(x) − ∂Ḡγ

∂γ (x) = 0 in the case ρ = 0. This explains why as soon
as we use estimators which satisfy (A1)–(A3), the function AE becomes the null
function for ρ = 0.

This result is particularly remarkable. Indeed:

• This result means that in the case ρ = 0, although the bias of γ̂n is of
order an, its contribution is cancelled by compensation with Dγ, 0 in the ex-
pression of the function AE . It can be seen that AE remains small whenever
|ρ| is small.
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• The second order parameter ρ is zero for many usual distributions in the
Gumbel domain of attraction (γ = 0): e.g., the normal, lognormal, gamma
and classical Weibull distributions. Hence, our result applies to all of these
distributions. In the Frechet domain of attraction, we also have distribu-
tions with ρ = 0, such as the loggamma distribution.

• This result is closely linked to penultimate approximation in Worms (2002).

• This remarkable behaviour of the error of functional approximation AE

when ρ = 0 contrasts strongly with theoretical and experimental results
concerning the semiparametric estimators of γ, for example the Hill es-
timator (Hill, 1975). Indeed, the bias of these estimators explodes when
ρ tends to 0. This motivates many recent works on exponential regression
model, where estimators with reduced bias are proposed (see, for example,
Beirlant et al., 1999).

3. MAXIMUM LIKELIHOOD ESTIMATION FOR γ > 0

In this section, we will prove the following theorem.

Theorem 2. For γ > 0, the maximum likelihood estimators are regular
in the sense that they satisfy conditions (A1)–(A3).

With this aim, we first establish the local existence and unicity of these
estimators. Then, we prove the regularity of T in the maximum likelihood setting
with γ > 0.

We will need some notation. First, we denote by gθ = gγ, σ the density of
the GPD distribution with parameters θ. Then the score function sθ(x) is the
gradient of ln gθ(x) with respect to θ. It is a function of x taking its values in R

2.
The score function sθ(x) is of the form

sθ(x) =
(
s1(x; θ), s2(x; θ)

)T

where, denoting y = x/σ,

s1(x; γ, σ) =

⎧⎪⎪⎨⎪⎪⎩
(1 + γy) ln(1 + γy) − (γ + 1)γy

γ2(1 + γy)
if γ > 0 ,

y(y − 2)
2

if γ = 0 ,

(3.1)

and

s2(x; γ, σ) =
y − 1

σ(1 + γy)
if γ ≥ 0 .(3.2)
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Let also ψθ(x) denote the derivative of sθ(x) with respect to x:

ψθ(x) := (sθ)′(x) :=
(
ψ1(x; θ), ψ2(x; θ)

)T =
(

x − σ

(σ + γx)2
,

1 + γ

(σ + γx)2

)
.

3.1. Existence and local unicity

We consider the Küllback–Leibler divergence between two densities of prob-
abilities h and g related to a measure of reference ν:

Entg

(
h

g

)
:=

∫
ln
(

h(x)
g(x)

)
h(x) ν(dx) .

It takes, by convention, the value ∞ when the integral is not finite. Let θ ∈ Θ =
{(γ, σ) : γ > 0, σ > 0}. Under our assumptions, F admits a density f and the
two Küllback–Leibler divergences between gθ and f are defined as (note that they
can take the value ∞)

dKL(gθ | f) := Entf

(
gθ

f

)
=
∫ ∞

0
ln
(

gθ(x)
f(x)

)
gθ(x) dx

and

dKL(f | gθ) :=
∫ ∞

0
ln
(

f(x)
gθ(x)

)
f(x) dx .

These quantities are ≥ 0 and dKL(f | g) = 0 if and only if f = g a.e. Similar
properties exist for dKL(g| f). Splitting the logarithm into two parts, we obtain

dKL(f | gθ) =
∫ ∞

0
ln f(x) f(x) dx + Δ(θ, F̄ ) ,

where

Δ(θ, F̄ ) :=
∫ ∞

0
ln gθ(x) dF̄ (x) = −

∫ ∞

0
ln gθ(x) f(x) dx .(3.3)

Thus, dKL(f | gθ) is minimal if and only if Δ(θ, F̄ ) is minimal. Here, the family
{gθ : θ ∈ Θ} is identifiable: the distance dKL between gθ and gθ′ is equal to zero
if and only if θ = θ′.

For each F̄ , the function θ �→ Δ(θ, F̄ ) is continuous on Θ as soon as

(C1)
∫ ∞

1
lnx f(x) dx < ∞ .

Lemma 1 below guarantees the local existence of the maximum likelihood
estimators.
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Lemma 1. Under (C1), the restriction of θ �→ Δ(θ, F̄ ) to each closed ball
K contained in Θ reaches its minimum value in K and at each point where this
minimum is reached, we have∫ ∞

0
sθ(x) dF̄ (x) = 0 .(3.4)

The proof of this lemma is straightforward. Remark that (3.4) constitutes
the likelihood equations.

We now consider the local unicity. First define

W (θ, F̄ ) :=
∫ ∞

0
F̄ (x)ψθ(x) dx .

Integrating by parts yields the following result:

Lemma 2. Under (C1),

(C2) F̄ (x) lnx −→
x→∞

0 ,

and if F̄ (0) = 1, we have

W (θ, F̄ ) =
(

0,
1
σ

)T

−
∫ ∞

0
sθ(x) dF̄ (x) .(3.5)

Remark that if (C2) is satisfied, then (C1) can be rewritten as∫∞
1 (F̄ (x)

/
x) dx < ∞. Moreover, if we assume the mild condition that there

exists an ε > 0 such that

(C3) F̄ (x) (lnx)1+ε −→
x→∞

0 ,

then (C1) and (C2) are satisfied. Note that in Appendix (4.3), we will prove that
(C3) is satisfied by F̄ ∗

un
.

In all the sequel, we use the notation θ	 = (γ	, 1), γ	 >0 denoting the true
value of γ and Ḡ := Ḡθ� . The local unicity is established in the following lemma.

Lemma 3. There exists a closed ball V	 centered at θ	 such that the
restriction of the application θ �→ Δ(θ, F̄ ∗

un
) to V	 is strictly convex for all n

sufficiently large, as F̄ ∗
un

converges to Ḡ in the sense described in Worms (2000,
2002).

Proof of Lemma 3: We consider the second order differential D2 ln gθ(x)
with respect to θ, represented by a 2×2 matrix-valued function of x. For each
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suitable F̄ and each θ ∈ Θ, the matrix

I(θ, F̄ ) :=
∫ ∞

0
D2 ln gθ(x) dF̄ (x)

is a Fisher-type information matrix. Recall that the symmetric matrix I(θ, Ḡθ)
is definite positive for each γ > −1/2.

We show in Appendix 4.1 via an integration by parts that the matrix
I(θ, F̄ ∗

un
) converges, uniformly in θ in some compact neighbourhood V	 of θ	,

to a matrix I(θ, Ḡ), as n → ∞. Consequently, I(θ, F̄ ∗
un

) is definite positive for all
θ ∈ V	 and all n sufficiently large. In this case, we have for all n sufficiently large,
unicity of the minimum of Δ(θ, F̄ ∗

un
) for θ ∈ V	, i.e. local unicity. We denote by

θn = T (F̄ ∗
un

) the point in V	 minimizing Δ(θ, F̄ ∗
un

).

Remark that the functional T is sequentially continuous in the following
sense. Since the T (F̄ ∗

un
)’s are in the compact V	, the sequence that they form ad-

mits at least an adherence value, which belongs to V	. We deduce from compact-
ness and identifiability that any adherence value of this sequence is necessarily θ	.
It therefore follows that T (F̄ ∗

un
) converges to T (Ḡ) = θ	.

3.2. Regularity of T in the maximum likelihood case

In this section, we will essentially prove the Hadamard differentiability of T ,
with a differential given by

H �−→
[
I
(
T (Ḡ), Ḡ

)]−1
∫ ∞

0
H(x)ψT (Ḡ)(x) dx .(3.6)

Starting from (3.5), we obtain∫ ∞

0
F̄ ∗

un
(x)Dψθ(x) dx =

[
0 0

0 − 1
σ2

]
−
∫ ∞

0
Dsθ(x) dF̄ ∗

un
(x)

=: M −
∫ ∞

0
Dsθ(x) dF̄ ∗

un
(x) ,

that is

I(θ, F̄ ∗
un

) = −
∫ ∞

0
F̄ ∗

un
(x)Dψθ(x) dx + M .

By local existence and unicity, for all n sufficiently large

−
(

0,
1
σ

)T

+ W (θ, F̄ ∗
un

) = 0 if and only if θ = T (F̄ ∗
un

) .
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Therefore

−
(

0,
1

T2(F̄ ∗
un

)

)T

+ W
(
T (F̄ ∗

un
), F̄ ∗

un

)
= 0

and
−
(
0, 1

)T
+ W

(
T (Ḡ), Ḡ

)
= 0 .

Thus,

0 =
1
an

[
W
(
T (F̄ ∗

un
), F̄ ∗

un

) − W
(
T (Ḡ), Ḡ

) −
(

0,
1

T2(F̄ ∗
un

)

)T

+
(
0, 1

)T
]

=
1
an

[∫ ∞

0
F̄ ∗

un
(y)ψT (F̄ ∗

un )(y) dy −
∫ ∞

0
Ḡ(y)ψT (Ḡ)(y) dy(3.7)

−
(

0,
1

T2(F̄ ∗
un

)

)T

+
(
0, 1

)T
]

.

We know that limn→∞ T (F̄ ∗
un

) = T (Ḡ) = (γ	, 1). For each y, we use a Taylor
expansion of order 2 with integral remainder of ψθ(y) around ψT (Ḡ)(y):

ψT (F̄ ∗
un)(y) = ψT (Ḡ)(y) + Dψθ(y)

∣∣
θ=(γ�,1)

[
T (F̄ ∗

un
)−T (Ḡ)

]
+ remainder .(3.8)

Recall the principle of Taylor expansions of order 2 with integral remainder. Let f
be a function of two variables. Denoting g(t) = f(a1 + th1, a2 + th2) and using

g(1) = g(0) + g′(0) +
∫ 1

0
(1− t) g′′(t) dt ,

it follows that

f
(
a1+ h1, a2 + h2

)
=

= f(a1, a2) + h1 ∂1f(a1, a2) + h2 ∂2f(a1, a2)

+
∫ 1

0
(1−t)

(
h2

1 ∂11f + 2h1 h2 ∂12f + h2
2 ∂22f

)
(a1+ th1, a2 + th2) dt .

We will apply this formula to the two functions ψj(x; γ, σ), j =1, 2, at a fixed x, as
functions of (γ, σ). The point (a1, a2) will be (γ	, 1) and the point (a1+h1, a2+h2)
will be (γ, σ) close to (γ	, 1). Denote by Δγ := γ−γ	 and Δσ := σ−1. We have
(∂1 denoting the derivative in γ, and ∂2 the derivative in σ)

∂1ψ1(x; γ, σ) = − 2x (x − σ)
(σ + γx)3

and ∂2ψ1(x; γ, σ) = − (γ + 2)x − σ

(σ + γx)3
,

∂1ψ2(x; γ, σ) = − (γ + 2)x − σ

(σ + γx)3
and ∂2ψ2(x; γ, σ) = − 2(1 + γ)

(σ + γx)3
.



32 Jean Diebolt and Armelle Guillou

We have similar expressions for the second order partial derivatives. As x tends
to infinity, there are all of order O(1). For example,

∂11ψ1(x; γ, σ) =
6x2(x − σ)
(σ + γx)4

.

Thus

(Δγ)2
∫ 1

0
(1− t) ∂11ψ1

(
x; γ	+ t Δγ, 1+ t Δσ

)
dt =

= (Δγ)2
∫ 1

0
(1− t)

6x2(x − 1 − t Δσ)[
1 + γ	x + (Δσ + xΔγ) t

]4 dt .

We are interested in∫ ∞

0
F̄ ∗

un
(y)ψT (F̄ ∗

un
)(y) dy −

∫ ∞

0
Ḡ(y)ψT (Ḡ)(y) dy .

In the development ψT (F̄ ∗
un)(y) − ψT (Ḡ)(y), the contribution to the integral

remainder due to ∂11ψ1 is of the form

(Δγ)2
∫ ∞

0
F̄ ∗

un
(y)

∫ 1

0
(1− t)

6y2(y − 1 − t Δσ)[
1 + γ	y + (Δσ + y Δγ) t

]4 dt dy ,

which is

(Δγ)2
∫ 1

0
(1− t)

∫ ∞

0
F̄ ∗

un
(y)

6y2(y − 1 − t Δσ)[
1 + γ	y + (Δσ + y Δγ) t

]4 dy dt .

We now show that this term is O((Δγ)2). The range y small is trivial, since the
dominating term in the ratio is −6y2. Therefore, we will look only at the range
y ≥ y0 > 0. We have therefore to study

∫ 1

0
(1− t)

∫ ∞

y0

F̄ ∗
un

(y)
6
(
1 − (1 + t Δσ)/y

)
y
[
1/y + γ	 + (Δσ/y + Δγ) t

]4 dy dt ,

which can be reduced to study the quantity

∫ 1

0
(1− t)

∫ ∞

y0

F̄ ∗
un

(y)
y

dy dt ,

which is integrable under our conditions and converges to
∫ 1
0(1−t)

∫∞
y0

(Ḡ(y)/y) dy dt.
It is thus a bounded sequence.
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From (3.7) and (3.8), we obtain that

(
I(θ	, F̄ ∗

un
) −

[
0 0

0 1
T2(F̄ ∗

un )
− 1

])[
T (F̄ ∗

un
) − T (Ḡ)
an

]
=

=
∫ ∞

0

F̄ ∗
un

(y) − Ḡ(y)
an

ψθ�(y) dy + remainder .

Using the Appendix 4.3, we have

∫ ∞

0

F̄ ∗
un

(y) − Ḡ(y)
an

ψθ�(y) dy −→
n→∞

∫ ∞

0
Dγ�,ρ(y)ψθ�(y) dy .

Moreover, T2(F̄ ∗
un

) → 1 and we have established that I(θ	, F̄ ∗
un

) → I(θ	, Ḡ)
which is definite positive, thus

I(θ	, F̄ ∗
un

) −
[
0 0

0 1
T2(F̄ ∗

un
)
− 1

]

is inversible for all n sufficiently large. We conclude therefore that

T (F̄ ∗
un

) − T (Ḡ)
an

=

[
I(θ	, F̄ ∗

un
) −

[
0 0

0 1
T2(F̄ ∗

un
)
− 1

]]−1

·
∫ ∞

0

F̄ ∗
un

(y) − Ḡ(y)
an

ψθ�(y) dy + remainder −→(3.9)

−→
[
I
(
T (Ḡ), Ḡ

)]−1
∫ ∞

0
Dγ�,ρ(y)ψθ�(y) dy .

Therefore (3.6) is now established for F̄ ∗
un

and a similar study is carried out
for sequences

(
F̄ ∗

un
+ k

−1/2
n αkn(F̄ ∗

un
)
)
n≥1

in Appendices 4.4 and 4.5.

We have now to compute the couple of biases, to check that the principal
term of the functional bias of approximation cancels for ρ = 0, and to compute
it for ρ �= 0. We know that

I−1 :=
[
I
(
T (Ḡ), Ḡ

)]−1
= (γ + 1)

[
γ + 1 −1

−1 2

]
.
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The column 2×1 of biases (first the bias concerning γ, then the bias concerning
σ close to 1, i.e. for σ/σn), is

an(
1 + |ρ|) (1 + γ + |ρ|)

[
γ + 1

|ρ|

]
.(3.10)

This formula is also applicable, at least formally, in the case γ = 0. When we
choose ρ = 0, we find an (1, 0)T , as expected.

Remark 1. If we consider the Hall model (1982) defined by

1 − F (t) = C t− 1/γ
(
1 + D tρ/γ

(
1 + o(1)

))
, t → ∞ ,

where ρ < 0, C > 0 and D ∈ R, direct computations lead to A(t) = ρ D Cρ(γ+ρ)
· tρ(1+o(1)) and so an = ρ D (γ +ρ)u

ρ/γ
n (1+o(1)). The vector of biases (3.10) is

the one given in Smith (1987). Remark that this verification is direct for the bias
of γ. On the other hand, it is not the case for the bias of σ

/
σn, taking into account

the fact that Smith (1987) took a σn different from ours. It is thus necessary to
take this difference into account. In the same way, Drees et al. (2004) have
also, but in a different way, obtained the vector of biases for a standardization
different from ours and from that of Smith (1987), but as previously mentioned
a repercussion of this difference gives again (3.10).

Remark 2. We have just shown that the maximum likelihood estimators
satisfy conditions (A1)–(A3) with μk,γ(dx) = ψk(x; γ, 1) dx, k = 1, 2.

Since (γb
n, σb

n) = T (F̄un), we have (γb
n, σb

n
σn

) = T (F̄ ∗
un

). Then, by (3.6) and
(3.7),

T (F̄ ∗
un

) − T (Ḡγ,1) =
(

γb
n − γ,

σb
n

σn
− 1

)
= an I−1

∫ ∞

0
Dγ,ρ(x)ψγ,1(x) dx + o(an)

=
an(

1 + |ρ|) (1 + γ + |ρ|)
[
γ + 1

|ρ|

]
+ o(an) .

It follows that

F̄ ∗
un

(x) − Ḡγb
n

(
σb

n x

σn

)
=

= an

(
Dγ,ρ(x) +

γ + 1(
1+|ρ|) (1+γ+|ρ|) ∂Gγ

∂γ
(x) − |ρ|x(

1+|ρ|) (1+γ+|ρ|) ∂Gγ

∂x
(x)

)
+ o(an) .

Therefore, it can be directly checked that, when ρ=0, AE(x)=0 for all x.
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4. APPENDIX

4.1. Convergence of the information matrices for F̄ ∗
un

We use the following notations in all the sequel: Ḡ := Ḡθ� and Ψ(· |θ) :=
Dψθ(x). We would like to prove that, ∀ ε > 0,∣∣∣∣ ∫ ∞

0
Ḡ(y) Ψ(y|θ) dy −

∫ ∞

0
F̄ ∗

un
(y) Ψ(y|θ) dy

∣∣∣∣ ≤ ε ,

for n sufficiently large, ∀ θ ∈ V	 = V(θ	).

This proof can be divided into two parts. First, we consider an ε > 0 and
we will prove that it is possible to choose a number A such that each quantity∣∣∣∣ ∫ ∞

A
Ḡ(y) Ψ(y|θ) dy

∣∣∣∣ and
∣∣∣∣ ∫ ∞

A
F̄ ∗

un
(y) Ψ(y|θ) dy

∣∣∣∣
is smaller than ε

/
2, ∀ θ ∈ V	 and ∀n ≥ n1(A).

Then, using this number A, we will establish our result by reasoning on∫ A

0
F̄ ∗

un
(y) Ψ(y|θ) dy

and using the mean value theorem.

In order to establish the first part of this result, we use the classical change
of variables ∣∣∣∣ ∫ ∞

A
Ḡ(y) Ψ(y|θ) dy

∣∣∣∣ =
∣∣∣∣ ∫ ∞

B
e−s Ψ

(
g(s)

∣∣θ) g′(s) ds

∣∣∣∣
and ∣∣∣∣ ∫ ∞

A
F̄ ∗

un
(y) Ψ(y|θ) dy

∣∣∣∣ =
∣∣∣∣ ∫ ∞

Bn

e−s Ψ
(
gn(s)

∣∣θ) g′n(s) ds

∣∣∣∣ ,(4.1)

where gn(s) = (eγ�s−1)
/
γ	 + anRn(s) and g(s) = (eγ�s−1)

/
γ	, and we prove

that the latter quantity is smaller than ε
/
2 for an ε = ε(Bn), uniformly in

θ = (γ, σ) close to θ	 =(γ	, 1), and for n sufficiently large. Remark that the first
quantity can be treated similarly and recall that g′n(s) is of the form eγ�s+ anrn(s),
an expression that we will use later on. All the proof will be done in the case
γ	 >0 and we will use the first component of Ψ(·|θ), the other ones can be treated
similarly (and in fact more easily). Thus, we have to bound the quantity

gn(s) |gn(s) − σ|(
σ + γgn(s)

)3 |g′n(s)| for s ≥ Bn .
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Recall that y = F̄ ∗−1
un

(e−s). Since F̄ ∗−1
un

and s �→ e−s are decreasing,
y is increasing. Consequently, since gn(s)↗∞ for s↗∞ ∀n, we can use
the bound

cst
g2
n(s)

g3
n(s)

|g′n(s)|

uniformly for θ ∈ V	. We have therefore to study∫ ∞

Bn

e−s |g′n(s)|
gn(s)

ds =
∫ ∞

Bn

e−s g′n(s)
gn(s)

ds(4.2)

since g′n ≥ 0. By integrating by parts, this integral is equal to

− e−Bn ln
(
gn(Bn)

)
+
∫ ∞

Bn

e−s ln
(
gn(s)

)
ds .(4.3)

Using the fact that the first term is negative and that if s ≥ Bn then
gn(s) ≥ gn(Bn), we obtain the first part of the proof.

Concerning the second part of the proof, we first prove that∫ A

0
F̄ ∗

n(y) Ψ(y|θ) dy −→
∫ A

0
Ḡ(y) Ψ(y|θ) dy

as n → ∞, uniformly in θ close to θ	 = (γ	, 1). We have∫ A

0
F̄ ∗

n(y) Ψ(y|θ) dy =
∫ Bn

0
e−s Ψ

(
gn(s)

∣∣θ) g′n(s) ds

and ∫ A

0
Ḡ(y) Ψ(y|θ) dy =

∫ B

0
e−(1−γ�)s Ψ

(
g(s)

∣∣θ) ds .

Thus we look at

sup
θ∈V�

∣∣∣∣ ∫ A

0
F̄ ∗

n(y) Ψ(y|θ) dy −
∫ A

0
Ḡ(y) Ψ(y|θ) dy

∣∣∣∣ =

= sup
θ∈V�

∣∣∣∣ ∫ B

0
e−(1−γ�)s

[
Ψ
(
gn(s)

∣∣θ)− Ψ
(
g(s)

∣∣θ)] ds

+ an

∫ B

0
e−s rn(s) Ψ

(
gn(s)

∣∣θ) ds

∣∣∣∣
+ sup

θ∈V�

∣∣∣∣ ∫ Bn

B
e−s Ψ

(
gn(s)

∣∣θ) g′n(s) ds

∣∣∣∣
= sup

θ∈V�

∣∣∣∣ ∫ B

0
e−(1−γ�)s an Rn(s)

∂Ψ
∂x

(
eγ�s− 1

γ	
+ ξn(s)

∣∣∣∣ θ) ds

+ an

∫ B

0
e−s rn(s) Ψ

(
gn(s)

∣∣θ) ds

∣∣∣∣
+ sup

θ∈V�

∣∣∣∣∫ Bn

B
e−s Ψ

(
gn(s)

∣∣θ) g′n(s)
∣∣∣∣ ,
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where ξn(s) ∈ (0, anRn(s)) and where V	 is a compact neighbourhood of θ	.
Therefore, we have to study two supremum separately. We have some very useful
properties (Potter bounds) that we recall below (see Worms, 2000):

• V
(
s + V −1(un)

)− un

σn
=

eγ�s − 1
γ	

+ anRn(s) , an ∈ R ,

|Rn(s)| ≤ cst e(γ�+η)s

∫ s

0
eρt dt ,

Rn(s) −→
n→∞

∫ s

0
eγ�z

∫ z

0
eρt dt dz .

• V ′(s + V −1(un)
)

σn
= eγ�s + anrn(s) ,

|rn(s)| ≤ cst e(γ�+η)s

∫ s

0
eρt dt ,

rn(s) −→
n→∞

eγ�s

∫ s

0
eρt dt .

For the first supremum, we study the two quantities of the sum separately.
Concerning the first one and taking into account the fact that

sup
θ∈V�, x∈[0,A]

∣∣Ψ(x|θ)∣∣ < ∞ and sup
θ∈V�, x∈[0,A]

∣∣∣∣∂Ψ
∂x

(x|θ)
∣∣∣∣ < ∞ ,

we can restrict ourself to a compact in x, i.e. work with the product of the two
compacts. This is what we do below, where we have to study∣∣∣∣ e−(1−γ�)s an Rn(s)

∂Ψ
∂x

(
eγ�s − 1

γ	
+ ξn(s)

∣∣∣∣ θ)∣∣∣∣ ≤

≤ cst |an| e−(1−2γ�−η)s sup
θ∈V�, x∈[0,A]

∣∣∣∣∂Ψ
∂x

(x|θ)
∣∣∣∣ ,

taking the fact that |Rn(s)| ≤ K e(γ�+η)s into account. Consequently, the first
quantity in the first supremum tends to 0 uniformly.

Concerning now the second quantity in the first supremum,

|an|
∣∣∣∣ ∫ B

0
e−s rn(s) Ψ

(
gn(s)

∣∣θ) ds

∣∣∣∣ ,

we use again the fact that |rn(s)| ≤ K e(γ�+η)s and supθ∈V�, x∈[0,A] |Ψ(x|θ)| < ∞
in order to conclude.
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The second supremum, related to∣∣∣∣ ∫ Bn

B
e−sΨ

(
gn(s)

∣∣θ) g′n(s) ds

∣∣∣∣ ,

can be bounded by∫ Bn

B
e−s

∣∣∣Ψ(C1 e(γ�−η)s
∣∣ θ)∣∣∣C2 e(γ�+η)s ds = O

(∫ Bn

B
e−(1−2η)s ds

)
,

where C1 and C2 are two constants. This last equality comes from the fact that
B and Bn are large, then Ψ(·|θ) is decreasing and Ψ

(
C1 e(γ�−η)s

∣∣ θ) is of order
O(e−(γ�−η)s

)
uniformly, which achieves the proof.

4.2. Conditions of integrability for F̄ ∗
un

We would like to show that (C3) is satisfied by F̄ ∗
un

. With this aim,
let e−s = F̄ ∗

un
(y) which implies that y = F̄ ∗−1

un
(e−s) = gn(s). Using the Potter

bounds, we obtain that

cst e(γ�−η)s ≤ F̄ ∗−1
un

(e−s) ≤ cst e(γ�+η)s .

Since F̄ ∗
un

is decreasing, we deduce that

F̄ ∗
un

(
cst e(γ�+η)s

) ≤ e−s ≤ F̄ ∗
un

(
cst e(γ�−η)s

)
.

Let y = cst e(γ�±η)s according to what we want to obtain. We have then
e−s = (y

/
cst)−1/(γ�±η), which implies that F̄ ∗

un
(y) = O(y−β) for some β > 0.

The integrability condition (C3) is then clearly satisfied by F̄ ∗
un

.

4.3. Hadamard differentiability of F̄ ∗
un

Our aim in this appendix is to deal with∫ ∞

0

F̄ ∗
un

(y) − Ḡ(y)
an

ψθ�(y) dy =

=
∫ ∞

0
e−s ψθ�(gn(s)) rn(s) ds +

∫ ∞

0
e−(1−γ�)s ψθ�(gn(s)) − ψθ�(g(s))

an
ds

with |rn(s)| ≤ cst e(γ�+η)s.
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We will use the fact that all the functions of the matrix ψθ�(x) are contin-
uous and of order O( 1

x

)
as x → ∞. Denoting by φ such a function, we will first

prove that∫ ∞

0
e−s φ(gn(s)) rn(s) ds −→

n→∞

∫ ∞

0
e−(1−γ�)s

∫ s

0
eρt dt φ(g(s)) ds .

With this aim, we will split the integral into two parts: the first one from
0 to A and the second one from A to infinity. The first part does not pose any
problem. Therefore, we will look at the second one.

Using the properties of φ, we have∣∣φ(gn(s))
∣∣ ≤ cst

gn(s)
for s ≥ A and for all n sufficiently large .

Using the lower Potter bound for gn(s), we have:

gn(s) ≥ cst e(γ�−η)s , cst > 0, for s ≥ A and for all n sufficiently large .

Therefore, for the same s and n, we have∣∣φ(gn(s))
∣∣ ≤ cst e(−γ�+η)s ,

which implies the domination of the function in the integral by cst e−s(1−2η).

We thus obtain the desired convergence using the fact that φ is continuous
and that rn(s) → eγ�s

( ∫ s
0 eρt dt

)
as n → ∞.

Now we have to study∫ ∞

0
e−(1−γ�)s φ(gn(s)) − φ(g(s))

an
ds .

We have

φ(gn(s)) − φ(g(s)) = φ
(
g(s) + anRn(s)

)
− φ(g(s))

= an φ′
(
g(s) + ξn(s) an Rn(s)

)
Rn(s) , 0 ≤ ξn(s) ≤ 1 .

We can use the Potter bound for g(s) + ξn(s) anRn(s). Therefore∣∣∣φ′
(
g(s) + ξn(s) an Rn(s)

)∣∣∣ ≤ cst e(−2γ�+2η)s .

Recall that for Rn, we have the following bound

|Rn(s)| ≤ cst e(γ�+η)s .
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By gathering these various results, we obtain that the function in the inte-
gral is bounded by cst e−s(1−3η).

Moreover, φ′ is continuous. Therefore, since ∀ s, gn(s) → g(s) as n →∞
and g(s) + ξn(s) anRn(s) is located between g(s) and gn(s), we have

φ′
(
g(s) + ξn(s) an Rn(s)

)
−→ φ′(g(s)) .

Finally, Rn(s) → ∫ s
0 eγ�u

∫ u
0 eρt dt du.

By gathering the two limiting integrals, we obtain∫ ∞

0
e−(1−γ�)s

(∫ s

0
eρt dt

)
φ(g(s)) ds +

+
∫ ∞

0
e−(1−γ�)s

(∫ s

0
eγ�z

∫ z

0
eρt dt dz

)
φ′(g(s)) ds =: A + B .

By integrating by parts, we derive the following limit

B = −
∫ ∞

0
φ(g(s)) e−s

(
−
∫ s

0
eγ�z

∫ z

0
eρt dt dz + eγ�s

∫ s

0
eρt dt

)
ds ,

which implies that

A + B =
∫ ∞

0
φ(g(s)) e−s

∫ s

0
eγ�z

∫ z

0
eρt dt dz ds .

Now, using the notations of the Introduction, it follows that

A + B =
∫ ∞

0
φ(g(s)) e−sIγ�,ρ(s) ds

=
∫ ∞

0
φ(g(s)) eγ�s Cγ�,ρ(s) ds

=
∫ ∞

0
φ(y)Dγ�,ρ(y) dy ,

by the change of variable y = g(s).

4.4. Existence and almost surely unicity of θ̂n for F̄ ∗
un

+ 1√
kn

αkn

(
F̄ ∗

un

)
According to the proof for F̄ ∗

un
, it is sufficient to establish that

1√
kn

∫ ∞

0
αkn

(
F̄ ∗

un
(x)

)
Dψθ(x) dx −→

n→∞
0 a.s. ,
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uniformly in θ ∈V	. We use the fact that Dψθ(x) is bounded uniformly in θ ∈V	.
We split the integral, as in the proof for F̄ ∗

un
, into two integrals, one from 0 to A

and the other one from A to infinity.

Concerning the integral from A to infinity, we use the classical change of
variable, leading to (see (3.9))

1√
kn

∫ ∞

Bn

∣∣αkn(e−s)
∣∣ g′n(s)
gn(s)

ds .

We use Mason’s theorem (1981) (see Shorack and Wellner, 1986, p. 425)
which implies that for a small ε > 0, we have

1√
kn

|αkn(e−s)| =
(ln kn)

1
2
+ε

√
kn

O(e− s
2
)

a.s.

when s → ∞, as kn → ∞. To conclude, we apply to the term O(e− s
2

)
an

integration by parts technique similar to the one used in (3.10).

Concerning the integral from 0 to A, Mason’s theorem (1981) implies that

1√
kn

∣∣αkn

(
F̄ ∗

un
(x)

)∣∣ =
(ln kn)

1
2
+ε

√
kn

O(1) a.s.

for 0 ≤ x ≤ A, as n → ∞.

4.5. Hadamard differentiability of F̄ ∗
un

+ 1√
kn

αkn

(
F̄ ∗

un

)
We must check that the condition of integrability (C3) is satisfied. We showed

that F̄ ∗
un

(y) = O(y−β) when y → ∞, uniformly for n sufficiently large, and for a
constant β > 0. We thus deduce, via Mason (1981), that

1√
kn

∣∣αkn

(
F̄ ∗

un
(y)

)∣∣ =
(ln kn)

1
2
+ε

√
kn

O
(
y−

β
2
)

a.s.

as y → ∞, uniformly for n sufficiently large.

Now, we will show that there exists some versions α̃kn of αkn and a brow-
nian bridge B on [0, 1] such that∫ ∞

0
α̃kn

(
F̄ ∗

un
(x)

)
ψθ�(x) dx =

∫ ∞

0
B
(
Ḡ(x)

)
ψθ�(x) dx + oP (1)

as n → ∞. With this aim, we will use the fact that |ψθ�(x)| = O(1/x) as x → ∞,
and the invariance principle for the weighted empirical process given in Einmahl
and Mason (1992). We again split the initial integral into an integral from 0 to A
and an integral from A to infinity, and we carry out the usual change of variable.
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We start with
∫∞
Bn

αkn(e−s)ψθ�(gn(s)) g′n(s) ds. Since |ψθ�(x)| = O(1/x)

as x→∞, this integral is of order O
(∫∞

Bn
|αkn(e−s)| g′n(s)

gn(s) ds
)
. Here, we will change

αkn into α̃kn (Einmahl and Mason, 1992) for Bn ≤ s ≤ ln kn, with an error term
of order OP

(
k−ν

n e−( 1
2
−ν)s

)
for 0 ≤ ν < 1

/
4. We obtain therefore∫ ln kn

Bn

α̃kn(e−s)ψθ�(gn(s)) g′n(s) ds =

=
∫ ln kn

Bn

B(e−s)ψθ�(gn(s)) g′n(s) ds(4.4)

+ OP

(
k−ν

n

∫ ln kn

Bn

e−( 1
2
−ν)s

∣∣ψθ�(gn(s))
∣∣ g′n(s) ds

)
as n → ∞. The error term is

OP

(
k−ν

n

∫ ln kn

Bn

e−( 1
2
−ν)s g′n(s)

gn(s)
ds

)
,

and we conclude that it tends to 0 by integrating by parts.

Now, we will study the integral from ln kn to infinity by using again the
fact that |ψθ�(x)| = O(1/x) as x → ∞. According to Jaeschke’s theorem (see
Shorack and Wellner, 1986, p. 600), this integral is of order

√
ln ln kn OP

(∫ ∞

Bn

e−s/2 g′n(s)
gn(s)

ds

)
,(4.5)

and again by integrating by parts, the result follows.

Combining (4.1) with (4.2), we obtain that∫ ∞

Bn

α̃kn(e−s)ψθ�(gn(s)) g′n(s) ds =
∫ ln kn

Bn

B(e−s)ψθ�(gn(s)) g′n(s) ds + oP (1)

as n → ∞.

Therefore, we only have to study
∫ Bn

0 αkn(e−s)ψθ�(gn(s)) g′n(s) ds. Again,
we split into two integrals, one from 0 to − ln(1 − 1

kn
) and the other from

− ln(1 − 1
kn

) to Bn. The first one is clearly oP (1). For the second one, we use
the fact that ψθ�(x) is bounded for 0≤x≤A, and we replace α̃kn(e−s) by B(e−s),
which leads to an error term of order

OP

(
k−ν

n

∫ Bn

− ln
(
1− 1

kn

) e−( 1
2
−ν)s g′n(s) ds

)

as n →∞. Remark now that (Bn)n≥1 is bounded. Indeed, the Potter bounds
imply that 0 ≤ gn(s) ≤ cst e(γ�+η)s. If we note s = g−1

n (y), we have 0 ≤ y ≤
cst e(γ�+η)s, so s ≤ ln(y/cst)

γ�+η . This leads to Bn ≥ ln(A/cst)
γ�+η , with a similar result

in the other side.
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Consequently, using again the Potter bounds, but this time for g′n(s), and
the fact that (Bn)n≥1 is bounded, the preceding error term is oP (1).

Finally, we obtain the following result∫ ∞

0
α̃kn(e−s)ψθ�(gn(s)) g′n(s) ds =

=
∫ ln kn

− ln
(
1− 1

kn

) B(e−s)ψθ�(gn(s)) g′n(s) ds + oP (1) .

Now, we only have to let n tending to infinity in the integral of the second
member. Since B is a.s. continuous, ln kn → ∞, − ln(1− 1

kn
) → 0, gn(s) → g(s)

and g′n(s)→g′(s) for all s as n→∞, we only have to establish an a.s. domination
for B(e−s) |ψθ�(gn(s))| g′n(s) in order to apply the Lebesgue dominated convergence
theorem. We use again the fact that |ψθ�(gn(s))| = O(1/gn(s)) as s → ∞ for n
sufficiently large, and we conclude using the Potter bounds on gn(s) and g′n(s),
and the law of iterated logarithm for B(t), t → 0.
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1. INTRODUCTION

Let {J (t), t ≥ 0} be a semi-Markov process with a Markov renewal pro-
cess {(Jn, Tn), n = 0, 1, 2, ...}. The state space of {Jn} is assumed to be N =
{0, 1, 2, ..., N}. A reward process is a certain functional that is defined on a
semi-Markov process (Markov renewal process) by

(1) Zρ(t) =
∑

n: Tn+1<t

ρ(Jn, Tn+1 − Tn) + ρ(J (t), X(t)) ,

where X(t) is the age process. The function ρ in (1) is a real function of two
variables; ρ : N×R → R, and ρ(i, τ) measures the excess reward when time τ
is spent in the state i. The process Zρ(t) given by (1) provides the cumulative
reward at time t, under the given reward function ρ. This process was introduced
and studied in [4], for general ρ. For ρ(i, τ) = iτ , the reward process Zρ(t)
has been treated by different authors, see [1] [2] [5]. Let Tz be the first passage
time of Zρ(t) from Zρ(0) = 0 to a prespecified level z. Asymptotic behaviors of
ETz, ET 2

z as z → ∞, were obtained in [5] for ρ(i, x) = ix, and in [3] for general ρ.
In this article we provide exact formulas for ETz, ET 2

z and var(Tz), under general ρ.
We apply our formulas to certain type I counter models and provide precise re-
sults. The main results are Theorems 2.1, 3.1, Corollary 3.1, Remark 3.1, and
formulas (23), (24).

2. NOTATION AND PRELIMINARIES

Let {J (t), t ≥ 0} be a semi-Markov process and {(Jn, Tn), n = 0, 1, 2, ...}
be a Markov renewal process, where Jn is a Markov chain in discrete time on
state space N = {0, 1, 2, ..., N}, and Tn is the n-th transition epoch with T0 = 0.
The behavior of the Markov renewal process is governed by a semi-Markov matrix
A(x) = [Aij(x)], where

(2) Aij(x) = P
{
Jn+1 = j, Tn+1 − Tn ≤ x | Jn = i

}
.

We assume that the stochastic matrix P = [Pij ] = A(∞) governing the embedded
Markov chain {Jn : n = 0, 1, 2, ...} is aperiodic and irreducible. For convenience
let,

(3)

Ak:ij =
∫ ∞

0
xkAij(dx) ,

Ak:i =
∫ ∞

0
xkAi(dx) , k = 0, 1, 2, ... ,

if they exist, where

Ai(x) =
∑
j∈N

Aij , Ai(x) = 1 − Ai(x) .
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We note that Ai(x) = P{Tn+1 − Tn ≤ x | Jn = i} is the cumulative distribution
function of the dwell time of the semi-Markov process at state i, and Ai(x)
is the corresponding survival function. Let δij = 1 if i = j and δij = 0 if i �= j.
We define,

(4)
AD(x) = [δijAj(x)] , AD(x) = [δijAj(x)] ,

Ak = [Ak:ij ], AD:k = [δijAk:i] , k = 0, 1, 2, ... .

Note that AD:0 = I. The Laplace–Stieltjes transform of A(x) is denoted by

(5) α(s) = [αij(s)] , αij(s) =
∫ ∞

0
e−sxAij(dx) ,

Laplace–Stieltjes transforms αi(s), αD(s), etc. are defined similarly. We define
n-fold convolution A(x) by

A(n)(x) =
∫ x

0
A(dx′)A(n−1)(x − x′) ,

A
(0)
jk (t) =

{
0 if t < 0

δjk if t ≥ 0

and

A
(n)
jk (t) =

⎧⎪⎨⎪⎩
0 if t < 0∑

ν

∫ t

0
Ajν(dy)A

(n−1)
νk (t − y) if t ≥ 0

if M is a matrix of measures and N is a matrix of measurable functions, the
convolution of M and N (written M ∗N) is defined by M ∗N(t) = [(M ∗N)ik(t)],
where

M ∗ Njk(t) =
∑

ν

∫ t

0
Mjν(dy)Nνk(t − y) .

Let A(x) be a semi-Markov matrix. Then

A(x) =
∞∑

n=0

A(n)(x)

is called the Markov renewal matrix corresponding to A(x). Also denote the
Laplace transform of the Markov renewal matrix by

Ls[A] =
1
s

[I− α(s)]−1 .

The transition probability matrix of J(t) is denoted by P (t), i.e.,

(6) P (t) = [Pij(t)] , Pij(t) = P
{

J(t) = j | J(0) = i
}

.

The state probability vector at time t, p′(t) = ( p0(t), p1(t), ..., pN (t) ), is given
by p′(t) = p′(0)P (t), where p′(0) is the initial probability vector. In this article e
is the unit vector, i.e., e = (1, ..., 1)′.
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Let X(t) be the age process, i.e., the time elapsed at time t since the last
transition of J(t), X(t) = t − Tn, where n = sup{m : Tm ≤ t}. The joint
distributions corresponding to the bivariate process {(J (t), X(t)), t ≥ 0} and
the trivariate process {(J (t), X(t),Zρ(t)), t ≥ 0}, respectively, are given by

(7)
Gij(x, t) = P

{
J (t) = j, X(t) ≤ x | J (0) = i

}
,

Fij(x, z, t) = P
{
J (t) = j, X(t) ≤ x, Zρ(t) ≤ z | J (0) = i

}
.

The Laplace transform of Fij(x, z, t) is denoted by

(8) φij(v, ω, s) =
∫ ∞

0

∫ ∞

−∞

∫ ∞

0
e−vx−ωz−st Fij(dx, dz, t) dt ,

in the matrix form φ(v, ω, s) = [φij(v, ω, s)]. It is demonstrated in [4] that the
following informative transform formula plays a crucial role in studying the sta-
tistical properties of the reward process (1), see also [5],

(9) φ(v, ω, s) = [I − C(ω, s)]−1 ED(ω, v + s) ,

where

(10)

C(w, s) = [Ckj(ω, s)] , Ckj(w, s) =
∫ ∞

0
e−ωρ(k,x)−sxAkj(dx) ,

ED(ω, s) = [δkjEj(ω, s)] , Ej(ω, s) =
∫ ∞

0
e−ωρ(j,x)−sx Aj(x) dx .

Let z be a given level, then the first passage time of the level z for Zρ(t), given
Zρ(0) = 0, is defined by

Tz = inf
{

t > 0 : Zρ(t) = z | Zρ(0) = 0
}

.

Clearly

(11) P{Tz > t} = P{Zρ(t) < z} .

Let H(z, t) be the distribution of Tz, and denote the Laplace transform of E[e−sTz ]
by

(12) ψ(ω, s) =
∫ ∞

0
e−ωz E[e−sTz ] dz .

Similarly we denote the Laplace transform of the survival function H(z, t) =
P{Tz > t} by ψ(ω, s). We recall from [5] that,

(13) ψ(ω, s) = 1 − sψ(ω, s) ,

where s ∈ D0 = {u : Re(u) > 0} and ω ∈ Im = {u : u = it, t ∈ R}. The follow-
ing theorem was provided in [2] for ρ(i, x) = ix, and in [3] for general ρ.
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Theorem 2.1.

(14) ψ(ω, s) =
1
ω

p′(0) [I− C(ω, s)]−1 ED(ω, s) e , ω, s ∈ D0 .

For deriving the moments of Tz, we first note that(
∂

∂s

)k

ψ(ω, s) = (−1)k

∫ ∞

0
e−ωz

(∫ ∞

0
tk e−stP{Tz > t} dt

)
dz ,

(−1)k (k+1)
(

∂

∂s

)k

ψ(ω, s)
∣∣
s=0

=
∫ ∞

0
e−ωzE[T k+1

z ] dz ,

0 ≤ k ≤ K, where E[T K+1
z ] < ∞ is assumed. Hence from the formula given above

and Theorem 2.1,

(15)
∫ ∞

0
e−ωz E[T k+1

z ] dz = (k+1) (−1)k 1
ω

p′(0)
{(

∂

∂s

)k

φ(0, ω, s)
∣∣
s=0

}
e .

In next section we use (15) to derive exact formulas for E[T k
z ].

3. EXACT FORMULAS

In this section we apply (15) in order to derive formulas for ETz, ET 2
z ,

and var(Tz). Throughout this section we assume that ρ satisfies the following
condition.

(A) For each k, ρ(k, x) : [0,∞) → [0,∞) is one to one, admits a continuously
differential inverse, and ρ(k, 0) = 0.

We also introduce the following matrices:

F (t) =
[
δkj(ρ−1(k, t))′ Ak(ρ−1(k, t))

]
,

B(t) =
∞∑

n=0

B(n)(t) ,

K(t) =
[
δkj ρ−1(k, t) (ρ−1(k, t))′ Ak(ρ−1(k, t))

]
,

D(t) =
[∫ t

0
ρ−1(k, x) dBkj(x)

]
,

where B is the matrix with entries Bkj(z) = Akj(ρ−1(k, z)) and B(n) is n-fold
convolution of B.
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Theorem 3.1. Let Tz be the first passage time of the reward process
Zρ(t), t ≥ 0, given by (1) with a reward function ρ(k, x), k ∈ N , x ≥ 0, that
satisfying condition (A). If B(t) exist then

(a) ETz = p′(0)
{∫ z

0
B ∗ F (x) dx

}
e ,

(b) ET 2
z = 2 p′(0)

{∫ z

0
B∗K(x) dx

}
e + 2 p′(0)

{∫ z

0
B ∗ D ∗ B ∗ F (x) dx

}
e ,

(c) var(Tz) = 2 p′(0)
{∫ z

0
B ∗ K(x) dx

}
e + 2 p′(0)

{∫ z

0
B ∗ D ∗ B ∗ F (x) dx

}
e

−
{

p′(0)
{∫ z

0
B ∗ F (x) dx

}
e

}2

.

Proof: (a): By using (15) and (9) we obtain that

(16) Lω(ETz) =
1
ω

p′(0) [I − C(ω, 0)]−1 ED(ω, 0) e ,

where
C(ω, 0) = [Ckj(ω, 0)] ,

with
Ckj(ω, 0) =

∫ ∞

0
e−ωρ(k,x) dAkj(x) .

Now for each k, j, let Bkj(Δ) = Akj{x ∈ [0,∞) : ρ(k, x) ∈ Δ}, Δ ⊂ [0,∞), then
Bkj(.) is a probability distribution on [0,∞) and it follows by change of variable
that,

Ckj(ω, 0) =
∫ ∞

0
e−ωt dBkj(t)

= βkj(ω) .

Therefore Ckj(ω, 0) is the Laplace transform of the distribution Bkj , and in matrix
form

(17) [I − C(ω, 0)]−1 = [I − β(ω)]−1 .

Also note that
ED(ω, 0) = [δijEj(ω, 0)] ,

where
Ej(ω, 0) =

∫ ∞

0
e−ωρ(j,x) Aj(x) dx ,

and it follows by change of variable that

Ej(ω, 0) =
∫ ∞

0
e−ωt(ρ−1(j, t))′ Aj(ρ−1(j, t)) dt

=
∫ ∞

0
e−ωtF (j, t) dt .
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Therefore in matrix form we have

(18) ED(ω, 0) =
∫ ∞

0
e−ωtF (t) dt .

If we replace (17) and (18) in (16) we obtain

Lω(ETz) = p′(0)
1
ω

[I− β(ω)]−1 Lω(F (t)) e

= p′(0)
1
ω
Lω(B(t))Lω(F (t)) e ,

or equivalently

ETz = p′(0)
{∫ z

0
B ∗ F (t) dt

}
e ,

giving (a).

(b): It follows from (15) that

(19) LωE[T 2
z ] = −2

1
ω

p′(0)
{

∂

∂s
φ(0, ω, s)

∣∣
s=0

}
e .

But from (9),

(20)

∂φ(0, ω, s)
∂s

= [I − C(ω, s)]−1 ∂C(ω, s)
∂s

[I − C(ω, s)]−1 ED(ω, s)

+ [I − C(ω, s)]−1 ∂ED(ω, s)
∂s

,

where
Ckj(ω, s) =

∫ ∞

0
e−ωρ(k,x)−sx dAkj(x) ,

∂Ckj(ω, s)
∂s

∣∣∣
s=0

= −
∫ ∞

0
x e−ωρ(k,x) dAkj(x) .

Again it follows by change of variable that

∂Ckj(ω, s)
∂s

∣∣∣
s=0

= −
∫ ∞

0
e−ωtρ−1(k, t) dBkj(t) .

Therefore in matrix form

(21)

∂C(ω, s)
∂s

∣∣∣
s=0

= −
∫ ∞

0
e−ωtρ−1

D (t) dB(t)

= −Lω(D) ,

where

D(Δ) =
∫

Δ
ρ−1

D (t) dB(t) ,

ρ−1
D (t) =

[
δkj ρ−1(k, t)

]
.
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On the other hand

∂Ek(ω, s)
∂s

∣∣∣
s=0

= −
∫ ∞

0
x e−ωρ(k,x) Ak(x) dx ,

and using change of variable

∂Ek(ω, s)
∂s

∣∣∣
s=0

= −
∫ ∞

0
e−ωtρ−1(k, t) (ρ−1(k, t))′ Ak(ρ−1(k, t)) dt

= −
∫ ∞

0
e−ωtK(k, t) dt .

Therefore in matrix form

(22)

∂ED(ω, s)
∂s

∣∣∣
s=0

= −
∫ ∞

0
e−ωtK(t) dt

= −Lω(K) .

By replacing (17), (18), (21) and (22) in (20), we obtain from (19) that

Lω(ET 2
z ) = 2 p′(0)

1
ω

[I− β(ω)]−1 Lω(D(t)) [I− β(ω)]−1Lω(F (t)) e

+ 2 p′(0)
1
ω

[I− β(ω)]−1Lω(K(t)) e ,

or

ET 2
z = 2 p′(0)

{∫ z

0
B ∗ K(x) dx

}
e + 2 p′(0)

{∫ z

0
B ∗ D ∗ B ∗ F (x) dx

}
e .

Part (c) Follows from (a) and (b).

Corollary 3.1. Let ρ(k, x) = gn(k)xn, k ∈ N , x ∈ [0,∞) and gn(k) > 0.
If B(t) exists, then the formulas (a), (b) and (c) of Theorem 3.1 are satisfied.
Moreover

F (t) =

[
δij

1
n n
√

ρj tn−1
Aj

(
n

√
t

ρj

)]
,

B(t) = [Bij ] , Bij(t) = Aij

(
n

√
t

ρj

)
,

K(t) =

⎡⎣δij
1

n n

√
ρ2

j tn−2

(
1 − Aj

(
n

√
t

ρj

))⎤⎦ ,

D(t) =

⎡⎣∫ t

0

1

n n

√
ρ2

j xn−2
dAij

(
n

√
x

ρj

)⎤⎦ .
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Proof: The reward function satisfies condition (A), therefore Theorem 3.1
can be applied.

Remark 3.1. Let n = 1 in Corollary 3.1, i.e., the reward function is linear.
Then Corollary 3.1 holds with n = 1.

4. APPLICATIONS TO CERTAIN TYPE I COUNTERS MODELS

Arrivals at a counter form a Poisson process with rate q. An arriving par-
ticle that finds the counter free gets registered and locks it for a random duration
with distribution function F (t). Arrivals during a locked periods have no ef-
fect whatsover. Suppose a registration occurs at T0 = 0, and write T0, T1, T2, ...
for the successive epochs of changes in the state of the counter. Write Xn = 1
or 0 according as the n-th change locks or frees the counter. Clearly X0 = 1,
X1 = 0, X2 = 1, X3 = 0, ... and (Xn, Tn) is a Markov renewal process.
Its semi-Markov matrix is

A(x) =

[
0 1−e−qx

F (x) 0

]
.

Let F (x) = 1 − e−2qx and Zρ(t) be the reward process that is defined by (1)
with reward function ρ(k, x) = ρk x, ρ0 = 1, ρ1 = 2. Let Tz be the first passage
time reward process Zρ(t) from Zρ(0) = 0 to a prespecified level z. We apply the
formulas of the previous section to give explicit expressions for ETz and ET 2

z .
Note that for each k, j

Bkj(t) = Akj

(
t

ρk

)
,

B(t) =

[
0 1−e−qt

1−e−qt 0

]
,

B(0)(t) = I .

By induction it follows that

B(2n+1)(t) =

[
0 B

(2n+1)
01

B
(2n+1)
10 0

]
,

where

B
(2n+1)
01 = B

(2n+1)
10 = 1 − e−qt − qte−qt − q2 t2

2!
e−qt − · · · − q2n t2n

2n!
e−qt ,
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and

B(2n)(t) =

[
B

(2n)
00 0

0 B
(2n)
11

]
,

B
(2n)
00 = B

(2n)
11 = 1−e−qt−qte−qt− q2 t2

2
e−qt− q3 t3

3!
e−qt−· · ·− q2n−1 t2n−1

(2n−1)!
e−qt .

Therefore

B00(t) =
∞∑

n=0

B
(n)
00 (t) = 1 +

∞∑
n=1

[
1 − e−qt

2n−1∑
k=0

(qt)k

k!

]
,

B00(t) = B11(t) ,

B01(t) =
∞∑

n=0

B
(n)
01 (t) =

∞∑
n=0

[
1 − e−qt

2n∑
k=0

(qt)k

k!

]
,

B01(t) = B10(t) ,

B00(t) = 1 +
∞∑

n=0

[
1 − P (Y ≤ 2n + 1)

]
= 1 +

∞∑
n=0

P (Y > 2n + 1) ,

B01(t) =
∞∑

n=0

[
1 − P (Y ≤ 2n)

]
=

∞∑
n=0

P (Y > 2n) ,

where Y is a Poisson random variable with λ = qt. Therefore

B(t) =

⎡⎢⎢⎢⎢⎢⎣
1 +

∞∑
n=0

P (Y > 2n + 1)
∞∑

n=0

P (Y > 2n)

∞∑
n=0

P (Y > 2n) 1 +
∞∑

n=0

P (Y > 2n + 1)

⎤⎥⎥⎥⎥⎥⎦ .

The derivation of B(t) can be simplified by noting that if

pk =
λk e−λ

k!

where λ = qt, then
PE ≡ P{Y even} =

∑
k∈{0,2,4,...}

pk

and
PO ≡ P{Y odd} =

∑
k∈{1,3,5,...}

pk
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implying that (after simplication)

∞∑
n=0

P (Y > 2n + 1) = (p2 + 2p4 + 3p6 + ...) + (p3 + 2p5 + 3p7 + ...)

=
λ

2
PO +

{
λ

2
(PE − e−λ) − 1

2
(PO − λe−λ)

}

=
λ

2
− PO

2
,

similarly

∞∑
n=0

P (Y > 2n) = (p1 + 2p3 + 3p5 + ...) + (p2 + 2p4 + 3p6 + ...)

=
1
2

{
λPE + PO

}
+

λ

2
PO

=
λ

2
+

PO

2
.

Now if P (s) =
∑∞

k=0 pk sk = e−λ+λs, then

P (1) = p0 + p1 + p2 + p3 + ... = 1 = PO + PE ,

P (−1) = p0 − p1 + p2 − p3 + ... = e−2λ = PE − PO ,

implying PE = 1
2(1 + e−2λ) and PO = 1

2(1 − e−2λ). Hence

∞∑
n=0

P (Y > 2n + 1) =
λ

2
− 1

4
+

e−2λ

4
=

qt

2
− 1

4
+

e−2qt

4
,

∞∑
n=0

P (Y > 2n) =
λ

2
+

1
4
− e−2λ

4
=

qt

2
+

1
4
− e−2qt

4
,

and

B(t) =

⎡⎣ qt
2 + 3

4 + e−2qt

4
qt
2 + 1

4 − e−2qt

4

qt
2 + 1

4 − e−2qt

4
qt
2 + 3

4 + e−2qt

4

⎤⎦ ,

F (t) =

[
e−qt 0

0 1
2 e−qt

]
, K(t) =

[
te−qt 0

0 t
4 e−qt

]
,

dD(t) =

[
0 qte−qt

qt
2 e−qt 0

]
,

B ∗ F (t) =
∫ t

0
dB(x)F (t − x) ,
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hence

B ∗ F (t) =

⎡⎣ 1
2{1 − 2e−qt + e−2qt} 1

4{1 − e−2qt}
1
2{1 − e−2qt} 1

4{1 − 2e−qt + e−2qt}

⎤⎦ ,

and∫ z

0
B ∗ F (x) dx =

⎡⎣ z
2 − 3

4q + 1
q e−qz − 1

4qe−2qz z
4 − 1

8q + 1
8qe−2qz

z
2 − 1

4q + 1
4qe−2qz z

4 − 3
8q + 1

2qe−qz − 1
8qe−2qz

⎤⎦ .

In the example X0 = 1, the initial probability vector is clearly p′(0) = (1, 0),
then

(23) ETz =
3
4
z − 7

8q
+

1
q

e−qz − 1
8q

e−2qz .

B ∗ D ∗ B ∗ F (x) =

⎡⎣ B ∗ D ∗ B ∗ F00(x) B ∗ D ∗ B ∗ F01(x)

B ∗ D ∗ B ∗ F10(x) B ∗ D ∗ B ∗ F11(x)

⎤⎦ ,

where

B ∗ D ∗ B ∗ F00(x) =
1
8

{
3x − 9

q
+

9
q
e−2qx + 12xe−qx + 3xe−2qx

}
,

B ∗ D ∗ B ∗ F01(x) =
1
16

{
3x − 10

q
+

12
q

e−qx − 10
q

e−2qx − 3xe−2qx + 4qx2e−qx

}
,

B ∗ D ∗ B ∗ F10(x) =
1
8

{
3x − 8

q
+

16
q

e−qx − 8
q
e−2qx − 3xe−2qx + 2qx2e−qx

}
,

B ∗ D ∗ B ∗ F11(x) =
1
16

{
3x − 9

q
+

9
q
e−2qx + 12xe−qx + 3xe−2qx

}
.

Also

B ∗ K(x) =

⎡⎢⎢⎣
1
2

{
1
q − 1

q e−2qx − 2xe−qx
}

1
8

{
1
q − 2

q e−qx + 1
q e−2qx

}
1
2

{
1
q + 1

q e−2qx − 2
q e−qx

}
1
8

{
1
q − 2xe−qx − 1

q e−2qx
}
⎤⎥⎥⎦ .

If we replace B ∗D ∗B ∗F (x) and B ∗K(x) in formula (b) of Corollary 3.1, we get

(24)

ET 2
z =

1
16

{
9z2−36

q
z+

103
2q2

−48
q2

e−qz− 7
2q2

e−2qz−32
q

ze−qz+
3
q
ze−2qz+8z2e−qz

}
.

Remark 4.1. The asymptotic behaviors of ETz, ET 2
z were derived in [5]

for ρ(k, x) = ρkx, and in [3] for general ρ. For the case considered in the Example
given above,

ETz =
m1

m∗∗
1

z + p′(0)
{

H∗∗
0 AD:1 −

1
2
H∗∗

1 ρD:1AD:2

}
e + o(1) ,

ET 2
z =

{ m1

m∗∗
1

}2
z2 − p′(0)

{
2V ∗∗

1 AD:1 − [V ∗∗
2 + H∗∗

1 AD:2]
}

e z + o(z) ,
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as z → ∞, where m1 = π′A1e, ρD:1 = diagonal matrix of ρi,

Bk = ρD:kAk , m∗∗
1 = π′B1e , H∗∗

1 =
1

m∗∗
1

eπ′ , Z0 = [I − P + eπ′]−1 ,

H∗∗
0 =

1
m∗∗

1

e π′
{
−B1+

1
2m∗∗

1

B2 e π′
}

+
{

Z0−
1

m∗∗
1

e π′B1Z0

}{
P− 1

m∗∗
1

B1 e π′
}

,

V ∗∗
1 = (H∗∗

1 ρD:1A2 − H∗∗
0 A1)H∗∗

1 − H∗∗
1 A1H

∗∗
0 ,

V ∗∗
2 = −H∗∗

1 A1H
∗∗
1 ρD:1AD:2 .

For the semi-Markov A(x) defined above

P =

[
0 1

1 0

]
, A1 =

[
0 1

q

1
2q 0

]
, AD:1 =

[
1
q 0

0 1
2q

]
.

A2 =

[
0 2

q2

1
2q2 0

]
, AD:2 =

[ 2
q2 0

0 1
2q2

]
,

π′P = π′ =⇒ π′ = (0.5, 0.5) ,

m1 = π′A1 e =
3
4q

,

ρD:1 =

[
1 0

0 2

]
,

B1 = ρD:1 A1 =

[
0 1

q

1
q 0

]
,

m∗∗
1 = π′B1 e =

1
q

,

B2 = ρD:2 A2 =

[
0 2

q2

2
q2 0

]
,

Z0 = [I − P + e π′]−1 ,

therefore

Z0 =
1
2

[
3
2

1
2

1
2

3
2

]
,

H∗∗
1 =

1
m∗∗

1

e π′ ,

therefore

H∗∗
1 = q

[
1
2

1
2

1
2

1
2

]
,
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H∗∗
0 =

1
m∗∗

1

e π′
{
−B1+

1
2m∗∗

1

B2 e π′
}

+
{

Z0−
1

m∗∗
1

e π′ B1Z0

}{
P− 1

m∗∗
1

B1 e π′
}

,

hence

H∗∗
0 =

[
−1

4
1
4

1
4 −1

4

]
,

V ∗∗
1 = (H∗∗

1 ρD:1A2 − H∗∗
0 A1)H∗∗

1 − H∗∗
1 A1H

∗∗
0 ,

therefore

V ∗∗
1 =

[
12
16

14
16

10
16

12
16

]
,

V ∗∗
2 = −H∗∗

1 A1H
∗∗
1 ρD:1AD:2 ,

V ∗∗
2 = −

⎡⎣ 3
4q

3
8q

3
4q

3
8q

⎤⎦ .

In the example, X0 =1, so that the initial probability vector is clearly p′(0)=(1, 0).
Then by replacing values in ETz, ET 2

z , we have

ETz =
3
4
z − 7

8q
+ o(1) ,

ET 2
z =

9
16

z2 − 18
8q

z + o(z) ,

as z → ∞, which also can be observed from the formulas (23), (24), as z → ∞.

Remark 4.2. If one wishes to compare ETz with the asymptotic be-
haviour it is sensible to allow for a general initial probability vector say p′(0) =
(p0(0), p1(0)). In this case

ETz =
3
4
z − 7p0(0) + 5p1(0)

8q
+

2p0(0) + p1(0)
2q

e−qz − p1(0) + p0(0)
8q

e−2qz

=
3
4
z − 7p0(0) + 5p1(0)

8q
+ o(1) .

This last result is also obtained for the asymptotic expression for ETz with a
general initial probability vector.
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1. INTRODUCTION

Robbins and Zhang ([13], [14], [15]) consider the estimation of a multiplica-
tive treatment effect under biased allocation. For example, with a slight change
from their notation to allow for generalization, suppose that within a Poisson er-
rors in variables model (θi, Xi, Yi), i=1, 2, ..., n, are independent random vectors
such that

(i) given θi, Xi is Po(θi) ;

(ii) given β1, β2, θi and xi,

Yi is Po(β1θi) if treatment T1 is used ;
Yi is Po(β2θi) if treatment T2 is used ;

(iii) given a, T1 is used if xi < a and T2 is used if xi ≥ a ;

(1.1)

where Po(μ) represents a Poisson distribution with mean μ. No distributional
assumptions about the θi’s are made, and their values are not observed.
The unknown parameters β1 and β2 could be thought of as multiplicative treat-
ment effects. An alternative parameterization would be through logarithmic link
functions with additive treatment effects.

Robbins and Zhang [15] discuss two scenarios for this model. The first
concerns the number of accidents at road junctions. Suppose that Xi counts the
number of night accidents during year 1 at junction i, i=1, 2, ..., n. Extra lights
are installed at the beginning of year 2 at those junctions for which xi≥a, with
no change being made to the light system at other junctions. Then, Yi records
the number of night accidents at junction i during year 2. Of particular interest
is whether or not the extra lights reduce the frequency of night accidents.

The second, more controversial, application is in the context of clinical
trials in which the allocation of treatments is based on the screening variable X.
Robbins and Zhang [15] then seek to estimate the differential treatment effects
based on this biased allocation of treatments to patients.

In both situations Robbins and Zhang [15] consider the problem as one of
estimation, and take the difference β2 −β1 or the ratio β2/β1 as a measure of the
differential treatment effect. Based on data (x n,yn) = {(xi, yi) : i=1, 2, ..., n},
they derive the following consistent estimates for β1 and β2:

β1,n =

n∑
i=1

yi I(xi <a)

n∑
i=1

xi I(xi <a+1)

, β2,n =

n∑
i=1

yi I(xi≥a)

n∑
i=1

xi I(xi≥a+1)

,(1.2)

where I represents the indicator function. They suggest the use of the cen-
tral limit theorem to obtain confidence intervals for β1, β2, β2 −β1 or β2/β1
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with coverage probabilities that tend to 0.95, say, as n → ∞, but omit details.
They also note that the Poisson assumption for the conditional distribution of Yi

in (ii) of (1.1) is not required for the consistency of the estimates in (1.2).

Godambe and Kunte [6] provide an alternative semi-parametric solution
for the estimation of β1 and β2 through the use of optimum estimating functions
(Godambe and Thompson, [7]). Their model does not require the Poisson as-
sumptions in (1.1) for Xi or Yi, but only the mean value specifications. However,
they do require an additional assumption, namely that

(iv) given xi the mean value of θi is f(xi),
f being a specified function of xi .

The assumption that the θi are (unobservable) random variables distinguishes the
model from one in which they are unknown parameters. In this latter case, one
might then consider the θi as “incidental” parameters, following the terminology
of Neyman and Scott [10], as opposed to the “structural” parameters β1 and β2.
Kiefer and Wolfowitz [8] discuss problems of consistency with maximum likelihood
estimation in such cases, and illustrate how these may be overcome if the θi are
independent chance variables with a common distribution, as in here.

We develop here, in Section 2, an approach to treatment comparisons based
on predictive criteria, which perhaps seem more relevant for answering, in the
medical context for example, the question “Which of the two treatments do I give
to the next patient?”. The approach extends the models used in Dunsmore
and Robson [2] for other Poisson errors in variables models. We concentrate
attention on the outcomes Yn+1,1 and Yn+1,2 from separate applications of the
two treatments, T1 and T2, applied to patient n+1, and seek to make predictions
for future values yn+1,1 and yn+1,2 based on (xn,yn) and xn+1.

An illustrative example is provided in Section 3, and extensions to several
treatments and other distributional models are discussed briefly in sections 4 and 5.

2. POISSON PREDICTIVE MODELS

2.1. Predictive distribution

Consider the Poisson errors in variables model specified in (1.1). Suppose
further that for a future individual, labelled by n + 1, we observe xn+1 from a
Po(θn+1) distribution and model potential outcomes from the two treatments
through

Yn+1,1 is Po(β1θn+1) ; Yn+1,2 is Po(β2θn+1) .(2.1)
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The dependence between the outcomes for this individual from the two treatments
is modelled through the common (unobserved) θn+1.

Such an individual will only be given one of the two treatments, and the
predictive paradigm suggests that the choice centres around properties of the joint
predictive function p

(
yn+1,1, yn+1,2 |xn+1,x

n,yn
)
, or perhaps considerations of

Yn+1,2 − Yn+1,1.

We denote the treatment given to an individual, for i = 1, 2, ..., n, by

δij =

⎧⎨⎩ 1, if individual i gets treatment Tj ,

0, otherwise ,

so that δi1 + δi2 = 1 for each i; and let, for j = 1, 2,

nj =
n∑

i=1

δij ; n = n1 + n2 ;

Sxj =
n∑

i=1

δij xi ; Tx =
2∑

j=1

Sxj =
n∑

i=1

xi ;

Syj =
n∑

i=1

δij yi ; Ty =
2∑

j=1

Syj =
n∑

i=1

yi .

The maximum likelihood estimates of the parameters are given by

θ̂i =
xi + yi

1 +
2∑

j=1

δij β̂j

, i=1, 2, ..., n; θ̂n+1 = xn+1; β̂j =
Syj

Sxj
, j =1, 2 .(2.2)

In this notation the Robbins and Zhang [15] estimates (1.2) based on (x n,yn)
are given by

β1,n =
Sy1

Sx1 + aNa
, β2,n =

Sy2

Sx2 − aNa
,(2.3)

where Na are the number of xi’s equal to a. The additional information provided
by xn+1 could be used to amend these estimates to

β∗
1,n =

(
1 +

1
n

)
Sy1

Sx1 + aNa + xn+1 I (xn+1 < a+1)
,

β∗
2,n =

(
1 +

1
n

)
Sy2

Sx2 − aNa + xn+1 I (xn+1 ≥ a+1)
.

(2.4)
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2.2. Plug-in estimates

Predictive approaches within the classical framework typically involve plug-
in estimates, pivotal statistics or tolerance regions. A simple plug-in estimate for
the probability function of Z = Yn+1,2 − Yn+1,1, for example, would be given by

P (Z =z) =
∞∑

i=max(0,−z)

2∏
j=1

(β̂j θ̂n+1)i+(j−1)z exp(−β̂j θ̂n+1)(
i + (j−1)z

)
!

.(2.5)

Other such estimates are available if specification of the underlying distribution
for the θi’s is provided. As an illustration, we take p(θi) to be γ exp(−γθi) with
unknown parameter γ > 0. The model specification in (1.1) then reduces to

p
(
xi, yi | β1, β2, γ

)
=

(xi + yi)!
xi! yi!

γ βδi1yi
1 βδi2yi

2(
1 + γ + δi1β1 + δi2β2

)xi+yi+1 ,(2.6)

whilst Godambe and Kunte’s [6] condition (iv) above is satisfied by
f(x) = (x+1)/(γ+1). Both Robbins and Zhang [15] and Godambe and Kunte [6]
consider this case. The former demonstrate that their estimates β1,n and β2,n

in (1.2) compete well with the maximum likelihood estimates based on (x n,yn)
from this fully parametric model; whilst the latter’s solution coincides with them.

With the additional information from xn+1, the maximum likelihood esti-
mates are now given by

β̆1 = (1 + γ̆)
Sy1

Sx1+ n1
; β̆2 = (1 + γ̆)

Sy2

Sx2 + n2
; γ̆ =

n + 1
Tx + xn+1

.(2.7)

A simple plug-in estimate for the probability function of Z = Yn+1,2 − Yn+1,1

would then be given by

P (Z =z) =
∞∑

i=max(0,−z)

(z + 2i)!
i! (z + i)!

γ̆ β̆i
1 β̆i

2(
γ̆ + β̆1 + β̆2

)z+2i+1
.(2.8)

2.3. Hierarchical prior structure

Within a Bayesian framework for the model specified by (1.1) and (2.1),
the central feature is the predictive function p

(
yn+1,1, yn+1,2 |xn+1,x

n,yn
)

given
by ∫ 2∏

j=1

{
p(yn+1,j |βj , θn+1)

}
p
(
θn+1, β1, β2 |xn+1,x

n,yn
)

dθn+1 dβ1 dβ2 ,(2.9)
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where p
(
θn+1, β1, β2 |xn+1,x

n,yn
)

is the posterior density function. Notice here
that θn = (θ1, θ2, ..., θn) behaves in the same way as a nuisance parameter, and
we only require the posterior distribution of (θn+1, β1, β2) — or indeed only of
(β1θn+1, β2θn+1).

Following the ideas in Gelfand and Smith [5], we adopt a Bayesian hierar-
chical prior structure. At the first stage we take

p
(
θn, θn+1, β1, β2 | γ, η1, η2

)
=

n+1∏
i=1

p(θi | γ)
2∏

j=1

p(βj | ηj) ,

whilst at the second stage we assume

p(γ, η1, η2) = p(γ)
2∏

j=1

p(ηj) .

An appropriate structure here would be of the form

θi ∼ Ga(k, γ) , βj ∼ Ga(gj , ηj) ,

γ ∼ Ga(�, m) , ηj ∼ Ga(uj , vj) ,

for i=1, 2, ..., n, n+1 and j =1, 2, where Ga(a, b) represents a gamma distribution
with density proportional to θa−1 exp(−bθ), θ>0, and where k, g1, g2, �, m, u1,
v1, u2 and v2 are known constants. Gaver and O’Muircheartaigh [3] and Gelfand
and Smith [5] suggest, in a similar framework, that k, g1 and g2 might be treated
as tuning parameters or estimated in an empirical Bayes spirit. Notice that the
distributional assumptions about θn and θn+1 in Section 2.2 are a special case of
the above.

The posterior density function p
(
θn, θn+1, β1, β2, γ, η1, η2 | xn+1,x

n,yn
)

is
proportional to

n∏
i=1

⎡⎣exp

{
−θi

(
1 +

2∑
j=1

δij βj + γ

)}
θxi+yi+k
i

⎤⎦ ×

× exp
{
−θn+1(1+γ)

}
θ

xn+1+k
n+1 γ(n+1)k+� exp{−mγ} ×

×
2∏

j=1

{
β

Syj+gj

j exp(−ηjβj) η
gj+uj

j exp(−vjηj)
}

.

(2.10)

Eliminating θn, η1 and η2 we have that p
(
θn+1, β1, β2, γ |xn+1,x

n,yn
)

is pro-
portional to

exp
{
−θn+1(1+γ)

}
θ

xn+1+k
n+1

2∏
j=1

{
β

Syj+gj

j

}
γ(n+1)k+� exp{−mγ}

2∏
j=1

{
(1 + βj + γ)Wj (vj + βj)gj+uj

} ,(2.11)
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where Wj = Sxj + Syj + k nj , j =1, 2. Elimination of γ cannot be undertaken
explicitly, but we find that p

(
yn+1,1, yn+1,2 |xn+1,x

n,yn
)

is proportional to

∫
Γ(xn+1 + yn+1,1 + yn+1,2 + k)

yn+1,1! yn+1,2!
×

×

2∏
j=1

{
β

Syj+yn+1,j+gj

j

}
(1 + β1 + β2 + γ)xn+1+yn+1,1+yn+1,2+k

×

× γ(n+1)k+� exp{−mγ}
2∏

j=1

{
(1 + βj + γ)Wj (vj + βj)gj+uj

} dβ1 dβ2 dγ

(2.12)

for yn+1,1 = 0, 1, ... and yn+1,2 = 0, 1, ... . The joint predictive probability function
may then be found numerically through three dimensional integration techniques.

Although no simple analytical form is available for (2.12) here, it is possible
to obtain the marginal (but dependent) predictive probabilities in the case of
vague second stage priors (�, m, u1, v1, u2, v2 → 0) explicitly, namely, for j =1, 2,

p
(
yn+1,j |xn+1,x

n,yn
)
∝ B(xn+1+ yn+1,j +k, Wj)

B(yn+1,j +1, Sij−1)
, yn+1,j = 0, 1, ... ,(2.13)

and these can easily be compared graphically.

2.4. Approximations

Alternatively, we might consider approximations through the use of, for
example, posterior normality assumptions, Gibbs sampling or Laplace approxi-
mations to evaluate the predictive probabilities.

Noting that, as the sample size increases, the number of parameters in our
model also increases, we surmise that problems may arise over assumptions of
asymptotic normality of the overall posterior distribution, especially for the usual
asymptotic normal approximation for the full posterior distribution in (2.10) —
see, for example, Bernardo and Smith ([1, pp. 285–97]). A better result is likely
from following O’Hagan’s ([11, pp. 208]) suggestion of using a normal approxima-
tion for the reduced posterior p

(
θn+1, β1, β2, γ |xn+1,x

n,yn
)

alone, based on the
posterior mode and modal dispersion matrix. We do not pursue this approach
here, but further details can be found in Magalhães [9].
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2.4.1. Gibbs sampling

The conditional distributions of θn+1, β1, β2 and γ follow from (2.11) in a
straightforward manner, and, using rejection sampling with t iterations in each
cycle, we obtain M random samples(

θ
(t)
n+1(�), β

(t)
1(�), β

(t)
2(�), γ

(t)
(�)

)
, � = 1, 2, ..., M .

The prediction function (2.9) can then be estimated using

p̂
(
yn+1,1, yn+1,2 | xn+1,x

n,yn
)

=
1
M

M∑
�=1

2∏
j=1

μ
yn+1,j

j� e−μj�

yn+1,j !
,(2.14)

where μj� = β
(t)
j� θ

(t)
n+1(�), j =1, 2. If interest lies, say, in Z = Yn+1,2 − Yn+1,1, we

then need to derive the predictive distribution of Z.

Notice that, although it is necessary to generate values of γ
(t)
(�) in this Gibbs

routine, the values of this hyperparameter are not required further for our pre-
diction problem.

2.4.2. Laplace approximation

Since the joint predictive probability function in (2.9) is a posterior expec-
tation, which may be written, in generic form, as

E
{
g(ψ) | data

}
=

∫
g(ψ)L(data) p(ψ) dψ∫

L(data) p(ψ) dψ

=

∫
exp{−nh∗(ψ)} dψ∫
exp{−nh(ψ)} dψ

,

we may also use the Laplace approximation method; see, for example, Bernardo
and Smith ([1, pp. 340–5]). In the posterior expectation above, ψ represents an
unknown parameter and L(data) is the likelihood function. Also, functions h(ψ)
and h∗(ψ) are defined such that

−nh(ψ) = ln p(ψ)+lnL(data) and −nh∗(ψ) = ln g(ψ)+ln p(ψ)+lnL(data) .

Again, we present the results for the special case of vague second stage priors.
A good approximation for (2.9) is given by

1
yn+1,1!

1
yn+1,2!

(
σ∗

σ̃

)
exp

[
−n

{
h∗(θ∗n+1, β

∗
1 , β∗

2 , γ∗) − h(θ̃n+1, β̃1, β̃2, γ̃)
}]

,(2.15)
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where

−nh(θn+1, β1, β2, γ) = −θn+1(1+γ) + (xn+1+k) ln θn+1 + (n+1) k ln γ

+
2∑

j=1

{
Syj lnβj − Wj ln (1+βj+γ)

}
,

−nh∗(θn+1, β1, β2, γ) =

= −nh(θn+1, β1, β2, γ) +
2∑

j=1

{
yn+1,j(ln θn+1 + lnβj) − θn+1 βj

}

and where θ̃n+1, β̃1, β̃2, γ̃ and θ∗n+1, β∗
1 , β∗

2 , γ∗ are the modes of −h and −h∗,
respectively. The former are given by

θ̃n+1 =
(xn+1 + Tx) (xn+1 + k)
xn+1 + Tx + (n+1)k

, γ̃ =
(n+1)k

xn+1 + Tx
,

β̃j =

{
xn+1 + Tx + (n+1)k

}
Syj

(xn+1+ Tx) (Wj − Syj)
, j = 1, 2 ;

(2.16)

whilst the latter are found iteratively from

θn+1

(
1 +

2∑
j=1

βj + γ

)
= xn+1 +

2∑
j=1

yn+1,j + k ,

βj

(
θn+1 +

Wj

1 + βj + γ

)
= yn+1,j + Syj , j = 1, 2 ,

γ

(
θn+1 +

2∑
j=1

Wj

1 + βj + γ

)
= (n+1)k .

Finally, σ̃ and σ∗ are the square roots of the inverse of the determinants of the
appropriate hessian matrices of second order derivatives, namely

σ̃ =
∣∣n∇2h(θ̃n+1, β̃1, β̃2, γ̃)

∣∣− 1
2 ,

σ∗ =
∣∣n∇2h∗(θ∗n+1, β

∗
1 , β∗

2 , γ∗)
∣∣− 1

2 .

Full details can be found in Magalhães [9].
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3. ILLUSTRATION

In order to illustrate the different approximations, we consider the data
shown in Table 1.

Table 1: Simulated data set of size n = 20.

xi δi1 yi xi δi1 yi

7 0 3 11 0 22
8 0 8 6 0 13
9 0 1 9 0 10

13 0 16 6 0 10
5 1 1 10 0 16
2 1 2 17 0 16

13 0 12 3 1 0
4 1 2 2 1 2
6 0 12 2 1 1
7 0 4 8 0 11

These n = 20 data values were simulated from models with β1 = 0.3 and
β2 = 1.4, with a = 6, and for a random selection of θi values. Note that β̂1 = 0.44
and β̂2 = 1.25 from (2.2), whilst the equivalent Robbins and Zhang [15] are
β1,n = 0.22 and β2,n = 1.46 from (2.3).

Predictions are given for y21,1 and y21,2 corresponding to x21 = 4. The
amended maximum likelihood estimates are now β̆1 = 0.38 and β̆2 = 1.29 from
(2.7), whilst the Robbins and Zhang values are updated to β∗

1,n+1 = 0.21 and
β∗

2,n+1 =1.53 from (2.4).

In the analyses we assume a vague second stage prior (�, m, u1, v1, u2, v2→0).
For such a case, specification of g1 and g2 is not necessary. We take k = 6
based on matching the first two marginal moments of the Xi’s; see Dunsmore
and Robson [2].

A clear picture emerges if we consider the marginal predictive functions
for y21,1 and y21,2 separately. Figures 1 and 2 show the approximations from
the two methods together with the exact forms from (2.13). Clearly, the Gibbs
and Laplace methods provide excellent approximations to the exact distribution.
Also shown in Figures 1 and 2 are the marginal predictive functions with the
posterior normal approximations mentioned in Section 2.4. Normal approxima-
tion 1 refers to the Bernardo & Smith [1] approach and normal approximation 2
refers to O’Hagan’s [11] approach. The anticipated problems with a sample size
of only 20 manifest themselves, although perhaps not surprisingly O’Hagan’s [11]
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suggestion, based on only four parameters, seems superior to the more usual pos-
terior normal approximation, based on 26 parameters. Figures 1 and 2 also show
that the predictive approach leads to more disperse distributions than the ones
obtained through the plug-in method. This fact is not surprising because the
predictive approach incorporates uncertainty about the parameters.

Figure 1: Comparison of the predictive functions p
(
y21,1 |x21,x

20,y20
)

from the four approximations with the exact form in (2.13).

Figure 2: Comparison of the predictive functions p(y21,2 | x21,x
20,y20)

from the four approximations with the exact form in (2.13).

We may conclude that the Gibbs and Laplace methods lead to excellent
results when compared to the exact predictive distribution. The speed of the
Laplace method, in comparison to Gibbs sampling, is a strong point in its favour.
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Figure 3 compares the predictive functions for Z = Y21,2 − Y21,1 for the Laplace
method and the plug-in method of (2.5), and illustrates the unsatisfactory nature
of the latter.

Similar conclusions were drawn in several other simulations.

Figure 3: Comparison of the predictive functions for Z = Y21,2 − Y21,1

from the Laplace method and the plug-in form in (2.8).

4. GENERALISATION TO J ≥ 2 TREATMENTS

The models can be extended to the case of J treatments in a straightforward
manner. Suppose that we can define mutually disjoint and exhaustive subsets
C1, C2, ..., CJ of the non negative integers, such that treatment Tj is used for
individual I if xi ∈ Cj . We assume that Yi is Po(βjθi) if treatment Tj is used for
individual i, (i = 1, 2, ..., n+1; j = 1, 2, ..., J). Notice that the identification of
subsets through cut-off points a1 < a2 < ... < aJ−1 is only one possible partition.

Robbins and Zhangs [15] method generalises (1.2) above to give consistent
estimates

βjn =

n∑
i=1

yi I(xi ∈ Cj)

n∑
i=1

xi I(xi−1 ∈ Cj)

for j = 1, 2, ..., J . Similarly, with an obvious extension of the notation for δij ,
nj , Sxj , Syj , Tx, Ty, the maximum likelihood estimates corresponding to (2.2)
generalise in a simple way.
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Numerical integration for the joint predictive probability

p
(
yn+1,1, yn+1,2, ..., yn+1,J | xn+1,x

n,yn
)

,

corresponding to (2.9) becomes impractical, but the Gibbs and Laplace methods
provide approximations. Full details are again given in Magalhães [9].

Of interest now might be predictive probabilities associated with
max(yn+1,1, yn+1,2, ..., yn+1,J ). Within the Gibbs framework, one way of deri-
ving these would be to consider the yn+1,1, yn+1,2, ..., yn+1,J as missing data and
within each cycle to generate values of yn+1,j from a Po(βjθn+1) distribution,
j = 1, 2, ..., J .

From the resulting samples
(
y

(t)
n+1,1(�), y

(t)
n+1,2(�), ..., y

(t)
n+1,J(�)

)
it is then

straightforward to approximate the probability that treatment Tj , say, provides
the maximum response.

5. CONCLUSIONS

We have developed Bayesian predictive models for a Poisson errors in vari-
ables situation in which there are simple, multiplicative effects. Whilst standard
numerical integration techniques, here in three dimensions, might be suitable
for the determination of the appropriate predictive distributions, we have found
that Laplace approximation and Gibbs sampling can provide alternative and reli-
able approaches. The use of the posterior normal approximations can be suspect
because of the high dimensionality of the parameters, although O’Hagan’s [11]
approach improves matters somewhat.

Robbins and Zhang [15] also consider estimation in a binomial model, whilst
Robbins [12] discusses the exponential case. Similar predictive frameworks can
be developed for these situations. For example, in the model specification in
Section 2 we might replace the Poisson assumptions (i) and (ii) by

(i) given r and θi, Xi is Bi

(
r,

θi

1 + θi

)
;

(ii) given s β1, β2, θi and xi,

Yi is Bi

(
s,

β1θi

1 + β1θi

)
if treatment T1 is used ;

Yi is Bi

(
s,

β2θi

1 + β2θi

)
if treatment T2 is used .

Here, the odds ratios are θi for Xi and β1θi or β2θi for Yi. Details of the predictive
distributions for the binomial and exponential cases can be found in Magalhães
[9].
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1. INTRODUCTION

The likelihood function plays a central role in parametric statistical infer-
ence since it contains all the information in the observed data. It is used in
both frequentist antagonistic approaches, Fisherian and Neyman–Pearson–Wald
(NPW), but in neither methodology it is the main tool. On the other hand, the
only experimental source of information to the ones fond of Bayesian methodology
is exactly the likelihood function. Hence, for Bayesians using uniform (proper or
improper) densities, the only relevant tool for analysis is the likelihood function.

Most Bayesians and frequentists may disagree with the views presented here
(see [2] and [21]) since they are close to the ideas described by Ronald Fisher in
his last and controversial book, [12]. We believe that it is closer to the Bayesian
perspective than to the standard frequentist approaches. A recent revival of
interest in the likelihood approach is in action; see [23], [25], [30], [39], [40],
and [41] for instance. The site http://www.stat.unipd.it/LIKASY/biblio.html
presents a comprehensive list of references.

A brief history is presented in Section 2. The likelihood perspective is pre-
sented and discussed in Sections 3 and 4. In Section 5, diagnostic tests results
are compared to the contingencies of statistical results of the different views.
In Section 6 we present an index for the diagnostic ability of a clinical test.
Section 7 contains the likelihood view of a diagnostic test with a graphical illus-
tration. Finally, in Section 8 we present a real example to illustrate the ideas
discussed in previous sections.

2. STATISTICAL TESTS — A BRIEF HISTORY

Some of the material of this section can be found in [42]. The idea of
significance tests was proposed by Fisher, who introduced the p-value as an index
of agreement between the data and the null hypothesis: the greater the p-value,
the greater the evidence in favor of the null hypothesis. A p-value of 5% is
commonly used as a standard threshold for deciding against H (p < 0.05) or in
favor of H (p> 0.05). However, we strongly support the idea that the choice of
the threshold should depend on the problem currently faced by the scientist, the
sample size, and the amount and type of information being collected. This is in
fact the idea of significance tests as prescribed by [7] and [22].

The subjective judgment of an observed p-value to decide against or in
favor of H led Neyman and Pearson ([29]) and Wald ([43] and [44]) to proposing
the theory of Test of Hypotheses. This theory, contrarily to Fisher’s significance



80 Basilio and Carlos Pereira

tests, was designed to replace the subjective judgment of the strength of evidence
in favor of the null hypothesis, provided by a p-value judgment, with an objective
decision-theoretical approach. By fixing, in advance, the Type I error rate, α,
and minimizing the Type II error rate, β, the number of wrong decisions, made
over many different repetitions of the experiment, would be limited. This may
generate some controversy since only in very few medical applications repetitions
are possible.

Originally, the NPW theory required the specification of single point null,
H, and alternative, A, hypotheses. By fixing Type I and Type II error rates, the
sample size could be determined. Sample size determination is an area in which
NPW theory has been appropriately used in medicine (and also in industrial
quality control), although a confuse mixture of the Fisher and NPW approaches
to hypothesis testing may be found in the medical literature. Statements such
as “p-values smaller than 5% were considered statistically significant”, without
specifying the alternative hypothesis and the Type II error rate, are common.
It is usual to have a table with p-values and intervals obtained by summing and
subtracting twice the sample standard error from the sample mean.

Jeffreys [20] attacked the problem under a Bayesian perspective. Let x

denote the observations, π and π(x) the prior and posterior probabilities for H.
Alternatively the corresponding probabilities for A are (1 − π) and [1 − π(x)].
Defining the prior and posterior odds by

ρ = π(1 − π)−1 and ρ(x) = π(x)
[
1 − π(x)

]−1
,

Jeffreys proposed to look at the posterior odds, also called Bayes Factor, as the
index of evidence in favor of H.

In the case of single point hypotheses, let fH(x) and fA(x) be the two al-
ternative densities being compared. The likelihood ratio is R(x) = fH(x)/fA(x).
Hence, one can easily prove that ρ(x) = ρR(x). Also, for π = 1/2 we would have
ρ(x) = R(x). Hence, for the case of single point hypotheses, judging H based
on the likelihood ratio corresponds to a Bayesian judgment with very particular
prior choices. On the other hand, recall that the likelihood ratio is the function
used by the Neyman–Pearson theorem of optimal decision. Also, note that one
can use R(x) to order the sample space, [8], [28] and [38]. If the computation
of the p-value were performed under this ordering, the alternative hypothesis
would be taking into consideration. As one may see, the three methods have
their conclusions based on the likelihood ratio, R(x).

Real controversial problems emerge with the consideration of composite
hypotheses. Many of the practical problems in medicine involve sharp null hy-
potheses. That is, the dimension of the subspace where H is defined is smaller
than the dimension of the subspace where A is defined. Let us consider the well-
known standard problem of the test for independence in a 2×2 contingency table.
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Let C1 and C2 be two populational characteristics and x = (x11, x12, x21, x22) be
the vector of the sample frequencies for the respective combination of the levels
of categories C1 and C2. The parameter space associate with this experiment is
the simplex

Θ =

{(
θ11, θ11, θ11, θ11

) ∣∣ θij >0,
2∑

i,j=1

θij = 1

}

and the null hypothesis is defined by the subset

ΘH =
{[

pq, p(1− q), (1− p)q, (1− p) (1− q)
] ∣∣ 0<p, q<1

}
.

Note that the two hypotheses are composite and that p = θ11 + θ12 and
q = θ11 + θ21. The sets that define the null and the alternative hypotheses, ΘH

and ΘA = Θ − ΘH , have different dimensions, i.e., dim(Θ) = 3 > dim(ΘH) = 2.

Letting f(x|θ) denote the likelihood function, frequentists will define SH(x)
and SA(x) as the suprema of f(x|θ) under H and A, respectively. The profile
likelihood ratio is defined as PR(x) = SH(x)/SA(x). Bayesians, on the other
hand, in addition to the prior probabilities for H and A, namely π(H) and
[1−π(H)] = π(A), define densities over ΘH and ΘA. Considering these densities
as weighing systems — systems indexes that defines a preference order on the
points of the space — and taking the weighted likelihood averages, MH(x) and
MA(x), under ΘH and ΘA respectively, they define the Bayes Factor BF (x) =
ρMR(x) where ρ = π(1−π)−1 is the prior odds and MR(x) = MH(x)/MA(x)
is the weighted likelihood ratio. To compute the weighted averages one must
uses the weighing systems considered for ΘH and ΘA. [18] uses this approach
for a Bayesian version of the McNemar test for also comparing two composite
hypotheses of different dimensions in a 2×2 contingency table. NPW (Jeffreys’s
Bayesian) approach for hypothesis testing consists of the evaluation of PR(x)
[BF (x)]. The Fisher approach for testing independence is a modification based
on a conditional distribution of the data in the basic cells of the table given
the marginal cells. It does not seem appropriate to consider that the marginal
cells are known before the data were observed. For example, consider an overall
frequency of 20 for the contingency table. The number of possible tables (the
sample space size) in this case is 1771. If a marginal total is 5, for instance, the
number of possible tables with this marginal is 6. That is, for considering a given
marginal we reduce our sample space from 1771 possibilities to only 6 possibilities
and the p-value could be much greater than it should be. For a detailed discussion
on this matter see [17] and [35].

The fourth approach to hypothesis tests is that of (pure) likelihood, which
is described in the next section.



82 Basilio and Carlos Pereira

3. LIKELIHOOD APPROACH

The deductive nature of probability versus the inductive nature of statisti-
cal inference is clearly reflected in the dual concepts of probability distributions
and likelihood ([24] and [11]). Given a probability model and the corresponding

Population Sample

Deduction: Probability

Induction: Inference

Figure 1: Probability and Statistics Harmonization.

parameter values, we may calculate the probabilities associated to all possible
observations, x. Suppose that before observing the performance of the next 10
patients that will be submitted to a drug known to have efficacy of 60%, a doctor
writes his probability model function for “the number of recovered patients, X”
as:

f(x|.6) = Pr
{
X = x|θ = 0.6

}
=

(
10
x

)
(.6)x (.4)10−x .

The probability of having 7 recovered patients is f(7|.6) = .215. Note that f(x|θ)
is a function of two variables: x, the observation, and θ, the parameter. For fixed θ,
f is a probability function of x and for fixed x, f is a function of θ called likelihood
function associated to the observed value, x. Suppose that we observe 7 success
and 3 failures for this sample of 10 patients. The likelihood function is

L
(
θ|X = 7

)
= Pr

{
X = 7|θ} =

(
10
7

)
θ7(1 − θ)3 = (120) θ7(1 − θ)3 .

In order to illustrate the differences between probability and likelihood
functions, in Figure 2 we present the corresponding probability functions for
θ = .6 and for θ = .3, while in Figure 3 we present the likelihood functions for
x = 7 and for x = 2.

Note that the two probability functions in Figure 2 are discrete. Since
the parameter space Θ is the interval [0; 1], the likelihood functions depicted in
Figure 3 are continuous. A statistical model has two arguments, the possible
observations and the possible values of the parameter. The likelihood function is
not a probability density function. However, dividing it by its integral over the
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parameter space (whenever this integral exists), the resulting normalized likeli-
hood is a probability density over Θ, and corresponds to the Bayesian posterior
density under a uniform prior. Areas under this curve define probabilities of
subsets of the parameter space.

Figure 2: Binomial probability functions for n = 10.

The likelihood function, L, induces an ordering of preferences about the
possible parameter points. Note that this order is not changed if a proportional
function is defined. This means that we can divide L by any constant without
modifying the conclusions about parameter point preferences. We can divide L

by its integral obtaining the normalized likelihood, the Bayesian way, or divide
it by the maximum value of L whenever it exists, obtaining what we call relative
likelihood. Comparing two parameter values, we would say that the one with
higher (normalized or relative) likelihood is more plausible than the other.

An important feature of the Likelihood approach is that it is independent of
stopping rules. That is, it does not violate the likelihood principle, [1], [3] and [5].
For instance, suppose that another doctor in another clinic decided to start his
analysis only when he obtain 3 failures, i.e., 3 patients that do not recover.
As soon he obtained his 3rd failure, corresponding to the 10th patient, he realizes
that he had 10 patients with 7 successes and 3 failures. Although he has the same
results as his colleague, the underlying statistical model is completely different
but his (normalized) relative likelihood is equal to the one obtained from the
previous models. Here the probability model is a negative binomial distribution.
That is, the random variable is the number Y of failures to be observed since the
number of failures k was fixed in advance. The model here is given by

P
{
Y = y|θ} =

(
y + k − 1

y

)
θy(1 − θ)k .
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For the sample with k = 3 and y = 7, the likelihood is proportional to the one
illustrated in Figure 3. Figure 4 shows the negative binomial probability distri-
butions for k = 3, θ = .6 and θ = .3.

Figure 3: Binomial likelihood functions for n = 10.

Note that for both Figures 2 and 4, the probabilistic models, Binomial
and Negative Binomial, have their sample space well defined since the stopping
rules were defined previously. However there are many cases in medical statistics

Figure 4: Negative Binomial probability function for k = 3.

where the sample space is not well defined. For instance, suppose that a doctor
wants to write a paper and decides to look at the data he has collected up to
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that moment. In this case, neither the sample size nor the number of success (or
failures) was fixed a priori. However, if he had observed 7 recoveries in 10 patients,
his likelihood would be proportional to θ3(1− θ)7, which is proportional to both
observed Binomial and Negative Binomial likelihoods. Hence, in all 3 cases, the
relative (normalized) likelihoods are exactly the same and then the inference
would be the same as prescribed by the likelihood principle. We emphasize that
the normalized likelihood for the example of 3 failures and 7 successes is a beta
density with parameters a = 4 and b = 8. The relative likelihood is the beta
density divided by the density evaluated at its mode, which is the maximum
likelihood estimate, 3/10 = .3.

In Figure 5 we illustrate the relative likelihood for 3 failures and 7 successes,
with a solid line intercepting it at points with plausibility equal to 1/3 (relative
to the maximum) and a dotted line at points with plausibility equal to .8057.

Figure 5: Relative Likelihood, and 1/3 and .8057 Plausible Levels.

Recall that the maximum of the likelihood function is attained at θ = .7. Also,
at θ = .6, the suggested drug efficacy, the plausibility is .8057. Note that both
θ1 = .4681 and θ2 = .8770 have plausibility equal to 1/3. Any parameter point in-
side (outside) the interval I(1/3)=[.4681; .8771] has palusibility larger (smaller)
than 1/3. If one uses the normalized likelihood as the posterior density, the
(posterior) probability that the unknown parameter θ lies in I(1/3) is equal
to .8859. That is, I(1/3) is a credible interval for θ with credibility 88.59%.
This probability (or credibility) is calculated by computing the area under the
curve limited by the vertical segments at .4681 and .8771 divided by the total
area under the curve.
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Consider the other point, θ00 = .7886, with the same plausibility as the sug-
gested drug efficacy, θ0 = .6. These two points have plausibility equal to .8057
and the interval I(.8057) = [.6000; .7886] has credibility 51.65%. Considering
now θ0 = .4, the corresponding parameter point with the same plausibility is
θ00 = .9124. These points have plausibility equal to .1592 and the interval
I(.1592) = [.4000; .9124] has credibility 95.90%.

Observing the low (high) probability of having a parameter value with
more plausibility than .6 (.4), we would say that the hypothesis H : θ = .6
(H : θ = .4) should be not rejected (accepted). We suggest that the credibility
of the interval [θ0; θ00] may be interpreted as an index of evidence against the null
sharp hypotheses H : θ = θ0 or H : θ = θ00. The probability of the complement of
this credibility interval is an index (like a p-value) of evidence in favor of H; see
[37] and [27] for more on this measure of evidence. For the two cases presented
here, the evidence in favor of H is 48.35% for H : θ = .6 and 4.10% for H : θ = .4.

We end this section by stating a rule to be used by Pure Likelihood followers.

Pure Likelihood Law: If the relative likelihood function of two points,

θ0 and θ1, satisfy RL(θ0) >(<)RL(θ1), we say that θ0 is more (less) plausible

than θ1. We say they have the same plausibility if equality of the likelihood

functions holds. For single point hypotheses H : θ = θ0 versus A : θ = θ1 if

RL(θ0) <(>)RL(θ1), we reject (accept) H. The strength of evidence of the data

x in favor of H against A is measured by the likelihood ratio, LR(θ0; θ1) =
RL(θ0)/RL(θ1).

For the example above, we have LR(.6; .7)= .8057 and LR(.6; .4)=5.0625.

4. LADDER OF UNCERTAINTY AND CONTROVERSIES

Tests of hypotheses are decision procedures based on judgments and one
can only judge something in relation to the alternatives. The concept of statistical
evidence of some data, x, in favor or against some hypothesis must be relative in
nature. We should not talk about evidence for or against H without mentioning
the alternative A. Pereira & Wechsler ([38]) show how to build a p-value that
takes the two antagonistic hypotheses into consideration.

An implication of the pure law of likelihood is that: “uncertainty about
x given θ” and “statistical evidence in x about θ” have different mathematical
forms. The statistical model is based on a trinity of mathematical elements: the
sample space X, the parameter space Θ and a function f(·|·) of two arguments
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(x, θ) ∈ X×Θ. For every fixed θ ∈ Θ, f(·|θ) is a probability (density) function
on X and for every fixed x ∈ X, f(x|·) = L(·|x) is the likelihood function.
The following sets characterize the statistical model:

i) � =
{
f(x|θ) | x ∈ X, θ ∈ Θ

}
is the overall statistical model,

ii) ∀ θ ∈ Θ, �θ =
{
f(x|θ) | x ∈ X

}
are the probability models, and

iii) ∀x ∈ X, �x =
{
f(x|θ)=L(θ|x) | θ ∈ Θ

}
are the likelihood functions.

Uncertainty is measured by probabilities, �θ, and evidence is measured
by the likelihood, �x. This is a critical insight: the measure of the strength of
evidence and the frequency with which such evidence occurs are distinct mathe-
matical quantities, [6]. [39] clearly explains alternative areas of Statistics where
these concepts appear. Suppose a patient has a positive result in a diagnostic
test, the physician might draw one of the following conclusions:

1. The person probably has the disease,
2. The person should be treated for the disease,
3. The test results are evidence that the person has the disease.

These possible attitudes front the tests results may represent, respectively,
answers to different questions:

1′. What should I believe?
2′. What should I do?
3′. How should I interpret this body of observation as evidence about

having the disease against not having the disease?

These questions involve distinct aspects of statistical methods, namely:
frequentist or Bayesian inference, decision theory and, lastly, interpretation of
statistical data as containing evidence, the significance test of hypothesis.

The correctness of the answer for the first question requires, the additional
information of the behavior of the test in other (exchangeable) patients or the
personal opinion about the probability of the disease before the test (prior prob-
ability). For the second question, in addition to the requirements of the first, one
also needs knowledge about the costs or utilities of the decisions to be made.
Only the third one does not require additional information other than data.
[4] considers these arguments to suggest that the role of the likelihood in Statistics
is equivalent to the role of diagnostic tests used in Medicine.

Royall ([39]) also discusses a possible paradox in the use of the pure likeli-
hood approach through the following example:

“We pick a card at random out of a deck of 52 cards and observe

an ace of clubs. Then consider two alternative hypotheses H: it is

a deck with 52 aces of clubs or A: it is a standard deck of cards.

The likelihood ratio of H against A is 52. Some find this disturbing.
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What this result shows is that this strong evidence is not strong

enough to overcome the prior improbability of H. A Martian faced

with this problem would find H most appealing.”

Clearly, the Martian’s ignorance about card decks does not permit him to
use the tools used by both Bayesian and frequentist statisticians. These peo-
ple may achieve stronger results than pure likelihood statisticians do, but at the
price of more assumptions in their applications. [30] tentatively tries some rec-
onciliation among the different approaches using the Fisherian idea of ladder of
uncertainty. It remains to be proved that his ideas will succeed in Statistics by
means of practical applications.

5. DIAGNOSTIC TESTS AND STATISTICAL VEREDICTS

The inadequacy in relying only and strongly on p-values in medicine has
been widely emphasized in recent years. Worst yet, is the lack of understand-
ing of what p-values are. In this section we present quantities that may be of
more interest to medicine than the p-values are. For more discussion on the
subject we refer to [9] and [32]. We use the following notation: D+ = Disease,
D−= No Disease, T+ = Positive test result and T−= Negative test result.
For the populational parameters let N(++) be the frequency of units in category
(D+T+), N(+−) the units in category (D+T−), N(−+) the units in category
(D−T+), and N(−−) the units in category (D−T−). N(+•) denote the num-
ber of units with the disease, N(−•) the number of units without the disease,
N(•+) the number of units with positive test result, and N(•−) the number of
units with negative test result.

The following quantities are of great interest for physicians evaluating
patients. For a randomly selected unit from the population we define the fol-
lowing quantities:

a. Sensitivity is the conditional probability of responding positively
to the test given that the patient has the disease, i.e., S = Pr{T +|D+} =
N(++)/N(+•).

b. Specificity is the conditional probability of responding negatively to
the test given the absence of the disease, i.e., E = Pr{T−|D−} = N(−−)/N(−•).

c. Prevalence is the probability that the patient has the disease, i.e.,
π = Pr{D+} = N(+•)/N . Alternatively, (1 − π) = Pr{D−} is the probability
that the patient does not have the disease.
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d. Test Positivity and Test Negativity are the probabilities of positive
and negative test results, i.e., τ = Pr{T +} = N(•+)/N and (1− τ) = N(•−)/N .

e. Diagnostic Parameters are the posterior probabilities of the states
of a patient given the response to the clinical test:

PPV: Positive Predictive Value is the conditional probability of presence
of disease given positive test response: π(T +) = Pr{D+|T+} =
N(++)/N(•+) and

NPV: Negative Predictive Value is the conditional probability of absence
of disease given negative test response: [1−π(T−)]=Pr{D−|T−}=
N(−−)/N(•−).

The quantities of higher interest in clinical practice are the predictive val-
ues, PPV and NPV. Using Bayes formula, we obtain important relations be-
tween the predictive values and the other terms of the model, namely

PPV = π(T+) =
πS

πS + (1− π) (1−E)
=

{
1 +

[(
π

1− π

)(
S

1−E

)]−1
}−1

and

NPV =
[
1−π(T+)

]
=

(1− π)E

(1− π)E + π(1−S)
=

{
1 +

[(
1− π

π

)(
E

1−S

)]−1
}−1

.

Denoting the likelihood ratio for positive results by LR(+) = S/(1−E),
the likelihood ratio for negative results by LR(−) = (1−S)/E and the prevalence
odds by ρ = π/(1− π) we have:

PPV =
{

1 +
[
ρ LR(+)

]−1
}−1

and PPV =
{

1 + ρ LR(−)
}−1

.

Considering ρ as the prior odds in favor of the disease and 1/ρ as the prior
odds against it, the posterior odds in favor and against the disease become
ρ(+) = PPV ÷ (1− PPV) and ρ(−) = NPV ÷ (1− NPV). Relating all these
quantities we obtain the following interesting formulas:

ρ(+) = ρ LR(+) =
[
(prior odds) × (likelihood ratio for +)

]
,

ρ(−) =
[
ρ LR(−)

]−1 =
[
(prior odds) × (likelihood ratio for −)

]−1
,

ρ(+) =
prevalence

1 − prevalence
× sensitivity

1 − specificity
,

ρ(−) =
1 − prevalence

prevalence
× specificity

1 − sensitivity
,

PPV = ρ(+)
[
1 + ρ(+)

]−1 and NPV = ρ(−)
[
1 + ρ(−)

]−1
.
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The important question for a physician working with diagnostic tests is to
decide what to do when the result is positive (or negative). In fact, measures
of sensitivity and specificity, when available, would be of great help to him since
they may yield other valuable quantities, see [9] and [32]. Note that if there
is a big change from prior to posterior odds the test will be considered of great
value. In the next section we discuss a way of defining diagnostic power of clinical
evaluations. This index is of great value to state an order of preference in a set
of clinical procedures

6. DIAGNOSABILITY

In this section we discuss the diagnostic power of a medical test. To evaluate
the diagnostic ability of a test T , we should focus on the change from ρ to
ρ(+) and from (1 − ρ) to [1 − ρ(−)]. This is related with the weight of evidence
provided by T+ (T−) in favor of D+ (D−) and denoted by ω+ = ω(D+; T+)
[ω−= ω(D−; T−)]. Good ([14]) showed that the function ω, to follow reasonable
requirements, ought to be an increasing function of the odds ratio — the ratio of
posterior to prior odds — or, equivalently, an increasing function of the likelihood
ratio. That is, ω+ and ω− must be increasing functions of ρ(x) ρ−1 = LR(+) =
S(1−E)−1 and ρρ(−) = [LR(−)]−1 = E(1−S)−1, respectively.

The usual cross-product ratio (in the context of contingency tables), useful
in measuring association, is simply

R =
LR(+)
LR(−)

=
SE

(1−S) (1−E)
=

(PPV) (NPV)
(1− PPV) (1− NPV)

.

As we will see in the sequel, the larger R is, the better the test for detecting
disease D, i.e., the better its diagnosability.

As a consequence of the requirement of additivity of information, [13] proves
that the weights of evidence, ω+ and ω−, are the natural logarithms of LR(+)
and LR(−). [13] also points out that the expected value of the weight of evidence
is more meaningful than the likelihood ratio. Hence, the measure of the ability of
a medical test, T , to discriminate in favor of D+ (D−), given that the true state
of nature is D+ (D−) is the conditional expectation of ω+ (ω−) given S, E and
the state of the patient, D+ or D−. We denote these conditional expectations by
ε+ and ε− Finally, the diagnosability of T is by definition Δ = ε+ + ε−. Let us
explicitely introduce these formulas:

Weight of Evidence

a) In favor of D+,
ω(D+; T+) = ω+ = ln[LR(+)] and ω(D+; T−) = −ω−= ln[LR(−)].
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b) In favor of D−,
ω(D−; T+)=−ω+ =− ln[LR(+)] and ω(D−; T−)=ω−=− ln[LR(−)].

Average Weight of Evidence

c) In favor of D+ = ε+ = Sω+ − (1−S)ω− .
d) In favor of D− = ε− = Eω− − (1−E)ω+ .

Diagnosability Index

e) Δ = (S+E−1) lnR.

We would like to call the attention to the fact that all these indices depend
strongly on the values of many parameters that are in fact not completely known.
Usually the prevalence, the sensitivity and the specificity have to be estimated
with sample data. [36] introduced Bayesian techniques for such purposes. They
also consider the case where a set of clinical tests are observed in the same subject
and show how a combination of them improves the diagnosability of the medical
procedure. In a predictivist context, [33] and [34] show that if we look at a
particular patient, the computation of her/his posterior probability of having the
disease simplifies significantly the diagnostic calculus.

In order to decide if a new (possibly expensive) test must be considered
in lieu of some other test, one must collect, observe, and analyze a new sample.
Usually the size of a sample of patients, known to have the disease, is the number
of patients under treatment at the clinic and the test is applied to all possible
patients. A control group of units without the disease is also selected and tested
after all ethical procedures have been fulfilled. Based on the two samples, S and
E are estimated. Estimates of LR(+), LR(−), and R are then obtained.

The association measure R plays the most important role in the determi-
nation of the diagnostic power of a test T . In the next section, we present plots
that will help to use only the likelihood ratios to define situations where a test is
of interest for the clinician. We end this section with an analogy linking different
schools of statistics and the clinician’s interest in the properties of diagnostic
tests:

• A Fisherian clinician would be mainly concerned with the false posi-
tive rate, cases where the treatment is harmful for the patients (e.g.
prescribing a surgery when it is not necessary).

• A Neyman–Pearson–Wald clinician would be concerned with the false
positive and false negative rates.

• A Bayesian clinician would be concerned with the positive and negative
predictive values.

• A likelihood clinician view would be concerned with positive and nega-
tive likelihood ratios, which will be discussed further in the next section.
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7. LIKELIHOOD ANALYSIS OF A DIAGNOSTIC TEST AND
LIKELIHOOD RATIO PLOTS

For a given diagnostic test we have defined, respectively, the likelihood
ratios of positive and negative test results as LR(+) and LR(−). We also show
how to measure the diagnosability of a test, which is based on the change of
the pre-test to the post-test odds ratios. According to [19], the directions and
magnitudes of the pre to post changes using likelihood ratio values as a rough
guide are as follows:

1. LR’s larger than 10 or smaller than 0.1 generate conclusive changes.
2. LR’s in the interval (5; 10] or [0.1; 0.2) generate moderate shifts.
3. LR’s in the interval (2; 5] or [0.2; 0.5) generate small (important some-

times) shifts.
4. LR’s in the interval (1; 2] or [0.5; 1) generate small (rarely important)

shifts.

Jaeschke et al. ([19]) also presented a modification of a monogram suggested
by [10]. The monogram is as an old calculus rule where in the left side we have
values for the prevalence, in the middle the likelihood ratio and in the right side
the PPV values. By drawing a straight line from the prevalence value throughout
the likelihood ratio value and ending the line at the right side, the value obtained
at this end is just the PPV observed.

Biggerstaff ([4]) presented another interesting graphical method for com-
paring diagnostic tests. A large value of LR(+) indicates that the test has good
sensitivity and a small value of LR(−) means that the test has good specificity.
If both situations hold we have that R is large and the test has a high diagnostic
ability or equivalently high diagnosability. In many situations, due to costs or
the health conditions of a patient, one must choose among a set of diagnostic
tests a subset that will be performed. In this way ordering the tests by their
diagnosability becomes important. To order a set of diagnostic tests according
to their diagnostic ability one should have in mind the risks, the costs and the
likelihood ratio values. Note that ordering the tests according to LR(+), high to
low values, is equivalent to ordering them based on the values of their PPV’s.
On the other hand, ordering the tests according to LR(−), low to high values,
is equivalent to ordering them based on the values of their NPV’s.

Similarly to the ROC (Receiver Operator Characteristic Curve), in Figure 6
we plot, for a diagnostic test T1, the point A = (1−E1; S1). That is, the false
positive rate, X = (1−E1), against the true-positive rate, Y = S1. Additionally
we draw two lines through this point; (i) a solid line-segment through (0; 0) and A,
ending in the horizontal line (X; 1) and (ii) a dotted line-segment through (1; 1)
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and A, ending in the vertical line (0;Y ). It is not difficult to prove that the
slopes of the solid and the dotted lines are, respectively, LR1(+) and LR1(−),
the likelihood ratios for the test T1. The diagonal line delimitates the area where

Figure 6: Regions of Preference: A = (1−E;S) = (.4, .7).

a test is useful. Also, it is easy to show that, for a test, if the point A is below the
diagonal line the test is useless. We end this section with the following example:

Example: Consider a diagnostic test T1 where S1 = .7 and E1 = .6.
For this case we have A=(.4; .7), the solid line is Y = 1.75X and the dashed line is
Y = (1+X)/2. We have then LR1(+) = 1.75 and LR1(−) = .5. If a new test T2

is considered we have four possible locations for the point A2 = (1−E2; S2):

i. A2 ∈ Region 1, which implies that T2 is better than T1 overall, since

LR2(+) > LR1(+) and LR2(−) < LR1(−) ;

ii. A2 ∈ Region 2, which implies that T2 is better (worse) than T1 for
confirming absence (presence) of the disease, since

LR2(−) < LR1(−)
[
and LR2(+) < LR1(+)

]
;

iii. A2 ∈ Region 3, which implies that T2 is better (worse) than T1 for
confirming presence (absence) of the disease, since

LR2(+) > LR1(+)
[
and LR2(−) > LR1(−)

]
;

iv. A2 ∈ Region 4, which implies that T2 is worse than T1 overall, since

LR2(+) < LR1(+) and LR2(−) > LR1(−) .
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8. FINAL REMARKS

We would like to end this report with an optimistic view for the future of
pure likelihood approach of Statistics. Let us recall that the work of a statistician
lies in a trinity of problems; design of experiments, estimation, and hypotheses
testing. We want to show how the likelihood approach works well for the three
problems.

In the domain of design of experiments, consider the problem of determina-
tion of number of patients to be tested in order to estimate S, the sensitivity of a
clinical test. The maximum of the likelihood is the prescribed estimate. However,
we would also need to fix an interval around this estimate in order to guarantee
the control of our sampling error. For this purpose we use the normalized like-
lihood and would like to have the smallest interval with relative plausibility (or
credibility) around 95%. Since the binomial distribution is an adequate model,
the normalized likelihood follows a beta distribution with parameter (X+1; Y +1)
where X (Y ) is the number of true positive (false negative) results in a sample
of size n, to be determined. Recall that the mean and the variance of this beta
distribution are, respectively, m = (X + 1)/(n + 2) and v = m(1 − m)/(n + 3).
Note that v ≤ [4(n+3)]−1 since 0≤m≤1. Hence, the worst case (m=1−m= .5)
is a symmetric beta distribution; i.e. X = Y . In this case the mean and the mode
(the maximum likelihood estimate) are equal to .5. Adding and subtracting twice
the standard deviation to m, we obtain a fair plausible interval (as usually we do
when considering normal distributions). Let us represent this interval by [I1; I2],
where

I1 = .5 − (n + 3).5 and I2 = .5 + (n + 3).5 .

Let us now fix the length of the interval of highest plausibility as I2 − I1 =
2(n + 3).5 = .1. For this value we obtain n = 397. In order to satisfy the restric-
tion X = Y , we would take n = 298 as the sample size. Note that, for n = 398
the normalized likelihood would be a beta density with parameter (200; 200);
that is, X = Y = 199. Considering this case, the interval [.45; .55] would have
credibility 95.49% and length .1. Now suppose that we perform the experiment
and observe that X = 53 = 398 − Y . The parameter of the corresponding beta
density is (54; 346). This is not a symmetric density around its maximum, 53/398,
and the smallest interval with a fixed credibility has equal plausibility in its limits,
I1 and I2. For this non-symmetric case we would have the interval [.1033; .1703]
with credibility 95.01% and length .067. To obtain this interval we recall that a
beta distribution with parameters larger than 1 is uni-modal. Hence, to every pa-
rameter point there is a corresponding one with the same plausibility. Considering
a pair, say I1 and I2, with the same plausibility in such a way that the interval
[I1; I2] has posterior probability equal to the fixed credibility, say 95%, we ob-
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tain our interval. For bi-dimensional parameter spaces, obtaining a set of 95% of
credibility, corresponds to obtaining a level curve where its interior has posterior
probability of 95%.

In the above discussion we have shown how a likelihood approach will solve
the sample size determination and both point and interval estimation problems.
We now discuss the testing problem. We use here real data presented in [36].
Two samples of size 150 were taken respectively from a subpopulation of patients
having a disease D and from a healthy control group. A new clinical test was
applied to these samples. For the patients, we observed x = 20 = 150 − y true
positive cases and for the control sample we obtained x′ = 3 = 150 − y′ false
positive cases. We have here two likelihood functions, one for the sample of pa-
tients and another for the control sample. We want to compare this new test,
T1, with a standard one, T0, know to have sensitivity S0 = .15 and specificity
E0 = .91. To replace T1 for T0, we would like to have S1 > S0 and E1 > E0.
To make a decision about the use of the new test we first identify the set of
parameter points with plausibility higher than S1 = .15 in the sample of patients
and then compute its credibility. For the control sample we identify the set of
parameter points with plausibility higher than E1 = .91 and then compute its
credibility. Note that the normalized likelihood for S1 (E1) obtained in the pa-
tient (control) sample is a beta density with parameters 21 and 131 (148 and 4).
Before we describe the computations let us recall that LR0(+) = 5/3 = 1.67 and
LR0(−) = 85/91 = .93. On the other hand, the maximum likelihood estimates
for the likelihood ratios of the new test are LR1(+) = 20/3 = 6.67 and LR1(−)=
130/147 = .88. The odds ratio for the standard test is R0 = 1.78 and the
maximum likelihood estimate for the odds ratio of the new test is R1 = 7.54.
The Good’s weights of evidence are Δ0 = .0347 and Δ1 = .2289. These values
already provide evidence that the new test is superior. However, to quantify this
superiority we proceed as follows:

1. For the sample of patients, the set of possible values of S1 with plau-
sibility higher than S0 = .15 is the open interval (.1178; .1500); this
set has credibility 43.92%. Hence, the evidence in favor of H: S1 = .15
is 56.09%. With these figures we cannot reject the hypothesis that the
two tests have equivalent sensitivities;

2. For the control sample, the set of possible values of E1 with plausibility
higher than E0 = .91 is the interval (.910; .999); this interval has cred-
ibility 99.95%. Hence, the evidence in favor of H: E1 = .91 is .05%.
The conclusion here is that the new test is far more specific than the
old one; and

3. Finally, constructing a plot like in Figure 2 with A = (1 − E0; S0) =
(.09; .15), one would show that the estimated value of A1 = (1−E1; S1),
which is

(
1
50 ; 2

15

)
, belongs to Region 1, supporting the superiority of the

new test, T1.
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We believe to have covered the three problems without using other elements
than the likelihood function. We did not have to bring into consideration sample
points that could be observed but were not, as in the usual frequentist techniques
of unbiased estimation, confidence interval construction or standard significance
and hypothesis testing. The most important feature of the methods described in
this paper is that the likelihood principle is never violated.

We finalize the paper by presenting p-values for the hypothesis H: S1 = .15
and H: E1 = .9. In the first case we have 64.78% and in the second case .02% as
exact p-values. Had we used the chi-square test, we would have 56.76% and .42%.
Recall that our evidence values, based only on the likelihood function (defined
on the parameter space, not on possible sample points), for these two hypotheses
are 56.09% and .05%.
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