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Abstract:

e We present a new adaptive sampling method for statistical quality control. In this
method, called LSI (Laplace sampling intervals), we use the probability distribu-
tion function of the Laplace standard distribution to obtain the sampling instants,
depending on a k parameter that allows control of sampling costs. Several algebraic
expressions concerning the statistical properties of the LSI method are presented.
We compare the LSI method with fixed sampling intervals (FSI) and variable sam-
pling intervals (VSI) methods using a Shewhart X-bar control chart and evaluate the
sensitivity of these sampling methods when the lower sampling interval is truncated.
The results obtained show that the new method is a viable alternative in various
critical contexts and situations.
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1. INTRODUCTION

The success of a statistical quality control method is directly related to the
type of control chart and especially to the sampling method used. The variabil-
ity of the process is due to random causes (inherent to the process) or to the
presence of assignable causes. The former cannot be economically identified and
corrected, whereas the latter should be detected and eliminated. The choice of the
control chart depends upon the characteristic being controlled. The quantitative
characteristics are controlled using variable control charts (X-charts, R-charts,
or s-charts, for example) or special control charts (EWMA or CUSUM charts for
continuous random variables, for example). For a long time the control charts
used had fixed parameters (sampling intervals, sample sizes, and control limits).
However, since final of the 1980s, new adaptive control charts have been devel-
oped for improved performance. In terms of their implementation, these charts
can be classified in two broad categories. The first category encompasses control
charts with adaptive parameters (sampling intervals, sample size, and control
limits, depending on the sample information; see, for example, Reynolds et al.
(1988), Daudin (1992), Prabhu et al. (1993), Costa (1994), Prabhu et al. (1994),
Stoumbos & Reynolds (1997), Costa (1999), Rodrigues Dias (1999), Carot et al.
(2002), Mahadik & Shirke (2009)). The second category encompasses control
charts with predetermined parameters (parameters determined before the begin-
ning of the process to be controlled; see for example, Banerjee & Rahim (1988),
Rahim & Banerjee (1993), Lin & Chou (2005) and Rodrigues Dias & Infante
(2008)).

Several measures have been developed to assess the statistical quality con-
trols method’s performance across time regarding to how quickly they detect
assignable causes. The frequency of false alarms and the number of samples
and analysed items are two examples. The ARL (“average run length”) is per-
haps the most widely used statistical measure for assessing the performance
of a statistical control chart. The ARL is defined as the average number of
samples that needs to be drawn before an out-of-control indication is given.
If the control methods have constant and equal sampling intervals, then the time
interval up to the detection of a change is directly proportional to the ARL.
In the case of non-constant sampling intervals, the proportionality above fails
and the ARL is not a measure of the efficiency of the control method. The AATS
(“adjusted average time to signal”), also known in the literature as “steady-state
performance”, is defined as the average interval of time from the instant at which
a failure occurs in the system to the instant at which the control chart detects the
failure. In the case of a Shewhart control chart with variable sampling intervals,
AATS = E(G) + E(D)x(ARL—1), where E(D) is the average sampling interval
and G represents the time interval between the instant at which the system fails
and the instant at which the first sample, after the failure, is drawn. The AATS
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is a measure that suits most practical situations. Morais (2002), Carmo (2004)
and Rodrigues Dias & Carmo (2009) are important sources on the previously
described approaches. In Morais & Pacheco (2001), stochastic order relations are
established using the RL (“run length”), allowing comparison of different quality
control methods without numerical computation of their performance.

In the following sections, we present a new sampling method called LSI
(“Laplace sampling intervals”), an adaptive and continuous sampling method in
which the sampling intervals are obtained on the basis of the probability density
function of the Laplace standard distribution and depends on a scale parameter, k.
The AATS will be used in section 3 to examine the statistical properties of this
method and to compare its effectiveness with that of the FSI (“fized sampling
intervals”) and VSI (variable sampling intervals) methods. In section 4, the sen-
sitivity of this new method is compared to the sensitivity of the above mentioned
methods. Finally, in section 5, conclusions are drawn and future work is proposed.

2. NEW SAMPLING METHOD: LSI
(LAPLACE SAMPLING INTERVALS)

2.1. Methodology

Let X be a continuous quality variable so that when the system is in control
state, X is a random variable with expected value p = pg and standard devia-
tion ¢ = 0¢. If x1, 29, ..., x, are identical and independently distributed random
variables with the same distribution of X, where n is the sample size, then X has
the same expected value po and standard deviation og//n. As a consequence of
the one assignable cause, corresponding to a failure of the system, the process
state may change and then p and o may assume new values 1 = pg + Aog, and
o1 = og, with A > 0. If ¢; denotes a sampling instant of order ¢ and Z; is the
sample mean value of order ¢, according to the LSI method, the next sampling
at the instant of order ¢ + 1 is given by

(2.1) tit1 :ti—i-k.l(ui), 1=0,1,2,...,

where u; = EU;O“O\/E, to =0, To = po, l(u;) = %e"”i', n is the sample size, k is a
convenient scale constant and [(+) is the density function of the standard Laplace
variable. Therefore, according to (2.1), this sampling method considers consecu-
tive sampling intervals §; = t; —t;—1 = k.l(u;—1) = k x 0.5 X e lwi-1l 4 =123, ...
These are values from independently and identically distributed continuous ran-
dom variables D;, i = 1,2, 3, ..., with the same distribution of a generic variable D.
When we obtain the value of & we have only sampling intervals, D;, under control
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(E(D|A=0)=1); when we obtain the values of the AATS we have only sampling
intervals out-of-control, subject to different shifts of the sample mean. Thus,
D is a function of X and, consequently, of U, given by

_ kr.e_‘)?‘:“\/ﬁ‘ _
=g =

The constant k& depends on several factors and, especially, on the costs associated

(2.2) kA(U) .

with the production process (not imposing, so far, any limits on the control chart
for means) and U = (X — p) y/n/o . Using this adaptive and continuous method,
the sampling frequency decreases (the sampling instants are spaced further apart
in time) when the sample mean is marked close to the mean of the distribution.
When the sample mean is marked close to control limits, the probability of a
shift in the mean increases, and the sampling frequency increases (the sampling
instants are less distant in time). Like the VSI sampling method, the LST method
is an adaptive method in which the time interval to the next sample depends on
the information in the current sample. The disadvantage is that the sampling
intervals function of the LSI chart is a continuous function of the chart statistic
(and this implies an infinite number of possible sampling intervals). However,
the sampling interval function is a very simple function of the chart statistic.
It can be easy to implement in practice, particularly, in automatic monitoring.
The NSI (normal sampling intervals) method, presented by Rodrigues Dias (1999)
and studied in Infante (2004), showed limitations in practical applications.
In this method the sampling instants are obtained using the density function
of the standard Normal distribution; the smallest sampling interval is very small,
which reduces the application of this sampling method. The idea emerged to
study one analogous method in which the smallest sampling interval would be
greater than in the NSI method which, therefore, allowed practical applications.
Regarding the skewness and shape, the Laplace density function is similar to the
Normal density function, as in the Cauchy density function, but having heavier
tails. This fact addresses some of the difficulties seen in the practical application
of the NSI method. In our preliminary work we simulated sampling intervals for
three probability density functions (pdf(x, p,0)): those of the Normal, Cauchy,
and Laplace distributions. Considering “3-sigma” control limits and a time unit
average sampling interval, in control, the following results were obtained:

a) Normal distribution: pdf(0,0,1) = 0.399, k = 3.535, smallest sampling
interval = 0.016, largest sampling interval = 1.410.

b) Cauchy distribution: pdf (0, not defined, not defined) = 0.318, k = 4.778,
smallest sampling interval = 0.152, largest sampling interval = 1.521.

¢) Laplace distribution: pdf(0,0,1) = 0.500, k = 3.813, smallest sampling
interval = 0.095, largest sampling interval = 1.907.

Based on these results, we selected the Laplace distribution’s probability den-
sity function. All the parameters are defined such that the sampling frequency
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decreases close to the central region and the smallest sampling interval is more
likely to apply in practice. In addition, the smallest and largest sampling intervals
are approximately equal to the sampling pair most frequently used in the VSI
method ((dy,d2) = (0.1,1.9)). We are considering general sampling interval func-
tions that are continuous functions of the chart statistic. Stoumbos et al. (2001)
study what function would be the optimal function in some sense.

2.2. Statistical Properties

In the remainder of this paper we assume that X follows a normal dis-
tribution with expected value p = pog and standard deviation o = 9. We will
consider a Shewhart chart with LCL and UCL, respectively, lower and upper
control limits, given by:

0o 00

Vi Vi

where L is the coefficient of the control limits (in practice, typically around three
units of standard deviation). As mentioned above, after shift, u takes on the

(2.3) LCL = po— L UCL = po+ L

new value p; = pug = Aog, where A > 0 is the magnitude of the mean shift (in
the present work, only mean shifts are considered). Therefore, if u; denotes the
standard sample mean, for values to |u;| > L the process is considered to be
out-of-control, although this might be a false alarm.

Considering the assumptions in (2.2) and (2.3), and that f*(Z) is the cor-
responding conditional density function of Z, given by

(2.4) @) = ﬂ\fnﬁ R = e
g ™

then f*(Z)dz is the elementary probability of T € |Z,T + dz| and the average
sampling interval is given by

UCL
E(D|\n, L) :/ k(@) f(7) dT
LCL
(2.5) UCL _[z=no n(T—po—A00)>
L e e
oL 2BooV27

where 3 is the probability of the sample mean lies between the control limits, and
is given by

(2.6) B = ®(L—Av/n)—®(~L—Av/n).

Considering ®(u) as the distribution function of the standard normal random
variable, the following expression for the average sampling interval arises

k\f [eWﬁ.A(L, A )+ e N B(L A, n)} ,

(2.7) E(D|\n,L) = 5
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where

A(L,\,n) = ®
(2.8)
B(L,\n) = ®

(-1=AVn) —®(—L—1-xy/n),
(L+1=XVn)—®(1—-XVn).

The expression (2.7) depends on the sample size, n, the coefficient of the control
limits, L, the mean shifts, A\, and § (the probability of a Type II error if the
sample mean is out of the control limits). Assuming that the values of n, L and A
are known, then E(D) is a linear function of k. When the process is in control,
A = 0, the average sampling interval is given by

(2.9) E(D|L) = kf [®(L+1)—®(1)],

where = 2®(L) — 1 and does not depend on the sample size, n. Therefore, if
the average sampling interval is equal to a time unit (without loss of generality,
the sampling period used in the FSI method), the constant k is given by

B
Vel[®(L+1)—o(1)]’

which is equal to 3.8134, based on the usual “3-sigma” limits. This result was

(2.10) k=

obtained by numerical integration using the R software.

The variance of the sampling intervals can be obtained by the equality
Var(D) = E(D?) — [E(D)]?>. The expression for E(D?) is obtained using the
same reasoning applied to derive (2.5), leading to

UCL
E (D*A,nL) = /LCL [k.1(Z))%. f*(z) dz
€2k2 2)\\/ﬁ
(2.11) =0 [e [@(-2-2v7) —@(—L—Q—A\/ﬁ)]

4oV [@(L +2-An) - B(2— )\\/ﬁ)]] ,
which allows us to obtain the desired variance.

As mentioned above, there are different measures that are commonly used
to assess the effectiveness of control charts. In this study we use the AATS to
compare the effectiveness of the LSI method with the effectiveness of the FSI and
VSI methods. Let RL (run length) be a random variable denoting the number of
samples to be drawn before a false alarm or a failure occurrence, regardless of the
sampling method used. RL follows a geometric distribution with the parameter
1 — 3, that is, with a mean and the variance, respectively, given by

1

(2.12) ARLO) = 1=5 1
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and

g
(2.13) Var[RL(\)] Tk

In general, a process starts in control. Therefore, the time interval between
occurrence of a failure and its detection is of particular importance. For example,
in a production process in which the malfunction costs are high, the average total
cost of a production cycle may increase. As the failure may occur in the interval
between two samples, it is necessary to adjust the ATS (average time to signal
— which is defined as the average interval of time between the beginning of
the process and an out-of-control sign, eventually a false alarm, being given by
the control chart). Thus, we consider G to be the time interval between the
occurrence of a failure and the moment when the first sample is drawn after the
mean shift. The AATS (adjusted average time to signal) is given by

(2.14) AATS = E(G)+ (ARL—1).E(D),

where the expected value of G has to be determined. In the FSI method,
the expected value of G is, approximately, half of the inspection period used.
However, in this adaptive case, we do not have a constant sampling interval.
The distribution of the variable G depends on when the shift of the mean occurs.
Let us assume that the time when a shift occurs is uniformly distributed in each
sampling interval. If a failure occurs in a sampling interval of length d, the average
time until the next sample is drawn is 0.5 x d. Although the number of sampling
intervals is infinite, we can assume that the probability of the shift occurring in
a sampling interval of length d is proportional to the product of the length of
the interval and the probability of selecting this interval, as long as the process
is in control, as Reynolds et al. (1988) and Runger & Pignatiello (1991) assumed
for the VSI method. Taking into account that the variable G is continuous, the
expression for its expected value can be obtained using the same reasoning that
Reynolds et al. (1988) used in the VSI case. Based on the assumptions stated
above, we obtain the following expression for the expected value of G

E(D?X=0)  k.e’? ®(L+2)-2(2)

(2.15) E(GIL) = 2E(DX=0) 4 dL+1) -2’
which can be written as

(2.16) E(G) = k.e* x C(L),

with

217) ) — 2L -2

4x [®(L+1)—®(1)]
Expression (2.17) depends only on the control limits and may be simplified to

(2.18) E(G) = 0.036 x ke®/? .
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This simplified expression will be useful in future algebraic treatments. This
simplified version is originated by the data in Table 1, containing approximations
for C(L) for several values of L. It is clear that 0.036 is an excellent approximation
of C(L), particularly for values of L > 2. This approximation is not as good as
one might expect for L < 2. However, this situation can be considered irrelevant
in many applications, as it results in a high number of false alarms.

Table 1: Values of C'(L) for different multiples L of the standard deviation.

o s | o2 [es | o3 | a5 | a4 | a5 | 5 ]

| c(z) | 0.0394 | 0.0369 | 0.0361 | 0.0359 | 0.0359 | 0.0358 | 0.0358 | 0.0358 | 0.0358 |

The values of the AATS can be obtained as

(2.19) AATS1sr = 0.036 x k x /2 + <5> xE(D) .

1-p
In this case, the distribution of the sampling interval D; is the conditional dis-
tribution of the sample mean given that the process is out-of-control. Dy, Do, ...
are independent of RL, and the variance of T'S (time to signal) can be written as

(2.20)  Var(TS) = Var(G)+ E(RL — 1) Var(D) + Var(RL — 1) [E(D))?,

for which we need the value of Var(G). To get Var(G), we begin by determining
E(G?). According to Reynolds et al. (1988), for the VSI method, and Infante
(2004), for the NSI method, the algebraic expression is given by

B E(D3A=0) _ k2et (L +3) — ®(3)
(2.21) E(G?) = 3E(DA=0) 12 (L +1)—d(1)’

which depends only on L. Therefore, the variance of the variable G is given by
Var(G) = E(G?) - [B(G))?

k2e* ®(L+3) —®(3) k2e® [®(L+2) — d(2)]°
12 ®(L+1)—®(1) 16 |[®(L+1)—®1)]

From (2.7), (2.11), (2.21) and (2.22) we obtain (2.20).

(2.22)

3. COMPARISONS BETWEEN THE LSI METHOD AND THE
FSI AND VSI METHODS

As mentioned in the previous section, comparisons of the effectiveness of the
LSI sampling method with the FSI and VSI methods is made using the AATS.
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Thus, the two sampling methods in comparison are considered to be both in
control, or in other words, the average sampling intervals are equal to one time
unity (d = 1) and the control limits are “3-sigma” (L = 3). Comparisons are made
for mean shifts, only. Because it is assumed that the characteristic X follows a
normal distribution, the direction of the shift is of no importance at all. Under
these assumptions the value of the parameter k in the LSI method is 3.8134.

3.1. Comparison between the LSI and FSI sampling methods

Assuming a fixed value for the sampling interval, d, the expected value of
G (the random variable previously defined for the FSI sampling method) can be
defined as half of the sampling interval, d. Infante & Rodrigues Dias (2002) and
Carmo (2004), in independent studies, analysed this approximation for different
lifetimes, and both concluded this approximation to be acceptable. Therefore,
the AATS of the fixed sampling method is given by

N

(3.1) AATSpsi = E(G)+ (ARL—1) x d = 1_dﬁ _
To compare the effectiveness of the two sampling methods, LSI and FSI, we
assume that, in control, the average sampling interval of the LSI method is equal
to the sampling interval of the FSI method (without loss of the generality, d = 1),
obtaining a value of k= 3.8134 for the LSI method. Considering (2.19) and (3.1)
the ratio

AATSps — AATS g1

AATS s, x 100%

(3.2) QLsy/Fs1 =

represents a measure of the relative variation, in %, of the AATS value when
AATSggr is the reference. The results obtained for mean shifts with different
sample sizes are illustrated in Figure 1.

<
o
u—g—o__“ n=2
. o= a \a a n=3
= o n=>5
L]
Q cl/ \u \
7o /° ™ bt
L e NN
[5] /° o a
= 8/ N
(e == A )
™~
= T
&
T T T T T T T
00 05 1.0 15 20 25 30

Figure 1:  Qpsr/rs1(%), as a function of A and different values of n.
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From Figure 1, the following conclusions arise:

i)

ii)

iii)

iv)

The control chart for means with the LSI method detects small and
moderate mean shifts more quickly than the control chart for means
with the FSI method. This means that the LSI method is more sensi-
tive to changes whose probability of detection is low. The reductions
in the AATS using the LSI method can be very large.

For shifts in which the probability of the detection is high, the FSI
method performs better than the LSI method. This is not surprising,
because this is true for most known adaptive methods. In the situ-
ations described above, the average number of samples taken before
detection of a failure is very small. Therefore, the value of E(G) is
of great importance. It is approximately equal to the time of sys-
tem malfunction because only a single sample is required to detect
the shift. For an average sampling interval, in control, equal to unity,
E(G) = 0.50 in the FSI method and E(G) = 0.61 in the LSI method.
However, the reduction obtained with FSI method, in terms of the
AATS, is limited to a maximum of 22.5% (for n = 5), whereas the
reduction obtained with LST method has a maximum of 50.3%.

For the different sample sizes considered, the Qrgsi/rgr values begin
with an average rate of positive variation, reaching an absolute value
maximum, and then reaching an average rate of negative variation.
The average rate of positive variation increases more quickly as a
function of A when the sample size increases. The average rate of
negative variation increases more quickly as a function of A when the
sample size decreases.

In general, when the sample size increases, the values that maximize
(M) and the reductions obtained with the LSI method decrease. This
makes sense because the probability of detection of the shift increases
with the sample size.

3.2. Comparison between the LSI and VSI sampling methods

Looking for improvements in the performance of classical control charts,
Reynolds et al. (1988) divided the region of continuation, C' = | — L, L], into two
sub-regions, Cy = | — L, —w| U [w, L[ and Cy = | — w, w][, and used two sampling
intervals, d; and dsy , with d; < d < d3. The VSI method allows us to anticipate
the next sample (we use d; if the sample mean belongs to the C; region) or

to delay it (using dy if the sample mean belongs to the Cy region). Reynolds
& Arnold (1989), Reynolds (1989), Runger & Pignatiello (1991), and Reynolds
(1995), in different contexts, gave theoretical justifications for the use of two
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sampling intervals. For two intervals the average sampling interval in the VSI
method is given by:
_dixpn +daXpio

(3.3) E (D|A\n) = 3 ,

where 3 is given by (2.6), and
pi = ®(L—A/n) — &(w—An) +@(—w —A/n) —®(—L — \/n),
pi2 = B(w— AVA) — B~ — AV).

are the probabilities of a sample mean occurring in regions C; and Cb, respec-

(3.4)

tively, when a mean shift occurs. W is given by

1 Q(I)(L)X(d—dl)—l—dz—d

(3.5) W = &~ 2(dy — d) ,

according to the expression presented by Runger & Pignatiello (1991), when the
average sampling interval in the VSI method, in control, is equal to the sampling
period, d, in the FSI method. According to Reynolds et al. (1988), the average
time interval between the instant when a failure occurs and the instant when the
first sample is drawn after the shift occurs is given by

d2 po1 + d3po2
3.6 EG) = —1 2 .
(3.6) ©) 2(d1po1 + dapo2)

The adjusted average time to signal, AATS, is given by

d3po1 + dpo2 dip11 + dapi2

3.7 AATSvys1 = :
(3.7) VST 2 (di por + dapoz) 1-p

where

(3.8) po1 = 2[®(L) — (w)] and  po2 = 2®(w) — 1

are the probabilities of a sample mean belonging to the regions C; and (5, respec-
tively, when the process is in control.

To compare the effectiveness of the LSI and VSI methods, we assume that
the average sampling intervals in both sampling methods are equal to the fixed
sampling interval (d = 1 and k = 3.8134) in the expressions (2.19) and (3.7). Once
again, the ratio

AATSvys1 — AATS1s1

AATSver x 100% ,

(3.9) Qrsi/vst =

represents a measure in % of the relative variation of the AATS value, with
respect to the AATSvyg reference. The results obtained for mean shifts with
different sample sizes are presented in Table 2. The following conclusions are
immediate:
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Table 2:  Qrgsi/vsi(%), as a function of A, for different values of n
and different sampling pairs in VSI.
A
n| (di,d2)
0.00 \ 0.25 \ 0.50 \ 0.75 \ 1.00 \ 1.25 \ 1.50 \ 1.75 \2.00 \2.25\2.50\3.0()
(0,], 1.9} 0.1 -—-14 —-59 —-13.2 -—-21.6 —26.0 —19.8 —4.5 10.5 20.7 26.4 31.0
21(0.1,1.5) 0.0 -0.9 —3.7 —-86 —14.9 —-20.5 —-20.9 —-14.0 —4.0 4.4 9.7 14.2
AATS1,s1|370.01 216.71  79.98 29.08 11.31 4.86 2.40 1.41 0.98 0.79 0.70 0.63
(0,], 1.9) 0.1 —-2.2 -89 —-19.0 —-25.9 -—-18.2 1.1 17.0 25.5 29.5 31.2 32.2
3 (0.1,1.5) 0.0 -—-14 -5.7 —-12.8 —-20.1 -—-20.5 -—-10.6 1.2 8.8 12.7 14.4 154
AATS1s1|370.01 175.53 50.46 15.24 5.27 2.28 1.22 0.86 0.71 0.66 0.63 0.61
(0.], 1.9) 0.1 —-3.7 —14.6 —-25.7 —154 9.3 23.9 29.6 31.5 32.1 32.3 323
51(0.1,1.5) 0.0 -2.3 —-9.5 —-194 -194 —4.9 7.3 12.8 14.7 15.3 15.4 15.5
AATS1s1|370.01 122.99 24.81 5.97 1.98 1.01 0.74 0.65 0.63 0.62 0.61 0.61

i)

ii)

iii)

iv)

In sample sizes more widely used in the literature, n > 3, the LSI
method is quicker than the VSI method in detecting shifts of magni-
tude A > 1.5, i.e., in situations whose probability of detection is high.

The effectiveness of the LSI method increases when the sample size
increases for moderate and large shifts in the mean. For small shifts in
the mean, the effectiveness of the LSI method decreases as the sample
size increases.

If we consider (di,d2) = (0.1,1.9) in VSI, the maximum reductions
obtained with the LSI method are considerable (approximately 32%);
in general, the performance of the LSI improves significantly when the
sample size is larger; if the probability of occurrence of a shift is equal
for all A, using the LSI method could be a competitive advantage.

If we consider (di,d2) = (0.1,1.5) in VSI, the maximum reductions
obtained with the LSI method are significantly smaller (approximately
16%) than those obtained with the other sampling pair in the VSI
method; in general, the performance of the LSI improves as the sample
size gets larger.

An example of application

In sections 3.1 and 3.2 we compared, in a critical way, the performances
of the FSI and VSI methods with the performance of the LSI method in terms
of the AATS. For a better perception in absolute terms of the LSI method, we
present an example of application that allows checking the effectiveness in the

detection of the shift.

Thereby, if there is a mean shift of magnitude A = 1.0, and considering how

unit of the time one hour, for the quality characteristic being monitored:
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i) If we use the FSI sampling method, the first sample after the mean
shift is drawn, on average, after 30 minutes, and we need 240 minutes,
on average, to detect the shift.

ii) If we use the VSI sampling method:

a) with the sampling pair (d;, d2) = (0.1,1.9), the first sample after
the mean shift is drawn, on average, after 54 minutes, and we
need 103 minutes, on average, to detect the shift;

b) with the sampling pair (di, d2) = (0.1,1.5), the first sample after
the mean shift is drawn, on average, after 44 minutes, and we
need 100 minutes, on average, to detect the shift.

iii) If we use the LSI sampling method: the first sample after the mean
shift is drawn, on average, after 37 minutes, and we need 119 minutes,
on average, to detect the shift.

In this case we can conclude that the use of the LSI method allows us to re-
duce the out-of-control period by 121 minutes, on average, compared to the
FSI method, and increase the out-of-control by either 16 minutes or 19 min-
utes, compared to the VSI method, depending on whether we use the sampling
pair (di,ds) = (0.1,1.9) or the sampling pair (di,d2) = (0.1, 1.5).

On the other hand, if a shift of magnitude is of A = 1.5, for the quality charac-
teristic being monitored:

i) If we use the FSI sampling method, the first sample after the mean
shift is drawn, on average, after 30 minutes, and we need 64 minutes,
on average, to detect the shift.

ii) If we use the VSI sampling method:

a) with the sampling pair (dy,d2) = (0.1, 1.9), the first sample after
the mean shift is drawn, on average, after 54 minutes, and we
need 58 minutes, on average, to detect the shift;

b) with the sampling pair (d;,ds) = (0.1, 1.5), the first sample after
the mean shift is drawn, on average, after 44 minutes, and we
need 48 minutes, on average, to detect the shift.

iii) If we use the LSI sampling method: the first sample after the mean
shift is drawn, on average, after 37 minutes, and we need 44 minutes,
on average, to detect the shift.

We can conclude that the use of the LSI method allows us to reduce the out-
of-control period by 20 minutes, on average, compared to the FSI method, and
by either 14 minutes or 4 minutes, compared to the VSI method, depending
on whether we use the sampling pair (dj,d2) = (0.1,1.9) or the sampling pair
(d1,d2) = (0.1,1.5).

Thus, for this situation and others in which A\ > 1.5, the use of the LSI method
makes it possible to reduce the malfunction costs and makes the product more
competitive by reducing its final price.
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The influence of the sampling interval distribution on the standard devia-
tion must be analysed as well. The values of the coefficient of variation of the TS
for the different sampling methods (for the conditions previously described) are
presented in Table 3. The results shown there allow us to conclude that for all
methods and small mean shifts, the coefficients of variation are very close to 1.

Table 3: Values of the coefficient of variation of T'S
for the FSI, VSI and LSI methods.

A
0.00 | 050 | 100 | 150 | 1.75 | 2.00 | 250 | 3.00

FSI d=1 1.0000 1.0000 0.9998 0.9996 0.9989 0.9977 0.9798 0.9633

(0.1,1.9) | 1.0000 0.9968 0.8022 0.6143 0.6211 0.6261 0.6221 0.6112
(0.1,1.5) | 1.0000 0.9981 0.8609 0.6071 0.6031 0.6087 0.6130 0.6133

LSI 0.9986 0.9818 0.7915 0.6357 0.6715 0.6943 0.7060 0.7067

VSI

For moderate mean shifts, the coefficient of variation for the LSI method is
the smallest, although it is similar to the one of the VSI method when ds =1.9.
For A > 1.5, the LSI method has a slightly larger coefficient of variation than the
VSI method for all sampling pairs (due to greater dispersion in the sampling in-
tervals underlying the Laplace distribution), but a smaller coefficient of variation
than the FSI method.

4. SENSITIVITY ANALYSIS

To evaluate the consistency of the LSI method, a sensitivity analysis was
performed. In this section the lower sampling interval is truncated, as it results in
a situation similar to the VSI method. On the other hand, the concern in practical
applications in certain industrial contexts in which one may be physically or
administratively unable to take and analyse samples at very short time intervals
justifies this type of study.

D is the random variable that represents the time interval between consec-
utive inspections, and d; is the smallest sampling interval possible. Hence, we
have:

2 2
(4.1) D<d < g.e—“"gdl — u2—ln< 7{d1> Vv ugln( ifll),

where L* = — ln(zx—kdl) is a multiple of the standard deviation that can be inter-
preted as W in the VSI method. Let us consider D* as the time interval between
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consecutive samples when the sample mean is between po £ L*ogn~%5. The dis-
tribution of D* is the conditional distribution of the mean, given that D* falls
between the control limits for the given mean shifts. The probability density
function of D* is given by

= —A 2
Jn _ n(&—po—Ado)

2
20§

(4.3) B = ®(L* = A\y/n) — ®(—L* — AV/n).

Through reasoning similar to that which has been applied in the statistical
properties of the LSI method, we have

(44)  E(D*|L*,An) = \fﬁk [e’\‘/ﬁxA(L*,)\,n)+e"\\/ﬁxB(L*,)\,n)},

where

A(L* M\ n) = ®(=1 = Av/n) —(=L* —1—Ay/n),
(45) B(L*,A\n) = ®(L* +1—Ayn) —®(1—Ay/n),

and k* depends on the value of L*. Thus, the probability of using the sampling
interval d; is given by

p1 = P(D:dlp\)

(o) S ago S
4.6 =1-P — L=< X< L*— | LCL< X < UCL
(46) (- 2% < X <o+ 1% | LoD < X < v
5*
=1-=.
B

Based on the assumptions stated, the average sampling interval is given by

(4.7) E(D) = Bg < E(D*) + dy x (1 - %) .

Considering (4.7), “3-sigma” control limits and a unit average sampling interval,
in control, the values of £* and L*, obtained by simulation are presented in Table 4
for the considered values of dj.
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Table 4: Values of k* and L* obtained by simulation
for different values of d;.

[ | & [ L7 |
0.1 | 38134 29480
0.2 | 3.8099 22539
0.9 | 37942  1.8443
0.4 | 37591 15473
0.5 | 3.6976 13077

Examining the results in Table 4, we conclude that the value of k* gets
smaller as the value of d; increases, reducing the multiples of the standard devia-
tion. This feature shows how the LSI method can be equated to the VSI method
because when we increase the smaller sampling interval in the VSI method, the
W value decreases.

To assess the impact of truncation of the lower sampling interval in terms
of the AATS values, we rewrite expression (2.14), adapted to the new conditions,
as

E(D*) B* + di (8 — B*)
1-3 ’

(4.8) AATS = E(G)+ (ARL—1)E(D) = E(G) +

where E(G) value is obtained by simulation and is used in comparisons between
the LSI method and the remaining methods. Intuitively, an increase in the value
of di leads to an increase in its probability of use. To prove that this intuition is
correct, we perform a sensitivity study of the LSI method. We compare the AATS
values obtained using the LSI method in its original form with those obtained
using the LSI method with truncation of the lower sampling interval.

The results are presented in Figure 2, using a measure of relative variation
(sensitive to the lower sampling interval change) and the values of k* and L*,
expressed in terms of % of the AATS value (being AATS1s1 the reference)

AATSy g — AATS 81

AATS e x 100% .

(4.9) QLsr/LsT =

Analysing this figure, one concludes that the differences in the AATS values in-
crease as the probability of detecting mean shifts increases, reaching its maximum
for shifts of magnitudes of A = 1.25. From this point onward, the effectiveness
of the methods tends to converge, becoming identical for large magnitudes of
mean shifts. However, for d; = 0.4 and d; = 0.5, there are strong increases in the
AATS for some mean shifts. Even when d; is three times greater than the initial
value, the maximum relative reduction in the AATS using the non-truncated LSI
method is only 12.7%.
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Figure 2:  Qugr+/181(%), as a function of A for different values of dj,
with n = 5.

Comparison between the LSI* and FSI* sampling methods

For the conditions mentioned in the previous section, the AATS values for
the truncated LSI method and the FSI method for a sample size of five were
compared. The assessment measures the effect that the change in the lower
sampling interval can have on the performance of the LSI method, compared to
what occurs in the FSI method. Thus, one considers the measure of performance
presented in (3.2), taking into consideration the new values of the AATS in LSI
(AATSys1+). From the results of Qg+ psr, only for mean shifts, we can conclude
the following: when the lower sampling interval is truncated, the LSI* method
is more effective than the FSI* method for the same mean shifts; the increase in
the sampling interval is not proportional to the reduction in effectiveness of the
method; the FSI* method detects large mean shifts more quickly than does the
LST* method, maintaining the effectiveness presented previously.

Comparison between the LSI* and VSI* sampling methods

Using a similar methodology, the LSI* and VSI* methods were compared
for the same and for new conditions. Considering a sample size of 5 units and
the same number of false alarms, we truncate the lower sampling interval in both
methods to the same values. To compare the effectiveness of the two methods, the
performance measure defined in (3.9) is used, replacing AATSys1 with AATSy g1+
and AATSvgsr with AATSygr+. From the results presented in Table 5, for mean
shifts, we can draw the following conclusions:

i) In general, the performance of the LSI* method improves when the
lower sampling interval gets larger for small shifts. In particular, when
A =1and d; > 0.3, LSI* is more effective than VSI*.

ii) For moderate to large shifts, the performance of LSI* is better than
VSI*, except when the lower sampling interval increases.
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iii) When we use the VST* method, the increases obtained are significantly
greater than the reductions for the different sampling pairs.

Table 5: Qg+ vsi- (%), as a function of A, for different values of d;
equal to the smaller sampling interval in VSI.

A

d| ud) [ 025 050 [ 0.75 | 100 | 125|150 1.75 [ 2.00 | 2.25 | 2.50 | 5.00

(0.1,1.9)| 0.1 —-3.7 —-14.6 -25.7 —-154 9.3 239 29.6 31.5 321 322 323
(0.1,1.5)| 0.0 —-2.3 —9.5 —-194 —-194 —-49 7.3 128 147 153 154 155

(0.2,1.9)| 01 —27 —97 —145 —49 120 223 265 280 284 286 28.6
021215 | 00 -15 -59 —105 -83 07 7.6 108 11.8 122 123 12.3

(0.3,1.9)| 01 -18 —-63 —80 —0.6 11.0 186 222 23.6 241 243 243
0.3 (0.3,1.5)| 0.0 —-1.0 —-35 —56 —-3.6 1.6 5.6 75 83 86 86 86

(0.4,1.9)| 0.0 —1.3 —4.0 —44 08 85 142 17.3 187 193 194 195
041 (0.4,1.5)| 0.0 —-06 -21 -30 —1.8 08 28 39 44 46 46 46

(0519 00 -08 -25 -25 09 57 97 121 133 139 140 14.1
051 0.515) | 00 -04 -12 -18 -14 —06 00 02 03 03 03 03

0.1

For the purpose of illustration, consider the case of the lower sampling
interval for the LST* method being truncated to dy = 0.2. For the example given
at the end of section 3.2 and for a mean shift of magnitude A = 1.5, we conclude
that the use of the LSI* method allows us to reduce the malfunction period by
18 minutes, on average, compared to the FSI* method, and by either 13 minutes
or 4 minutes, compared to the VSI* method, depending on whether we use the
sampling pair (dy,d2) = (0.2,1.9) or the sampling pair (dy,d2) = (0.2,1.5). These
results demonstrate the good performance and sensitivity of the LSI* method.

Results concerning the robustness of the method have been obtained by
Carmo et al. (2013) for a case in which the distribution of quality has a t-Student
distribution and another case in which the distribution of quality is a mixture of
two normal distributions with different standard deviations. In both cases the
performance of the LSI method is better than the performance of FSI and VSI
methods, and there are situations in which the LSI method detects mean shifts
more quickly than the VSI method.
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5. CONCLUSIONS

The LSI method detects small and moderate mean shifts in quality more
quickly than the FSI method. For large mean shifts, FSI is more efficient. How-
ever, the gains achieved with the use of LSI are greater. In a production system
in which the sampling costs are very significant (for example, in the production
of a touchscreen display for the iPhone 5; 44 U.S. dollars per unit), and in which
the quality changes are small or moderate, the use of LSI offers a competitive
advantage in reducing sampling and malfunction costs.

When we use the sample pair (di,d2) = (0.1,1.9) in VSI, the adaptive meth-
ods are subject to the same conditions. In other words, the smallest and largest
sampling intervals in the LSI method are approximately the same. In LSI, the
smallest interval is 0.095 and the largest interval is 1.907. For the sampling pairs
considered, LSI detects moderate and large mean shifts more quickly.

We consider the LSI method to be not very sensitive because it has a
similar performance to that of the non-truncated method for several mean shifts,
particularly when the smallest sample interval is smaller than three times the
original smallest interval.

For the reasons explained, and for simplicity, the use of the LSI method
can offer a competitive advantage in automating tasks and using nano-scale mea-
surement instruments.

Future research will involve a different approach to the calculation of E(G),
using different distributions for the lifetime of the system and assessing its impact.
We will extend the study of the statistical properties and performance to the use
of joint control charts (X-chart and S-chart or X-chart and R-chart) and special
control charts (CUSUM and EWMA charts) to compare the LSI method with
other adaptive methods (for example, VSS, VSSI, and VP).

Finally, it is our intention to conduct a study to determine the k£ value that
minimizes a cost function by production cycle.

ACKNOWLEDGMENTS

The authors are grateful to the Editor and Referees for their careful reviews
and helpful suggestions, which have improved the final manuscript considerably.
This work is financed by national funds through FCT — Foundation for Science
and Technology — under the project UID/MAT/04674/2013 (CIMA).



New Adaptive Sampling Method for Quality Control 21

REFERENCES

BANERJEE, P.K. and RAHIM, M.A. (1988). Economic design of X control charts
under Weibull shock models, Technometrics, 30(4), 407-414.

CARMO, M. (2004). Problemas de Amostragem em Controlo Estatistico de Quali-
dade, Master Thesis, Universidade Nova de Lisboa, Lisboa.

CARMO, M.; INFANTE, P. and MENDEs, J.M. (2013). Alguns resultados da
robustez de um método de amostragem adaptativo em controlo de qualidade.

In “Estatistica: Novos Desenvolvimentos e Inspiragoes” (M. Maia, P. Campos,
and P.D. Silva, Eds.), SPE, Lisboa, 95-108.

CAROT, V.; JABALOYES, J.M. and CAROT, T. (2002). Combined double sam-
pling and variable sampling interval X chart, International Journal of Production

Research, 40(9), 2175-2186.

CosTA, A.F.B. (1994). X chart with variable sample size, Journal of Quality
Technology, 26(3), 155-163.

CosTA, A.F.B. (1999). X chart with variable parameters, Journal of Quality
Technology, 31(4), 408-416.

DAUDIN, J.J. (1992). Double sampling X chart, Journal of Quality Technology,
24(2), 78-87.

INFANTE, P. (2004). Métodos de Amostragem em Controlo de Qualidade, Doc-
toral Dissertation, Universidade de Evora, Evora.

INFANTE, P. and RODRIGUES Dias, J. (2002). Anélise da importancia da dis-
tribuicao do tempo de vida no periodo de inspeccao em controlo estatistico de
qualidade, Investigagdo Operacional, 22(2), 167-179.

LiN, Y.C. and CHou, C.Y. (2005). Adaptive X control charts with sampling at
fixed times, Quality and Reliability Engineering International, 21(2), 163-175.

MAHADIK, S.B. and SHIRKE, D.T. (2009). A Special Variable Sample Size
and Sampling Interval X Chart, Communications in Statistics — Theory and
Methods, 38, 1284-1299.

Morais, M.C. (2002). Ordenagio Estocdstica na Andlise de Desempenho de
Esquemas de Controlo de Qualidade, Doctoral Dissertation, IST, Universidade
Técnica de Lisboa, Lisboa.

Morars, M.C. and PAcHECO, A. (2001). Ordenagdo Estocdstica na Andlise
de Desempenho de Esquemas de Controlo de Qualidade. In “A Estatistica em
Movimento” (M.M. Neves, J. Cadima, M.J. Martins and F. Rosado, Eds.), SPE,
Lisboa, 247-260.

PrABHU, S.S.; MONTGOMERY, D.C. and RUNGER, G.C. (1994). A combined
adaptive sample size and sampling interval X control scheme, Journal of Quality
Technology, 26(3), 164-176.

PrABHU, S.S.; RUNGER, G.C. and KEATs, J.B. (1993). An adaptive sample
size X chart, International Journal of Production Research, 31(2), 2895-2909.

Ranm, M.A. and BANERJEE, P.K. (1993). A generalized model for the eco-
nomic design of X control charts for production systems with increasing failure
rate and early replacement, Naval Research Logistics, 40(6), 787-809.



22

M. do Carmo, P. Infante and J.M. Mendes

REYNOLDS, M.R. (1989). Optimal variable sampling interval control chart,
Sequential Analysis, 8(4), 361-379.

REYNOLDS, M.R. (1995). Evaluation properties of variable sampling interval
control charts, Sequential Analysis, 14(1), 59-97.

REYNOLDS, M.R.; AMIN, R.W.; ArNoLD, J.C. and NACHLAS, J.A. (1988).
X charts with variables sampling intervals, Technometrics, 30(2), 181-192.

REYNOLDS, M.R. and ARNOLD, J.C. (1989). Optimal one-sided Shewhart con-
trol charts with variable sampling intervals, Sequential Analysis, 8(1), 51-77.

RODRIGUES Dias, J. (1999). A new method to obtain different sampling intervals
in statistical quality control, Universidade de Evora, Evora.

RODRIGUES Dias, J. and CArRMO, M. (2009). A new approach for comparing eco-
nomic sampling methods in quality control in systems with different failure rates.
In “TRFt’2009-3rd International Conference on Integrity, Reliability Failure, Chal-
lenges and Opportunities” (S.A. Meguid and J.F. Silva Gomes, Eds.), F.E.U.P,
Porto, 653-654.

RODRIGUES Dias, J. and INFANTE, P. (2008). Control charts with predeter-
mined sampling intervals, International Journal of Quality and Reliability Man-
agement, 25(4), 423-435.

RUNGER, G.C. and PIGNATIELLO, J.J. (1991). Adaptive sampling for process
control, Journal of Quality Technology, 23(2), 133-155.

STOUMBOS, Z.G.; MITTENTHAL, J. and RUNGER, G.C. (2001). Steady-state-
optimal adaptive control charts based on variable sampling intervals, Stochastic
Analysis and Applications, 19(6), 1025-1057.

STouMBOS, Z.G. and REYNOLDS, M.R. (1997). Control charts applying a se-
quential test at fixed sampling intervals, Journal of Quality Technology, 29(1),
21-40.



REVSTAT - Statistical Journal
Volume 16, Number 1, January 2018, 23-43

FINDING THE OPTIMAL THRESHOLD
OF A PARAMETRIC ROC CURVE UNDER
A CONTINUOUS DIAGNOSTIC MEASUREMENT

Authors:  YI-TING HwWANG
— Department of Statistics, National Taipei University,
Taipei, Taiwan
hwangyt@Qgm.ntpu.edu.tw

YU-HAN HUNG

— Department of Statistics, National Taipei University,
Taipei, Taiwan
lalamomok0914@hotmail . com

CHUN CHAO WANG

— Department of Statistics, National Taipei University,
Taipei, Taiwan
ccw@gnm.ntpu.edu.tw

HARN-JING TERNG

— Advpharma, Inc.,
New Taipei city, Taiwan
ternghj@advpharma.com.tw

Received: March 2015 Revised: July 2016 Accepted: July 2016

Abstract:
e The accuracy of a binary diagnostic test can easily be assessed by comparing the
sensitivity and specificity with the status of respondents. When the result of a diag-
nostic test is continuous, the assessment of accuracy depends on a specified threshold.
The receiver operating characteristic (ROC) curve, which includes all possible combi-
nations of sensitivity and specificity, provides an appropriate measure for evaluating
the overall accuracy of the diagnostic test. Nevertheless, in practice, a cutoff value is
still required to make easier its clinical usage easier. The determination of a proper
cutoff value depends on how important the practitioner views the specificity and sen-
sitivity. Given particular values of specificity and sensitivity, this paper derives the
optimal cutoff value under two parametric assumptions on the outcomes of the di-
agnostic test. Because the optimal cutoff value does not have a closed form, the
numerical results are tabulated for some parameter settings to find the optimal cutoff
value. Finally, real data are employed to illustrate the use of the proposed method.

Key-Words:

e bilogistic model; binormal model; optimal threshold; sensitivity; specificity.

AMS Subject Classification:
e 62C05.



24 Yi-Ting Hwang, Yu-Han Hung, Chun Chao Wang and Harn-Jing Terng



Finding the Optimal Threshold 25

1. INTRODUCTION

A diagnostic test that results in a continuous value is often evaluated using
the receiver operating characteristic (ROC) curve. Let TP, FP, FN and TN
denote the true positive decision, false positive decision, false negative decision
and true negative decision, respectively. The following table provides 4 possible
diagnostic test decisions:

Test result

True status — -
Positive  Negative

Case TP FN
Normal FP TN

Let P[TP] be the probability that a true positive decision is made, and let P[TN],
P[FP] and P[FN] be defined similarly. The true positive rate (TPR) and the true
negative rate (TNR) can be derived from P[TP|, P[TN], P[FP] and P[FN] as

_ P[TP]
(1.1) TPR = 55y
(1.2) TNR = i[gli],

where P[D+] = P[TP] + P[FN] denotes the prevalence of a disease and P[D—] =
P[TN] + P[FP] = 1 — P[D+].

A ROC curve is constructed from different values for the TPR and FPR.
The determination of the TPR and FPR requires a cutoff value to classify the
normal and diseased populations when the outcome is continuous. The ROC
curve is then formed using TPRs and FPRs derived from all possible cutoff values.
However, for practical use, the continuous outcome has to be dichotomized such
that the investigator or practitioner can easily use it to discriminate the disease
status. Nevertheless, the ROC curve does not provide direct information on how
to determine such a cutoff value. It is thus important to find an optimal cutoff
value (OCV) such that the probabilities of correct decisions are maximized.

Let Sp and Sy denote the outcome of the diagnostic measure for the dis-
ease group and the normal group, respectively, and let Fp and F denote the
corresponding distribution functions. The ROC curve can be represented as

ROC(t) = Fp(Fy' (1)),

where t € (0,1), Fp(t) = 1 — Fp(t) is the survival function of Fp(t) and Fy(t) is



26 Yi-Ting Hwang, Yu-Han Hung, Chun Chao Wang and Harn-Jing Terng

defined similarly. Because the FPR and TPR are functions of Fp and Fy as

FPR(c) = P[Sy > ¢|N]=1— Fn(c) = Fn(c),

TPR(c) = P[Sp > ¢|D] =1— Fp(c) = Fp(c),

for a given cutoff ¢ € (—o0,0), the ROC curve can be represented in terms of
the TPR and FPR.

To derive the OCV, an additional objective function is required. Three
objectives have been discussed in the literature to find the OCV (Akobeng [1];
Kumar [5]). The first objective function is defined as the distance from the ROC
curve to the point (0,1), that is,

(1.3) Ci(c) = /(1 — TPR(c))? + (FPR(c))?

and the OCV is the point at which C(c) has the minimum. The second objective
function proposed by Youden [9] is the vertical distance from the line of equality
to the point on the ROC curve, which is

(1.4) Cs(c) = TPR(c) + TNR(c) — 1,

and the OCV is the point that maximizes Cy. Cz(c) is known as the Youden
index. An alternative and equivalent representation of Cy(c) is

ITPR(c) — (1 — TNR(c))]

expressed by Lee [6] and Krzanowski and Hand [4]. The third objective function
is a weighted function of the probability of four diagnostic decisions, defined by
Metz [8] as

(15) Cg(C) =Cy+ CTPP[TP] + CTNP[TN] + CFPP[FP] + CFNP[FN],

where (Y is the overhead cost, C'rp represents the average cost of the medical
consequences of a true positive decision, and the remainder of the costs are defined
similarly. Based on (1.1) and (1.2), expression (1.5) can be rewritten as

+ {[Crx — C1p| X P[D+]} x TPR(c

(1.6) 03(6) :{Co + Cpp X P[D—] + CpN X P[D—I—]}
+ {[CTN — CFP] X P[D—]} X TNR(C)

In particular, the first term on the right-hand side of (1.6) includes only the three
costs and the prevalence, which do not depend on the decision of a diagnostic test.
Because the determination of the OCV is not related to this term, it is neglected
in the following discussion. Thus, in terms of (1.6), the best cutoff value is the
one that minimizes C3. The critical value occurs at

OTPR(c)  (Crx — Crp) x P[D—]

OTNR(c)  (Cpx — Crp) x P[D+]’
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which is the slope of a line of isoutility or the tangent line in the ROC space.
Metz [8] concluded that the OCV on a ROC curve must be tangent to the highest
line of isoutility that intersects with the ROC curve.

The OCV derived from the first and second objective functions is deter-
mined empirically (Kumar [5]). Under the binormal model and assuming that
the slope of the tangent line to the ROC curve equals 1, an explicit form for
the OCV under C3(c) is derived and is referred to as P252 in Halperm et al. [3].
However, the third objective function uses not only the cost for each decision but
also the prevalence of the disease. The latter can possibly be obtained empirically
using the existing data, whereas the cost of the medical consequences is difficult
to obtain. Thus, it is rarely used in the medical literature (Kumar [5]).

For a practitioner, sensitivity and specificity, which correspond to the TPR
and TNR, are commonly used measures, and the importance of these two mea-
sures depends on the purpose of the diagnostic test. Thus, rather than the equal
weight setting for the TPR and TNR as in (1.3) and (1.4), in this paper, we
suggest using a more general objective function,

(1.7) C(c) =a x TPR(c) + 8 x TNR(c),

where 0 < o, <1 and a+ 3 =1, to derive the OCV. The weight o can be
regarded as the relative cost for an additional cost of classifying a TP compared to
an additional cost of classifying a TIN. Assuming the location and scale parametric
assumption, the OCV can be then obtained under C(c). In particular, when
a = 0, the objective function in (1.7) is the usual criterion for finding the OCV
by minimizing the FPR or maximizing the specificity. Conversely, when 3 = 0,
the objective function is the usual criterion for finding the OCV by maximizing
the sensitivity. Section 2 describes the basic definition of the ROC curve and
the derivation for the OCV. Section 3 presents the numerical results. Sections 4
and 5 provide a real application and discussions, respectively.

2. METHOD

Assume that Fp and Fy belong to a location and scale family. In other
words, both distributions can be expressed by a standard form, say F, with
different location and scale parameters. Let (up,vyp) and (un,yn) denote the
parameters for Fp and Fly, respectively. The FPR and TPR can be represented
in terms of F' as

B0 [ ()
o o= r[ROm (0
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Let t, denote the critical value of F, i.e., 1 — F(t,) =p. Given FPR(c), the
following relationship is obtained:

tppr = Fy'(FPR(c)) = —— £~
TN
and
(2.3) ¢ = UN — YN X tFPR-
Additionally, given TPR(c), we have
trer = Fp'(TPR(c)) = —— 2,
YD
and
(2.4) ¢ = up —Yp X UTPR.

Given FPR and TPR, (2.3) and (2.4) provide the relationship between two critical
values as
(2.5) topr = L2 HN o IV ok = a + btppr,

YD YD
where a = (up — un)/vp and b = yn /yp. From (2.5), a linear relationship exists
between two critical values of Fp and F, where a is the intercept and b is the
slope. Given FPR(c), the ROC curve can be represented as

(2.6) ROC(c) = P[Sp > d = F(‘“fy; C).

Substituting the value of ¢ defined in (2.3) into (2.6) yields

Up — UN + YN X tFPR
YD

ROC(c) = P[Sp > ¢ = F( ) — F(a + btppr).

Under the location and scale family as defined in (2.1), (2.2) and (2.5),
(1.7) becomes

C(c) = aF(a+b<NN — C)) —i—ﬂF(C_'uN).

TN TN

The OCV can then be determined by finding the critical value of % = 0, where

@)oo (B0« (- ) ar (52 « (1)

and f(-) is the density function of F(-). The following theorem discusses two lo-
cation and scale families. The proof for Theorem 2.1 is provided in the Appendix,
and the proof for Theorem 2.2 is similar.
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Theorem 2.1. Assume that F(-) = ®(-) is a standard normal distribution
function. To be consistent with the conventional notation, the scale parameters
are denoted by op and oy. Then,

1. When b =1, we obtain

B a ON 1-0
(2.8) OCV = un + 20N~ 710g< 5 )

2. When b # 1, we obtain

T+ \/Tz —2(1—b2)R/0%,

2.9 oCcV = )
29) TRy
where
2 2

puy — (aon +bun) ab
2.1 R= 1 ,
(2.10) TN 1 og(%)

pN — abon — by
2.11 T =
( ) 0_]2\7 b

and R and T have to satisfy the condition T? — 2(1 — b*)R/o3; > 0.

Theorem 2.2. Assume that F(-) is a standard logistic distribution func-
tion, i.e.,
F(z) = [1 4 exp(—z)] " *.

Then,

1. When b= 1, we obtain a closed form for the OCV as
(2.12) OCV = —oplog(q),

where

(a — B) £ \/ap(exp(a) + exp(—a) — 2) .
Foul ) -eon ) on ()

2. When b # 1, the OCV is found numerically by solving the following
nonlinear equation

2 (101 (xp (MY 5 1)’

B = S (M) o ()0 )

(2.13) q=

where k = e°.
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2.1. Relationship between the objective function and cutoff values

As c increases, the TPR decreases and the TNR increases. Because we
assume that a case has a higher test value, the relative change in the TPR with
respect to ¢ is more rapid than that in the TNR. Furthermore, as expected,
increasing up means a smaller overlapping area in the densities for the normal
and diseased populations and results in an increase in the TPR. When pup is
fixed, the influence of op on the TPR depends on ¢. When c is closer to up,
increasing op reduces the TPR.

To understand how the parametric assumption influences the relationship
between the objective function and the OCV, the basic features for the binormal
and bilogistic models are discussed in the following. The common feature is that
both distributions are symmetric about the location parameter. Nevertheless,
the scale parameter in the normal distribution is the standard deviation, whereas
the scale parameter in the logistic distribution is equal to the standard deviation
times v/3/m. Finally, the kurtosis of the normal distribution equals 3, whereas
that of the logistic distribution equals 4.2.

Assuming that py = 0 and oy = 1, Figures 1(a)—1(b) display the normal
and logistic density functions for the normal and diseased populations when b =1,
and Figures 2(a)—2(d) display the situations when b # 1, where the solid line
represents the normal distribution and the dashed line represents the logistic
distribution and the left curve is for the control population and the right curve
is for the diseased population. Under the same settings of up and op, the tail
probability for the logistic distribution is slightly larger than that for the normal
distribution. Furthermore, the mode of the logistic distribution is higher than
that of the normal distribution because it has a larger kurtosis. These distinct
features influence the TPR and TNR as shown in Table 1. Furthermore, due to
a more concentrated feature for the logistic distribution, under the considered
situation, the TNR of the logistic distribution is slightly larger than that of the
normal distribution when c is closer to the upy, whereas for larger ¢, the TNR
of the logistic distribution is slightly smaller. Thus, under the assumption that
UN < ip, to have a higher TPR, the cutoff value for the logistic distribution is
smaller than that for the normal distribution. In contrast, when investigating the
TNR, the cutoff values for the logistic distribution might not be smaller.

The proposed objective function is a weighted function of the TPR and TNR.
Figures 3(a)-3(b) show the relationship between the objective function C' and the
cutoff value ¢ for various §s assuming that yy =0, oy =1 and up =1, op = 1.
For the binormal assumption, Figure 3(a) shows that when 5 = 0.5 and OCV=0.5,
we obtain C'(OCV) = 0.6915. When 3 = 0.7, that is, the specificity is more
important than the sensitivity, we obtain OCV=1.3473 and C(OCV) = 0.7470.
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(a) up =0.5 and op = 1. (b) up=1and op =1.
Figure 1: The probability density functions for normal distribution and logistic dis-
tributions for uy =0, oy =1 and b = 1, where the solid line represents
the normal curve and the dashed line represents the logistic curve.
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Figure 2: The probability density functions for the normal distribution and logistic

distribution for uy = 0, oy = 1 and b # 1, where the solid line represents

the normal curve and the dashed line represents the logistic curve.
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Table 1: TPR and TNR under ¢ = 0.5, 1.5,2 for the binormal model
and bilogistic model assuming puy = 0 and oy = 1.

Normal distribution Logistic distribution

Up | op c
TPR TNR TPR TNR
05| 4 |05 05000 0.6915 0.5000 0.7124
: 2 | 0.0668 0.9772 0.0618 0.9741
05| 0.6915 0.6915 0.7124 0.7124
bbb o | o587 0.9772 0.1402 0.9741
0.5 | 0.5000 0.6915 0.5000 0.7124
051 15145 02525 0.9331 0.2298 0.9382
05| 0.6306 0.6915 0.6467 0.7124
L5y 51 03694 0.9332 0.3533 0.9382
05| 0.5000 0.6915 0.5000 0.7124
051031 45| 00004 0.9332 0.0024 0.9382
05| 0.9522 0.6915 0.9536 0.7124
L0395 0.0478 0.9332 0.0464 0.9382

Conversely, when g = 0.3, that is, the sensitivity is more important than the
specificity, we obtain OCV=-0.3473 and C(OCV) = 0.7470. Figure 3(b) shows
a similar pattern for when the bilogistic model is considered, but C(OCV) is
slightly larger and the OCV is moving towards small values. This result arises
from a larger kurtosis for the logistic distribution.

0.8 0.8

(1.3473, 0.747) (-0.3473, 0.747)| (1.0931,0.75264)  (-0.083123, 0.75264]
i IRt (om G
3 x &
06 R 0.6
\\
Ops5F——- = = Oagl —— -
04 — a0 - 04 —(@=03,07)
T :“’-‘j;::g'z'g':; L -~ (@@=0305]
93 R " 03 (08)=(0.3,0.3)
ocv
0eg 2 1 0 1 2 3 bes 2 1 0 1 2 3
c c
(a) Binormal model. (b) Bilogistic model.

Figure 3: Relationship between cutoff values and C' under the binormal
model and bilogistic model under various combinations of (a, ),
where o indicates the point at (OCV, C(OCV)).
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2.2. Special cases

Depending on the purpose of the test, the investigator might be more in-
terested in the specificity as long as the sensitivity reaches a specific limit, or
vice versa. That is, an investigator might want to have a diagnostic test in which
the sensitivity is at least larger than a pre-specified value L, where 0 < L < 1.
Then, the OCV is obtained by maximizing the specificity under the constraint
that the sensitivity is larger than L, i.e., TPR > L. Likewise, the OCV can be
obtained by maximizing the sensitivity under the constraint that the specificity
is larger than L, i.e., TNR > L. The following derives the boundary for the TPR
and TNR under the binormal and bilogistic models. The following proofs can be
obtained in a straightforward manner.

Theorem 2.3. Assume that F(-) is a standard normal distribution func-
tion and that L > 0 is a pre-specified constant. Then,

1. When L < TPR, upper bounds of ¢ and the TNR are

c<pp—on®YL),

WD — AN — UN(I)_I(L))
ON '

TNRch)(

Thus, the OCV equals up — on®~(L).

2. When L < TNR, a lower bound of ¢ and an upper bound of the TNR
are given as

c>puy —on® (1 - L),

pup — pn +on® (1 — L)>
oN '

TNR§<I><

Thus, the OCV equals uy — ony®~1(1 — L).

Theorem 2.4. Assume that F(-) is a bilogistic distribution function and
that L > 0 is a pre-specified constant. Then,

1. When L < TPR, upper bounds of ¢ and the TNR are

L
C< D =N log(ﬁ),
1
TNR < ( - ) .
_ log ( —L_
1+exp(“N oo o8 (o )

Thus, the OCV equals up — YN 10g(ﬁ).
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2. When L < TNR, a lower bound of ¢ and an upper bound of the TNR
are given as

1-L
¢ 2> puN — N log (T)’
#D*NN+7N10g(%))
IN
HD*HN+'YN10g(%)> )
oN

exp(

TNR <

1 —|—exp<

Thus, the OCV equals puny — vyn log (%)

3. NUMERICAL RESULTS

Based on the objective function defined in (1.6), Section 2 derives the OCV
under the binormal and bilogistic models. When the binormal model is assumed,
the OCV can be obtained explicitly, whereas under the bilogistic model, the OCV
can be obtained explicitly only when b=1. The following discusses the OCV, TPR,
and TNR under various settings for § and the location and scale parameters.

For simplicity, the standard normal distribution is assumed for the control
population, i.e., uy =0 and oy = 1. Because the formula for determining the
OCYV varies with b, the following discussion considers b = 1 and b # 1 separately.
For each scenario, the parameter setting is classified into two situations. The first
scenario considers different values of yup given op. The second scenario considers
different values of op given pup. Furthermore, the settings for up and op are
discussed according to the effect size ES = up/op. Additionally, up is assumed
to be larger than ppy. Moreover, because 8 =0 and 3 = 1 correspond to special
cases discussed in Section 2.2, the numerical results only consider 0.1 < 3 < 0.9.
Similar results for the bilogistic model are given in the Supplement.

3.1. Situation I when op is fixed and pup is varied

The first situation discusses the numerical results when op is fixed and
ES is varied. For ES < 1, up equals 0.5, 0.7 and 0.9, whereas for 1 < ES, up
equals 1.5, 2 and 2.5. Figures 4(a)-4(b) display the relationship between TPR
and TNR with respect to 6 when up is varied and op = 1. When ( increases,
the investigator is more interested in the TNR. As expected, the TNR increases
while the TPR decreases. Increasing pup means that the difference in the testing
result between two groups becomes more evident. Furthermore, for a fixed
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and op, the OCV is a function of up, as given in (2.8). Thus, as up increases,

the OCV increases, which corresponds to an increase in the TNR and a decrease

in the TPR. Furthermore, due to a symmetric property, the OCV is located at
TPR=TNR when = 0.5. Table 2 presents the OCV, TPR and TPR for each

scenario.
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TNR and TPR at the OCV for various combinations of yp,
(# and ES under the binormal model and b = 1.

Table 2: Numerical results for TNR, TPR and OCV under the binormal model
with various ups and op = 1.
B
ES|up |op | Measures
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
oCcVv —4.1444 —2.5226 —1.4446 —0.5609 0.2500 1.0609 1.9446 3.0226 4.6444
0.5(0.5| 1 TPR 1.0000 0.9987 0.9741 0.8556 0.5987 0.2874 0.0743 0.0058 0.0000
TNR 0.0000 0.0058 0.0743 0.2874 0.5987 0.8556 0.9741 0.9987 1.0000
ocv —2.7889 —1.6304 —0.8604 —0.2292 0.3500 0.9292 1.5604 2.3304 3.4889
0.710.7] 1 TPR 0.9998 0.9901 0.9407 0.8236 0.6368 0.4093 0.1948 0.0515 0.0026
TNR 0.0026  0.0515 0.1948 0.4093 0.6368 0.8236 0.9407 0.9901 0.9998
oCcv —1.9914 —1.0903 —0.4914 —0.0005 0.4500 0.9005 1.3914 1.9903 2.8914
0909 1 TPR 0.9981 0.9767 0.9180 0.8161 0.6736 0.4998 0.3116 0.1378 0.0232
TNR 0.0232 0.1378 0.3116 0.4998 0.6736 0.8161 0.9180 0.9767 0.9981
ocv —0.7148 —0.1742 0.1851 0.4797 0.7500 1.0203 1.3149 1.6742 2.2148
15|15 1 TPR 0.9866  0.9530 0.9057 0.8462 0.7734 0.6843 0.5734 0.4309 0.2374
TNR 0.2374 0.4309 0.5734 0.6843 0.7734 0.8462 0.9057 0.9530 0.9866
oCcv —0.0986 0.3069 0.5764 0.7973 1.0000 1.2027 1.4236 1.6931 2.0986
2 2 1 TPR 0.9821 0.9548 0.9227 0.8855 0.8413 0.7874 0.7178 0.6205 0.4607
TNR 0.4607 0.6205 0.7178 0.7874 0.8413 0.8855 0.9227 0.9548 0.9821
oCcv 0.3711 0.6955 0.9111 1.0878 1.2500 1.4122 1.5889 1.8045 2.1289
25125 1 TPR 0.9834 0.9644 0.9440 0.9211 0.8944 0.8617 0.8189 0.7566 0.6447
TNR 0.6447 0.7566 0.8189  0.8617 0.8944 0.9211 0.9440 0.9644 0.9834
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Figures 5(a)-5(d) display the TPR and TNR at the OCV when (3 is varied
and op # 1. The pattern for the TPR and TNR with respect to § is no longer
symmetric. Similar to op = 1, as 3 increases, the TPR decreases and the TNR
increases. However, the relationship between the TPR and TNR depends on op,
ES and #. When ES < 1 and op = 0.5, the TPR is always larger than the TNR
regardless of 3. This is because cp = 0.5 means that the result obtained from the
diseased group is more homogeneous, and the diagnostic test has a higher ability
to detect a case even if ES < 1. However, when ES < 1 and op = 1.5, the TPR
is larger than the TNR only if 8 < 0.4. Furthermore, when ES > 1, the TPR is
larger than the TNR only for some fs.
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Figure 5: TNR and TPR at the OCV when up, op, 8 and ES are varied,
b # 1 and the binormal model are assumed.
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3.2. Situation IT when op is varied and up is fixed

Situation II provides numerical results for OCV, TPR and TNR when up =
0.5 and op is varied. When pup = 0.5, ES < 1 means that op is larger than
on = 1, which means that it is easier to conclude a FN. Figure 6(a) shows the
relationship between the TPR and TNR at the OCV with respect to 8 when op
is varied and ES < 1. The pattern of change for the TPR with respect to op
is related to 8. When [ increases, TPR expectedly decreases because ( is the
weight for the TNR. Nevertheless, when 0.5 < 3, the TPR becomes very small
and slightly increases as op increases. In addition, the TNR is large as long as
0.6 < 3, as listed in Figure 6(a).

When pup = 0.5, 1 < ES means that op is smaller than oy = 1, which
indicates that it is easier to conclude a TP. Figure 6(b) displays the relationship
between the TPR and TNR with respect to § when op is varied and 1 < ES.
Expectedly, as op increases, the TPR decreases regardless of 4. Unlike ES < 1,
the relationship between the TNR and op depends on 5. When [ < 0.6, the
TNR decreases as op increases, whereas when 0.6 < 8, the TNR increases as op
increases.
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Figure 6: TNR and TPR at the OCV for various combinations of op,

G and ES under the binormal model and pup = 0.5.

As 3 increases, the TNR is more important and results in a larger OCV.
Table 3 demonstrates this trend. The impact of op on the OCV is related to ES.
When ES < 1, as op increases, the OCV increases. Nevertheless, when ES > 1,
the trend reverses.
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Table 3: The relationship among OCV, TNR and TPR when the binormal
model is assumed, up = 0.5 and op is varied.
B
ES |up |op | Measures
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
(016)% — — — —0.5684  0.4400 1.1730 1.8288 2.5112 3.3878
0.45[(0.5(1.1 TPR — — — 0.8343 0.5218 0.2703 0.1135 0.0337 0.0043
TNR — — — 0.2849  0.6700 0.8796 0.9663 0.9940 0.9996
oCcv — — — —0.2929 0.7493 1.3147 1.7900 2.2693 2.8720
0.38/0.5|1.3| TPR — — — 0.7290  0.4239 0.2654 0.1605 0.0868 0.0340
TNR — — — 0.3848  0.7732 0.9057 0.9633 0.9884 0.9980
oCcv — — — 0.2000  0.9490 1.4109 1.8068 2.2097 2.7192
0.33|0.5|1.5| TPR — — — 0.5793  0.3824 0.2718 0.1918 0.1272 0.0695
TNR — — — 0.5793  0.8287 0.9209 0.9646 0.9864 0.9967
OCV |—-0.2872 —0.1851 —0.1085 —0.0384 0.0344 0.1192 0.2368 — —
1.67|0.5/0.3| TPR 0.9957 0.9888 0.9787 0.9636 0.9397 0.8978 0.8098 — —
TNR 0.3870 0.4266 0.4568 0.4847 0.5137 0.5474 0.5936 — —
OCV |—-0.5196 —0.3711 —0.2583 —0.1532 —0.0417 0.0940 0.3072 — —
1.25/0.5(04| TPR 0.9946 0.9853 0.9710 0.9488 0.9122 0.8450 0.6851 — —
TNR 0.3017 0.3553 0.3981 0.4391 0.4833 0.5374 0.6207 — —
OCV | —-0.7609 —0.5570 —0.4001 —0.2518 —0.0904 0.1163 0.5753 — —
1 105(0.5| TPR 0.9942 0.9827 0.9641 0.9336 0.8812 0.7786 0.4401 — —
TNR 0.2234 0.2888 0.3445 0.4006 0.4640 0.5463 0.7175 — —

— Numerical data are not available.

4. CASE STUDY

Early detection may improve the survival of patients with lung cancer.
Chian et al. (2015) investigated peripheral blood mononuclear cell (PBMC)-
derived gene expression signatures for their potential in the early detection of
non-small cell lung cancer (NSCLC). PBMCs were obtained from 187 patients
with NSCLC and from 310 non-cancer controls based on an age- and gender-
matched case-control study. Controlling for gender, age and smoking status,
15 NSCLC-associated molecular markers were used to construct a risk score to
distinguish subjects with lung cancer from controls. Detailed markers and the
model construction are presented in Chian et al. (2016).

From the preventive perspective in health management, a higher sensitivity
Thus, /8 might be
set to be smaller than 0.5. Nonetheless, cancer-specific clinicians often examine
Thus, they may wish to have a higher specificity

is preferred such that the disease can be detected earlier.

highly suspicious subjects.
test. Figure 7 presents the histograms of the risk scores for the case and control
groups for the PBMC data. The bilogistic model appears to be appropriate for
these data. The maximum likelihood estimators of p and ~ are obtained for
each group. The corresponding estimates of p and v for the case are 1.9911 and
1.5782 and those for the control are —2.3620 and 0.9739. Based on these es-
timates, the logistic density curves are plotted on top of the histogram in Figure 7.
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Figure 7: Histograms for risk scores for case and control groups for PBMC data,
where the solid curve is the logistic density curve.

Under the bilogistic assumption, Table 4 lists the OCVs for § ranging from 0.1
to 0.9 for the risk score derived from the PBMC data. Figure 8 presents the cor-
responding TPR and TNR. For instance, when 8 = 0.4, the OCV equals —0.634.
The test would expect to have equal chances at approximately 0.85 to identify a
true positive or a true negative. Nevertheless, when § = 0.6, the test would have
a higher chance to find a true negative.

Table 4: OCYV for the PBMC data.
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Figure 8 TPR and TNR under various (s for the PBMC data.
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5. DISCUSSION AND CONCLUSION

The determination of the cutoff value is practically important. Because the
ROC curve includes two important measures, TPR and TNR, to obtain the opti-
mal operating point (OOP) or OCV, an additional objective function is required.
One of two existing criteria can be regarded as the special case of the proposed
criterion. The objective function Cj requires information about the cost for the
incorrect decision, which cannot be easily obtained. Furthermore, the OCV for
this criterion is determined by setting the slope of the tangent line to the ROC
curve to a pre-specified value (Halperm [3]). Because the slope is a function of
the prevalence of the disease and costs, it is difficult to explain clinically (Kumar

[5])-

The OCV is often obtained empirically (Kumar [5]). This paper derives
the closed form for the OCV under the location and scale family. The binormal
model is the most commonly used parametric assumption for the ROC curve.
Under such an assumption, this paper provides exact formulas for the OCV.
Furthermore, numerical results are presented under various scenarios. When
b =1, the TPR and TNR are related to the weight (). In particular, increasing
(8 means increasing the TNR. Nevertheless, when b # 1, regardless of 3, the TNR
might not be higher than 0.5. In particular, when the binomial model is violated,
this paper provides another parametric choice, the bilogistic model. However,
there is no closed form for the OCV. This paper provides a nonlinear equation
for determining the OCV. In addition to discussing the OCV for the bilogistic
model, the difference between these two parametric models is also addressed. The
result of this paper can provide guidance for practitioners to choose the OCV.

Rather than choosing the OCV based on the sensitivity and specificity,
Linnet et al. [7] suggested using the likelihood ratio

o) = v
(5.1) LR(c) o=

as an alternative for interpreting the test result. If (5.1) exceeds 1, then the
relative frequency of the distribution of diseased individuals exceeds that of the
normal individuals. In other words, given the index test result ¢, a respondent is
more likely to have the disease. Their result can also be extended to the location
and scale family.
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APPENDIX: Proof of Theorem 2.1

Assume that I is the standard normal distribution function. To be con-
sistent with the conventional notation, vp and y are replaced by op and oy,
respectively. Therefore, (2.7) becomes

b(pn—=c) 12 2
(A1) oC(c) __—ab exp (— [a+ =55 n exp (_ b?(c— pn) )
dc V2monN 2 V2mbon 20%;
aC/(e)

and set =5~ = 0 to obtain the OCV. An explicit formula for OCV can be deter-
mined and is dependent on b.

When b =1, i.e., 0]2\, = 0%, the objective function and the corresponding
derivative with respect to c are

_ UN —C C— UN
(A.2) C=ad(a+ - ) + B )

and

oC —« 1 UN — €12 15} 1/c— puny\2
A. —_— = —— - .
(A-3) oc V2mop xp ( 2 [a + oD } ) + \V2mop xp < 2( oD )

Let %—(c) = 0. We have

2 2
—abexp <— e ZMQN 2 ) + Bexp <—(C L;N) ) =0,
ON

which implies

(6 ao — C Cc — 2
(A4) log(ﬁ> _ D+2(:év ) Qal%N) —

After simplifying the preceding equation, we obtain

2

2(pp — pN)e+ X — 15
20%

o

g

+log() =0
and the OCV as given in (2.8).

When b # 1, the objective function and the corresponding derivative with
respect to ¢ are

C= 04<I)<a + b('u]:;]; C)) +ﬂ<I>(C;::N)

and

oC —ab . 1 [a+b<uN—c)]2 N Ié; . 1 [c—,uNr
— = ——exp | —= xp | —= .
oc  \2mon P 2 ON V2mon P 2| on
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Let %—(g = 0. We obtain

_abexp (— 2o + bln = C>]2> + Bexp {—(C_’W)Q] —0,

20%; 20%
which implies
ab,  [aon +b(pn — ) | (c—pn)?

A5 log(—) — =0.
(A5) o(%) o =
Rearranging (A.5), we obtain

1—b° — aboy — b? 2 — bun)? b

( ! )2_(pv—a oN IN) . MY (GUN2+ [N ) +1og(22) = 0

20% oy 20% I}

and the OCV is equal to

(A.6) c=

where R and T are defined in (2.10) and (2.11), respectively.
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1. INTRODUCTION

Extreme value theory deals with the asymptotic behavior of extreme ob-
servations in a sample of realizations of a random variable. This theory can be
applied to the prediction of the occurrence of rare events such as high flood levels,
large jumps in the stock markets and sizeable insurance claims. It is based on
the extremal types theorem which states that exactly three types of distributions,
namely the Gumbel, Fréchet and Weibull models, referred to as types I, II and
IIT extreme value distributions, can model the limiting distribution of properly
normalized maxima (or minima) of sequences of independent and identically dis-
tributed random variables. As the generalized extreme value (GEV) distribution,
also called the Fisher—Tippett [10] distribution, encompasses all three types, it can
be utilized as an approximation to model the maxima of long (finite) sequences
of random variables. The GEV and Gumbel distributions are widely utilized in
finance, actuarial science, hydrology, economics, material sciences, telecommuni-
cations, engineering, time series modelling, risk management, reliability analysis
as well as several other fields of scientific investigation involving extreme events.
For informative scholarly works on extreme value distributions and related results,
the reader is referred to [5], [12], [15] and [7].

Being a limiting distribution, the GEV model may prove somewhat inad-
equate in practice, and generalizations thereof ought to provide greater flexibil-
ity for modeling purposes.The extended models being proposed in this paper,
namely, the g-generalized extreme value and ¢g-Gumbel distributions, are in fact
g-analogues of the distributions of origin which are re-expressed in terms of an
additional parameter denoted by q.

Mathai [17] developed a pathway model involving superstatistics, which
arise in statistical mechanics in connection with the study of nonlinear and non-
equilibrium systems. As explained for example in [8, 28], such systems exhibit
spatio-temporal dynamics that are inhomogeneous and can be described by a “su-
perposition of several statistics on different scales”. The non-equilibrium steady-
state macroscopic systems being considered are assumed to be made up of a large
number of smaller cells that are temporarily in local equilibrium; moreover, each
of these cells can take on a given value x of the variable of interest with probability
density function g(z) wherefrom one can determine the generalized Boltzmann
factor, B(e) = fooo e~ “g(x)dz, € denoting the energy of a microstate occurring
within each cell. Such distributions are related to Tsallis statistics [27] which find
applications in statistical mechanics, turbulence studies and Monte Carlo com-
putational methods. Recently, several ¢-type superstatistical distributions such
as the g-exponential, ¢-Weibull and g-logistic were developed in the context of
statistical mechanics, information theory and reliability modelling, as discussed
for instance in [30, 31, 20, 18, 14] and [21].
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The cumulative distribution function (cdf) and probability density function
(pdf) of the GEV distribution, including the Gumbel distribution as a limiting
case wherein £ — 0, are respectively given by

I _ —-1/¢
exp_<1+€<x M)) ]7 5#07
exp-—exp<—<x;M>>}, £E—0,

( _ (-1/8)—-1
H(+(54)
_ —1/¢
xexp[—(l—kf(xg'u)) ], §#0,

sl (50)
() e

where p is a location parameter, o is a positive scale parameter and £ is the shape
parameter. The support of the distribution is

Q

(1.1) Fl(l') = Fl(x;,u707§) =

and

fl(m) = fl(l';,LL,O',g) =

(,U,—O'/E,OO), €>07

(1.2) T € { (—00,00), &E—0,

(—OO,,U,—O’/&), €<0

On reparameterizing the GEV distribution by setting m = /o and s = o1
in (1.1) and (1.2), one has the following representations of the cdf and pdf:

exp[—(l +&(sx —m))_l/s} , £#£0,

(1.3) Fy(x;8,m,§) =
exp{— exp(—(sa: — m))}, E—0,
and
's(l +£(sa:—m))(_1/g)_1
X exp[—(l +&(sx — m))_l/g] , £#£0,
fa(@;s,m, &) =

s exp[— exp(—(sz — m))}
x exp(—(sz —m)), £—0.
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The support then becomes

m 1
<é§__§S7OO>7 £:>07

(L4) x € (—oo,mﬂ, f—aO,

m 1
<—OO,S—'£S), €<:0.

Paralleling the pathway approach advocated by Mathai [17], we now in-
troduce the g-analogues of the GEV and Weibull distributions, namely, the g-
generalized extreme value (¢-GEV) and ¢-Gumbel distributions. The cdf and pdf
of the ¢-GEV and ¢-Gumbel (obtained by letting & — 0 in the ¢-GEV model)
distributions are respectively given by
(1.5)

1

[1+ao—m+1)7¢] 7, €40, q#0,

1

[1+qe—(“‘m>]7, §—0, ¢#0,
and
(s(l +&(sx — m))_%_1
—1

< [L+alesz—m)+1) 7| L €40, 20,

[

_1_ 4
sem=sr 14 gems] T €0, q#0,
\
where the support of the distributions is as follows:
( 1
(m_voo>7 q>07 §>07
s £&s
1
<_Ooanl_‘)a q>>0a £<<07
s £s
—a)¥ —1
<( ? +m,oo), g<0, £€>0,
(1.6) € £s §
—q)f -1 1
( Q) +@am_7 ) q<05 €<07
Es s's &s
(—OOﬂﬁ), 5_%07 q:>07
In(—
Cn+n<qxw>, €0, ¢<0.
s

The intervals specifying the supports of these distributions are such that the terms
being raised to non-integer powers remain positive for the respective domains of

q and &.
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The effects of the parameters ¢ and & on the shape of the distributions
are illustrated graphically in Figures 1 to 5. Plots of the hazard rates of X are
displayed in Figures 6 and 7 for certain parameter values. These plots illustrate

the impressive versatility of the proposed models.
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Figure 1: Plots of the ¢-GEV density function for certain parameter values
(g>0, &£>0).

m=0.5, £=-0.5,5=05

Figure 2: Plots of the ¢-GEV density function for certain parameter values
(g>0, £<0).
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Figure 3: Plots of the ¢-GEV density function for certain parameter values
(g<0, £>0).
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Figure 6: Plots of the ¢-GEV hazard rates for certain parameter values.

Right panel: £ < 0, ¢ > 0; Left panel: £ >0, ¢ > 0.
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Figure 7: Plots of the ¢-GEV (left panel) and g-Gumbel (right panel)
hazard rates for certain parameter values.

Remark 1.1. The GEV and Gumbel distributions are respectively obtained
as limiting cases of the ¢-GEV and ¢-Gumbel distributions by letting g approach zero.

The paper is organized as follows. Section 2 contains computable represen-
tations of certain statistical functions of the ¢-GEV and ¢-Gumbel distributions.
Section 3 explains how to determine the maximum likelihood estimators of the
model parameters. In Section 4, the proposed distributions as well as three re-
lated models are fitted to an actual data set, and several statistics are utilized
to assess goodness of fit. A Monte Carlo simulation study is carried out in Sec-
tion 5 to verify the accuracy of the maximum likelihood estimates. Finally, some
concluding remarks are included in the last section.

2. CERTAIN STATISTICAL FUNCTIONS

This section includes certain computable representations of the ordinary
moments and the L-moments of the ¢-Gumbel (s, m, ¢) and ¢-GEV (s, m, &, q) ran-
dom variables, which were obtained by making use of the symbolic computation
package Mathematica. Closed form representations of their quantile functions
as well as the moment-generating function of the g-Gumbel distribution are also
provided. Whenever such closed form representations could be determined, the
numerical results were found to agree to at least five decimals with those eval-
uated by numerical integration. Thus, numerical integration can arguably be
employed to evaluate any required statistical function with great accuracy.The
following identity can be particularly useful for evaluating the expected value of
an integrable function of a continuous random variable denoted by W (X):

[e'e) 1
E[W(X)] = / W(a) f(x) de = /0 W(Qx () dp .,

where f(x) is the pdf of X and Qx(p) denotes the quantile function of X as
defined in Section 2.1.
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2.1. The quantile function

The quantile function is frequently utilized for determining confidence in-
tervals or eliciting certain properties of a distribution. In order to obtain the
quantile function of a random variable X, that is,

Qx(p) = inf{z eRip< Fm)},  pe(01),

one has to solve the equation F'(z) = p with respect to z for some fixed p € (0, 1),
where F'(x) denotes the cdf of X.

The following quantile functions of the ¢-GEV (£ # 0) and ¢-Gumbel (£ — 0)
can be readily obtained from their cdf’s as specified by Equation (1.5):

- —¢
m+1[(pq_1> —1], §#0,
s 8§ q

—q _
m—lln<p 1), £E—0.

S s q

(21) 2, = Qx(p) = F~'(p) =

2.2. Moments

Many key characteristics of a distribution can be inferred from its central
moments. We first determine conditions under which the integer moments of the
g-GE&V distribution are finite. In light of the relationship given in the introduction
of this section and the representation of quantile function of the ¢-GEV distri-
bution specified by Equation (2.1), the k" moment of this distribution can be

1 k _ —¢ k
1 -1
L) )
0o \§ q
It is assumed without any loss of generality that m = 0 and s = 1. On applying

WT_I)_g - 1)k7 the k™ moment is expressible as a

linear combination of the integrals

1 -4 _1 J(*f)
/(p ) dp,  j=0,1,..k.
0 q

Letting 7 = £j and integrating, Mathematica provides the following condition

evaluated as

the binomial expansion to ((

for the existence of the integral when ¢ is positive: —% <7<loré&j<1and
£j>—1/q.

If ¢ is negative, the condition for the existence of the k™ moment is 7 < 1, that is,
£j<1,j=1,...,k. Thus the conditions for the existence of the positive integer
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moments of the ¢-GEV distribution are as follows: & < % whenever ¢ > 0 and
&> 0;¢ > —1/(kq) whenever ¢ > 0 and £ < 0; £ < 1/k whenever ¢ < 0 and £ > 0;
no requirement being necessary when g and £ are both negative.

Moreover, as in the case of the Gumbel distribution, the positive integer moments
of the ¢-Gumbel distribution are finite whether ¢ is positive or negative.

As determined by symbolic computations, the n'? ordinary moment of the ¢-GEV
distribution can be expressed as follows:

By = U Sy (D) () T = (- ) <%>175<n7i>

¢ gnr(1+§)
><F<(n—i)§+;>, q>0,

1 [mE-Dr _(g-1\ = c(mE = 1) ()
= SN [ gn F( q >;§H1F(_(n_i)f—é+l)

X (Lizo — (1/€) Iizo) T (Ii=o — (n — 1) 5)] ; q<0,

where I denotes the indicator function and the ¢;’s are such that ¢; =1 if i = 0,
ci=nl/(il(n—i—1Hif1<i<(n—-1)/2and ¢; =n!/ilifi> (n—1)/2.

A necessary condition for the existence of the n'" moment of X is £ < 1/n.
The representation obtained for ¢ < 0 also requires that £ be greater than —(1/n).
As previously pointed out, numerical integration will provide accurate results
when a closed form representation is unavailable.

It should be noted that, for instance, letting ¥ have a ¢-Gumbel distribution
with pdf f(y;1,0,q), is straightforward to determine the A™™ moment of X =
(m+Y)/s — whose pdf is f(x;s,m,q) — in terms of the first A~ moments of Y’

- § Qo s0n

since

When ¢ is positive, the A" moment of the ¢-Gumbel distribution whose
parameters m and s are respectively 0 and 1, is given by

E(X™ = h!

1
h+2Fh+1 (17 ey 17 6 + 17 27 727 _Q>
(2.2)

where the generalized hypergeometric function , Fy(a; b; z) admits the power series

S0 (@1)g " (ap)k Sk
k=0 (b1)p---(bg)r k! © ~
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The following closed form representation of the moment-generating function
of the ¢-Gumbel distribution wherein m = 0, s = 1 was obtained assuming that

v 1) 11 - ) (~a)'

1
r<—t—5+1)

The A*™ moment of this distribution when its parameter ¢ is negative can then be

M(t) = I

obtained by differentiating M (¢). For instance when ¢ < 0, the first and second
moments of the ¢-Gumbel distribution are

B(X) = H_; +log(~q)

. 2
E(X?) = (Hﬁ + 1og(—q))2 — (qql> + % :

and

where Hs denotes the Harmonic function fol 1;”::: dz and ™M (.) is the digamma

function.

2.3. L-Moments

Unlike the conventional moments, the L-moments of a random variable
whose mean is finite always exist, which explains their frequent use in extreme
value theory. Since L-moments can be evaluated as linear combinations of proba-
bility weighted moments, which are defined for instance in [4], we first determine
the latter.

The m'™" order probability weighted moment of the ¢-Gumbel distribution

is given by
B = / y Fy)" dF(y)
—0o0

ko1
e 3Fy (1, 1, m + 4 +1;2,2; —qem)

kt1 k41
Calgte™) @ (q(emg+1))

(k+1)2
kK+1 k+1 k 1 -m
23 xon (P L ERCEL S DY s,
q q q q
ikt bt kgl
- e (k+1)7rcsc<7(+q)>—<% 2F1<%,%; k+g+1;—%>
(k+1)2

k1
+3F2<1317q+q+1a2>2aq>)7 q<07
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where m is a nonnegative integer, i =+/—1 and $(s) denotes the real part of s.
The first four L-moments of the ¢-Gumbel distribution are then obtained as
follows: )\1 = ﬂo, /\2 = 2,81 - ﬂo, )\3 = 662 - 6,81 +50 and )\4 = 20ﬂ3 - 3052 +
1261 — Bo.

The L-moments of the ¢-GEV distribution, as well as other statistical func-
tions of either of the newly introduced distributions, such as incomplete moments
and mean deviations, can readily and accurately be evaluated by numerical inte-
gration. All the expressions included in this section were verified numerically for
several values of the parameters, the code being available upon request.

3. MAXIMUM LIKELTHOOD ESTIMATION AND GOODNESS-
OF-FIT STATISTICS

The parameters of the ¢-GEV and ¢-Gumbel distributions are estimated by
making use of the maximum likelihood method. As well, several goodness-of-fit
statistics to be utilized in Section 4 are defined in this section.

3.1. Maximum Likelihood Estimation

In order to estimate the parameters of the ¢-GEV and ¢-Gumbel distri-
butions whose density functions are as specified in Equation (1.6), one has to
maximize their respective log-likelihood functions with respect to the model pa-
rameters. Given the observations x;, i = 1, ...,n, the log-likelihood functions of
the ¢-GEV and ¢-Gumbel models are respectively given by

l(s,m, &, q) = nlog(s)+ (—; - 1) ilog(q(ﬁ(sxi —m) + 1)—1/§ + 1)
i=1
(3.1)

N (_i _ 1) Zzn;log(f(sxi —m)+1),

whenever £ # 0 and

n 1 n
{(s,m,q) = nlog(s) + Zlog(sxi —m) + ( - 1) Zlog(l + ge" )
i=1

q i=1

as & — 0.
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The associated log-likelihood system of equations are respectively

1

ol(s,m,&,q) < 1 _1> Xn:_qmi(ﬁ(sxi—m)+1)_é_
s =1 q(f(sxi—m)—l—l)_%—f—l

9t(s,m & q) < __1> "€ (smi—m) +1)TE
= e

om

1
q
1 " 13 B
e ) S s =

=1

0l(s,m, €, q) < 1 > N q(€(smi—m)+1)
(3.2) s e 4 (2
% 1 ;q(é(sxz—mHl) $4+1
% log(f(sxl_m)‘i‘l) _ ST; —m
& E(E(szi—m)+1)
. Tlog(e(sri—m) +1)
€2
1 - sxi—m B
i <_§_1>;§(89€i—m)+1 =0,
oL(s,m,§,q) _ Z?:l 10g<Q(§(S$Z‘ —m)+ 1)7% + 1)
dq o 2
. (_1_1) n (g(sxi—m)—i—l)lé 0
1 i=1 q(E(szi—m)+1) € +1
and
Olsmg) (1) amet T s
9 <_q 1>; qom— T 1 ;$1+8 =0,
ol(s,m,q) 1 T g e
B3 —om ~ <_q—1> i:1m+n7

m—szx;

ag(svma Q) _ Z?:l IOg(q S 1) + <_1 — 1) zn: -

dg ¢ q L gemmsti 41

Solving the nonlinear systems specified by the sets of equations (3.2) and
(3.3) respectively yields the maximum likelihood estimates (MLE’s) of the pa-
rameters of the ¢-GEV and ¢-Gumbel distributions. Since these equations cannot
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be solved analytically, iterative methods such as the Newton—Raphson technique
are required. For both distributions, all the second order log-likelihood derivatives
exist. In order to determine approximate confidence intervals for the parameters
of the ¢-GEV and ¢g-Gumbel distributions, one needs the 4 x4 and 3x 3 observed
information matrices which are obtained by taking the opposite of the matrices
of the second derivatives of the loglikelihood functions wherein the parameters
are replaced by the MLE’s, these matrices being denoted by J(v1) = {J(v1)re}
for r,t = s,m, &, q, where vy denotes the vector of the parameters s,m, &, g, and
J(v2) = {J(v2)rt} for r,t = s,m,q, where vy is a vector whose components are
s,m,q. Under standard regularity conditions, (v; — U1) asymptotically follows
the multivariate normal distribution Ny(O, —J(77)"!) and the asymptotic dis-
tribution of (vy — ¥a) is N3(O, —J(02)~!). These distributions can be utilized
to construct approximate confidence intervals for the model parameters. Thus,
denoting for example the total observed information matrix evaluated at Uy, that
is, —J(01), by —J, one would have the following approximate 100(1 — )% con-
fidence intervals for the parameters of the ¢-GEV distribution

~ ~

s+ Z¢/2 (—J_l)ss, m =+ Z¢/2 (—J_l)mm s

~

§ £ 242 (—jfl)&a g+ zg2\ (= Vg 5

where 2, /5 denotes the 100(1 — a/ 2)*™" percentile of the standard normal distri-
bution. The observed information matrices for the ¢-GEV and ¢-Gumbel models
are provided in Appendices A and B.

One can determine the global maximum of the log-likelihood functions by
setting certain initial values for the parameters in the maximizing routine being
used. To that end, one could for instance make use of estimates of the parameters
obtained for a sub-model such as those of the GEV distribution when assigning
initial values to the parameters s, m, £ of the ¢-GEV distribution. While Park and
Sohn [23] obtained parameter estimates for the GEV distribution by making use
of generalized weighted least squares and estimates of the three parameters are
given in Chapter 30 of [4] in terms of probability weighted moments, Prescott and
Walden [24] advocated the use of the maximum likelihood approach. It should be
noted that, for both distributions under consideration, the MLE’s do not appear
to be particularly sensitive to the initial parameter values.

3.2. Goodness-of-fit statistics

In order to assess the relative adequacy of competing models, one has to rely
on certain goodness-of-fit statistics. These may include the log-likelihood function
evaluated at the MLE’s denoted by ¢, Akaike’s information criterion (AIC), the
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corrected Akaike information criterion (CAIC), as well as the modified Anderson—
Darling (A*), the modified Cramér—von Mises (W*) and the Kolmogrov—Smirnov
(K-S) statistics. The smaller these statistics are, the better the fit. The AIC and
AICC statistics are respectively given by
~ 2 1

AIC = —20() +2p and  AICC = AIC + p(p+1> :
n—p-—
where E(é\) denotes the log-likelihood function evaluated at the MLE’s, p is the
number of estimated parameters and n, the sample size.

The Anderson—Darling and Cramér—von Mises statistics can be evaluated
by means of the following formulae:

2.2 .
n

n2

o % Z(Qz — 1) log(z (1 — Zn—i+1))] ,

i=1

and

0.5
W = < + 1>
n

where z; = cdf(y;), the y;’s denoting the ordered observations.

z": ' 21’—12+ 1
T T, 120

=1

As for the Kolmogrov—Smirnov statistic, it is defined by

i i—1
K-S = Max[—zi, Zi — }
n n
As is explained in [2], unlike the asymptotic distributions of the AIC and AICC
statistics, those of the A* and W* statistics have complicated forms requiring
numerical techniques for determining specific percentiles.

4. APPLICATIONS

4.1. A hydrological data set

In this section, we fit five models to a rainfall precipitation data set which
is freely available on the Korea Meteorological Administration (KMA) website
http://www.kma.go.kr and represent the annual maximum daily rainfall amounts
in millimeters in Seoul, Korea during the period 1961-2002. The selected mod-
els are the three-parameter GEV, the Kumaraswamy generalized extreme value
(KumG&V) [9], the exponentiated generalized Gumbel (EGGu) [3], and the newly
introduced ¢-GEV and ¢-Gumbel distributions. Then, five statistics are employed
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in order to assess goodness of fit. Table 1 displays certain descriptive statistics
associated with the set of observations under consideration.

Table 1: Descriptive statistics for the Seoul rainfall data.

’ Mean Median SD Kurtosis  Skewness MD — mean MD — median  Entropy ‘

’ 144.599 131.6 66.1781 3.80435 0.940673 48.7761 33.2 4.61435 ‘
MD := Mean deviation

The KumG€V and EGGu density functions are respectively given by
1 b-1
f(:v;a, b7£707u) = —abu exp(—au) [1 —exp(—au)] )
o

where u = {14 &(z — p)/o} /¢ with z such that (14 &(z — p)/o) > 0; a > 0,
b>0,6£€eR, 0 >0and pu€R, and

flxso,p, o, B8) = ? o (558 +e"T) (1 - e‘eu)cH [1 - (1 . e—e““m)a] ,

wherex e R, £ € R, 0 >0, u € R, >0 and 3 > 0.

The MLE’s of the parameters are included in Table 2 for each of the fitted
distributions. It can be seen from the values of the goodness—of-fit statistics
appearing Table 3 that the two proposed distributions provide the most adequate
models. The plots of the cdf’s that are superimposed on the empirical cdf in the
right panel of Figure 8 also suggest that they better fit the data. Additionally,
asymptotic confidence intervals for the model parameters are included in Table 4.

Table 2:  MLE’s of the parameters (standard errors in parentheses)
for the Seoul rainfall data.

Distribution Estimates ‘

0.0212 23781  0.0028
(0.0015)  (0.1666)  (0.0570)

18.289 15412  21.175  1.1934  2.1339
(5.652)  (13.558)  (9.868)  (0.440)  (11.002)

85.686 ~ —18.428  1.7687  18.593
(206.89)  (509.13)  (4.4618)  (201.49)

GeV( ) 0.0303  4.1082  0.1973  1.1225
7 $m. &4 (0.0085)  (1.6329)  (0.0922)  (1.266)

Gumbel 0.02045  2.4323  0.1129
¢-Gumbel(s, m, ) (0.0026)  (0.4135)  (0.1746)

GeV(s,m, )

KumG&V(a,b,&, o, 1)

EGGU(O’, M, &y ﬁ)
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Table 3: Goodness-of-fit statistics for the Seoul rainfall data.

Distribution AIC AICC A* W K-S p-value (K-S)
GEV(s,m, &) 1169.63 1169.87  0.9583 0.1325  0.0892 0.3725
KumGEV(a,b,€,0,10) | 1174.726  1175.33  0.8566 0.1505  0.0889 0.3767
EGGu(o, i, a, B) 1169.16 1169.56  0.6566  0.1099  0.0872 0.4007
¢-GEV(s,m, &, q) 1168.64 1169.04 0.4638 0.0678 0.0716 0.6535
g¢-Gumbel(s, m, q) 1166.94 1167.18  0.6279 0.1021  0.0862 0.4157

Table 4: Confidence intervals for the parameters of the ¢-Gumbel
and ¢-GEV models (Seoul rainfall data).

’ CI (g-Gumbel) ‘ s m q ‘
95% [0, 0.025546] [2.4272, 2.4373] [—0.229316, 0.4551]
99% [0.01374, 0.027158]  [2.4255, 2.4390]  [—0.337568, 0.5633]

’ CI (¢-GEV) ‘ s m £ q ‘
95% [0, 0.04096] (0.9078, 7.3086]  [0.01698, 0.3776]  [—1.257536, 3.7075]
99% [0, 0.02496] [~0.1046, 8.3210] [—0.040576, 0.43517] [—2.042828, 4.4928]

0.008 |-

og- gz .
---  KumGEV
--- EGGu
__.__q-Gumbel
q-GEV

0.006

0.6

0.004
04

0.002
0.2

50 160 15‘>0 260 25‘0 360 350 160 2(‘)0 360 460
Figure 8 The GEV, KumGEYV, EGGu, ¢-Gumbel and ¢-GEV estimated
pdf’s superimposed on the histogram of the data (left panel);

the estimated cdf’s and empirical cdf (right panel).

4.2. Return level

A return period (sometimes referred to as recurrence interval) is an estimate
of the likelihood of an event, such as a certain rainfall precipitation level or a given
river discharge flow level. It is a statistical measure that is based on historical
data, which proves especially useful in risk analysis as it represents the average
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recurrence interval over an extended period of time. In fact, the return period
is the inverse of the probability that the level will be exceeded in any one year
— or, equivalently, the expected waiting time or mean number of years it will
take for an exceeding level to occur. For example, a rainfall precipitation return
level x5 has a 20% (or one fifth) probability of being exceeded in any one year,
which of course, does not mean that such a rainfall level will happen regularly
every 5 years or only once in a five-year period, despite what the phrase “return
period” might suggest.

Based on these considerations and assuming that the event components
are independently distributed, the probability that an exceeding event will occur
for the first time in ¢ years is p(1 — p)'~!, ¢t = 1,2,..., which is the geometric
probability mass function ([25]) whose mean is equal to "= 1/p, when the yearly
exceedance probability p = P(X >z7) is assumed to remain constant throughout
the future years of interest ([1] and [22]) . The probability of exceeding z7 can be
estimated by the survival probability, 1 — F'(x7), the return period T" then being
equal to 1/P(X >x7). Thus, for a given return period 7', the corresponding
return level can be obtained as follows:

zr = F71(1-1/T),

o= % {m—log<—1(1q1/t)_q)}

for the ¢-Gumbel model and

o _;S {(_1— (1;1/t)—q>‘5 (_m£<_1— (1;1/t)_‘1>5_1>}

for the ¢-GEV model, where x7 > 0 and 7' > 1. When unknown, the parameters are

which yields

replaced by their MLE’s. The estimates of the return levels 7 obtained from the
q¢-GE&V distribution for the return periods, 7= 2,5,10,20,50, 100 years, which appear
in Table 5, apply to the previously analyzed Seoul rainfall precipitation data.

Table 5: Return level estimates Z7 for given values of T'
(Seoul rainfall data).

EEST

2 133.964

5 187.515
10 225.94
20 267.07

30 293.139

50 328.625

100 382.323




On the q-Generalized Extreme Value Distribution 63

5. SIMULATION STUDY

The suitability of the maximum likelihood approach for estimating the pa-
rameters of the ¢-Gumbel and ¢-GEV distributions is assessed in this section.
Samples of sizes 50, 100, 300 and 500 were generated from the quantile functions
of these distributions by Monte Carlo simulations for several values of the param-
eters. The biases and mean squared errors (MSE’s) of the resulting MLE’s were
determined for each combination of sample sizes and assumed parameter values
on the basis of 5,000 replications.

The simulations results that were obtained for the ¢-Gumbel and ¢-GEV
are respectively reported in Tables 6 and 7. As expected, the biases and MSE’s
generally decrease as the sample sizes increase. It should be noted that the
MULE’s remain fairly accurate even for moderately sized samples. Those results
corroborate the appropriateness of the maximum likelihood methodology — as
described in Section 3.1 — for estimating the parameters of the proposed models.

Table 6: Monte Carlo simulation results: biases and MSE’s
for the ¢-Gumbel model.

Actual values Bias MSE
"1 s m q B m q B m
0.5 1.0 0.0 | —0.0015 0.0424 0.0109 | 0.2461 0.0749 0.1535
1.5 20 1.0 0.1779 0.1933 0.2060 | 1.1077 0.5524  0.9587
50 3.0 20 1.0 0.3521 0.1904 0.2552 | 2.3258 1.1566 1.7621
—0.5 1.0 0.0 —0.1432 —0.0315 —0.0965 | 0.0863 0.0434 0.0698
—-1.5 2.0 1.0 0.0121 —0.0007 0.0114 | 0.0008 0.0013 0.0004
-3.0 20 1.0 0.0109 —0.0036 —0.0001 | 0.0006 0.0001 0.0000
0.5 1.0 0.0 | —0.0104 0.0160 —0.0008 | 0.0808 0.0240 0.0507
1.5 20 1.0 0.0644 0.0775 0.0791 | 0.3300 0.1625 0.2677
100 3.0 20 1.0 0.2278 0.1351 0.1708 | 1.5085 0.3438 0.7338
—0.5 1.0 0.0 | —0.0704 —0.0196 —0.0495 | 0.0282 0.0183 0.0258
—-1.5 2.0 1.0 0.0075 0.0053 0.0101 | 0.0002 0.0004 0.0002
—-3.0 2.0 1.0 0.0031 —0.001 0.0000 | 0.0001 0.0000  0.0000
0.5 1.0 0.0 | —0.0020 0.0052  —0.0003 | 0.0243 0.0072 0.0148
1.5 20 1.0 0.0192 0.0246 0.0246 | 0.0851 0.0411 0.0684
300 3.0 20 1.0 0.0715 0.0404 0.0516 | 0.3001 0.0617 0.1298
—-0.5 1.0 0.0 | —0.0275 —0.0099 —0.0201 | 0.0058 0.0052 0.0065
—-1.5 2.0 1.0 0.0039 0.0059 0.0070 | 0.0000 0.0001 0.0001
—-3.0 2.0 1.0 | —0.0003 0.0001 0.0000 | 0.0000  0.0000 0.0000
0.5 1.0 0.0 —0.0013 0.0032 0.0002 | 0.0142 0.0041 0.0089
1.5 20 1.0 0.0148 0.0175 0.0169 | 0.0483 0.0236 0.0384
500 3.0 20 1.0 0.0421 0.0243 0.0322 | 0.1764 0.0355 0.0742
-05 1.0 0.0 | —0.0180 —0.0066 —0.0141 | 0.0030 0.0031 0.0036
—-1.5 2.0 1.0 0.0035 0.0057 0.0065 | 0.0000 0.0001 0.0001
—-3.0 2.0 1.0 | —0.0002 0.0001 0.0000 | 0.0000  0.0000 0.0000
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Table 7: Monte Carlo simulation results: biases and MSE’s
for the ¢-GEV model.

Actual values Bias MSE

" g s m ¢ q 5 D 3 q 5 % 3
0.5 1.0 0.0 0.5 0.9087  0.0420 0.3640 —0.0684 | 1.9675 0.0743 0.3694 0.0412
1.5 1.0 1.0 0.5 0.5282 0.0210 0.1514  0.0031 | 0.7358 0.0522 0.2084 0.0096
50 1.5 2.0 1.0 0.5 0.5474 0.0369 0.1576  0.0027 | 0.7963 0.2146 0.2457 0.0089
1.5 2.0 1.0 1.5 0.1072 0.0004 0.0007 —0.0005 | 0.0271 0.0001 0.0000 0.0000
—0.5 1.0 0.0 —0.5|—0.2784 —0.2644 —0.1517 —0.2271|0.1553 0.1932 0.0781 0.0966
—-1.5 20 1.0 —-0.5 0.0026 0.0086 0.0115 —0.0164 | 0.0012 0.0012 0.0005 0.0027
—1.5 2.0 1.0 —1.5|—0.0025 0.0023 0.0019 —0.0023 | 0.0000 0.0000 0.0000 0.0001
0.5 1.0 0.0 0.5 0.6083 0.0439 0.2602 —0.0343 | 0.9423 0.0289 0.1939 0.0115
1.5 1.0 1.0 0.5 0.3917  0.0092 0.1279 —0.0088 | 0.4535 0.0223 0.1105 0.0056
100 1.5 2.0 1.0 0.5 0.4033 0.0071 0.1314 —0.0084 | 0.4327 0.0902 0.1029 0.0053
1.5 2.0 1.0 1.5 0.0827 —0.0002 0.0001 0.0000 | 0.0223 0.0000 0.0000 0.0000
—-0.5 1.0 0.0 —0.5|—0.1429 —0.1471 —0.0842 —0.1121|0.0514 0.0725 0.0291 0.0312
—1.5 2.0 1.0 —-0.5| —0.0003 0.0118 0.0096 —0.0076 | 0.0005 0.0004 0.0003 0.0008
—1.5 2.0 1.0 —1.5|—0.0009 0.0009 0.0007 —0.0008 | 0.0000 0.0000 0.0000 0.0000
0.5 1.0 0.0 0.5 0.2501 0.0220 0.1144 —0.0132 | 0.2391 0.0087 0.0578 0.0026
1.5 1.0 1.0 0.5 0.1988 0.0088 0.0822 —0.0118 | 0.1599 0.0066 0.0403 0.0024
300 1.5 2.0 1.0 0.5 0.1974 0.0180 0.0801 —0.0117 | 0.1590 0.0252 0.0396 0.0023
1.5 2.0 1.0 1.5 0.0352 0.0000 0.0000  0.0000 | 0.0133 0.0000 0.0000 0.0000
—-0.5 1.0 0.0 —0.5|—-0.0491 —-0.0539 —0.0320 —0.0363 | 0.0090 0.0163 0.0073 0.0050
—1.5 20 1.0 —-0.5 0.0005 0.0092 0.0069 —0.0019 | 0.0001 0.0002 0.0001 0.0001
—-1.5 2.0 1.0 —1.5| —0.0002 0.0002 0.0001 —0.0002 | 0.0000 0.0000 0.0000 0.0000
0.5 1.0 0.0 0.5 0.1581 0.0136 0.0734 0.0010 | 0.1418 0.0015 0.0347 0.0011
1.5 1.0 1.0 0.5 0.1289 0.0051 0.0558  0.0005 | 0.0853 0.0015 0.0227 0.0005
500 1.5 2.0 1.0 0.5 0.1330 0.0127  0.0566  0.0002 | 0.0873 0.0015 0.0227 0.0000
1.5 2.0 1.0 1.5 0.0199 0.0000 0.0000  0.0000 | 0.0100 0.0000 0.0000 0.0000
—-0.5 1.0 0.0 —0.5|—0.0334 —0.0378 —0.0229 0.0025 | 0.0047 0.0025 0.0041 0.0025
—-1.5 20 1.0 —-0.5 0.0011 0.0072 0.0057  0.0001 | 0.0000 0.0001 0.0001 0.0001
—1.5 2.0 1.0 —1.5|—0.0001 0.0001 0.0001 0.0000 | 0.0000 0.0000 0.0000 0.0000

6. CONCLUDING REMARKS

The g-generalized extreme value and the ¢-Gumbel distributions introduced
herein are truly versatile: they can be positively or negatively skewed; they can
give rise to increasing, decreasing and upside-down bathtub shaped hazard rate
functions, and their supports can be finite, bounded above or below, or infinite.
The flexibility of these models was further confirmed by applying them to fit a cer-
tain data set consisting of annual maximum daily precipitations, and comparing
them to three other models by means of several goodness-of-fit statistics. As well,
the model parameters were successfully estimated by the method of maximum
likelihood, the suitability of this approach having been supported by a simulation
study. Moreover, we observed that numerical integration produces highly accu-
rate results when evaluating various statistical functions of the g-analogues of the
GEYV and Gumbel random variables. In practice, the g-generalized extreme value
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model ought to be more realistic and useful than its original counterpart, which
is actually a limiting distribution, and the proposed extended models should lead
to further advances in risk theory, biostatistics, hydrology, meteorology, survival
analysis and engineering, among several other fields of research that have already
benefited from the utilization of existing related models.

APPENDIX A

The 4 x4 total observed information matrix associated with the ¢-GEV dis-
tribution is given by —J(v1) wherein the parameters are replaced by their MLE’s

where
J(01)ss J(V1)sm J(v1)se J(V1)sq
J(v1) = J(V1)ms J(V1)mm J(Ul)m£ J(Ul)mq
J(v1)es J(Wi)em J(vi)ee J(vi)eq |
J(W1)gs J(V1)gm J(v1)ge J(V1)gq
with

B ¢?a? (E(szi—m) + 1)7%72

1 i=1 (q (&(sz; —m) + 1)7% + 1)2
(—% - 1) Eqa? (E(smi —m) + 1)_%_2

q({(sxi —m) + 1)7% +1

R - T _ &wi(swm —m)
" ( § 1);(5(3%’—7”)4‘1 ({(sxi—m)+1)2>
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APPENDIX B

The 3x3 total observed information matrix associated with the g-Gumbel
distribution is given by —.J(vy) wherein the parameters are replaced by their
MLE’s where
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Abstract:

e Many ecological processes are measured as proportions and are spatially sampled.
In all these cases the standard procedure has long been the transformation of propor-
tional data with the arcsine square root or logit transformation, without considering
the spatial correlation in any way. This paper presents a robust regression model to
analyse this kind of data using a beta regression and including a spatially correlated
term within the Bayesian framework. As a practical example, we apply the proposed

approach to a spatio-temporally sampled fishery discard dataset.
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1. INTRODUCTION

Many ecological processes are spatially sampled and measured as propor-
tions; one example is, sea-grass coverage in a area. The traditional approach in
ecology has been to, first transform proportional data to approximate normality,
and then analyse them using Gaussian linear models, such as analysis of variance
or linear regression.

A very common transformation is the arcsine square root transformation.
This transformation can be useful to stabilise variances and normalise the data
but there are several reasons why it should be avoided. Firstly, model parameters
cannot be easily interpreted in terms of the original response [Warton and Hui,
2011, Ferrari and Cribari-Neto, 2004]. Secondly, the efficacy of the arcsine trans-
formation in normalising proportional data is heavily dependent on the sample
size, and does not perform well at extreme ends of the distribution [Warton and
Hui, 2011, Wilson and Hardy, 2002]. Thirdly, measures of proportions typically
display asymmetry, and hence inference based on the normality assumption can
be misleading [Ferrari and Cribari-Neto, 2004].

An alternative that is becoming more prevalent in ecological analyses is the
logistic regression, an analytical method designed to deal with binomial propor-
tional data [Steel et al., 1997, Wilson and Hardy, 2002, Warton and Hui, 2011],
i.e. proportions measured as x out of n. The logistic regression provides a more
biologically and ecologically interpretative analysis and is not sensitive to sample
size. Nonetheless, such binomial data is prone to overdispersion, resulting in an
incorrect quantification of the uncertainty when applying the proposed binomial
generalised linear model (GLM). In these cases, the inclusion of a random in-
tercept term using generalised linear mixed models (GLMMs) may improve the
assessment of uncertainty [Wilson and Hardy, 2002].

When data are non-binomial, that is, observations do not follow the x
out of n pattern, the logistic regression is no longer applicable. As an alterna-
tive approach, Warton and Hui [2011] suggested the logit transformation of the
data, which overcomes the problems of interpretability and range of the confi-
dence/credible intervals using the arcsine square root transformation. However,
any transformation of the data (y;) implies that regression parameters are only
interpretable in terms of the transformed mean of y; and not the mean of the
original data.

The beta distribution is a well known distribution that satisfies the char-
acteristics of proportions, bounded to the [0, 1] interval with asymmetric shapes.
It has long been used in a wide range of applications involving proportions and
probabilities [Gupta and Nadarajah, 2004]. However, only recently has it been
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applied to linear regression modelling [Ferrari and Cribari-Neto, 2004, Smithson
and Verkuilen, 2006, Liu and Kong, 2015] and time-series analysis [Da-Silva and
Migon, 2016], allowing bounded estimates and intervals with model parameters
that are directly interpretable in terms of the mean of the response.

Aside from the likelihood function, it is well known that changes in ecologi-
cal processes in time and space are driven by a set of factors and interactions. Un-
derstanding these drivers is very often the ultimate goal among scientists seeking
to manage natural resources effectively. However, the immeasurable complexity
of ecological spatial processes often means that the spatial variability of the data
exceed the variability explained by the explanatory variables. This phenomenon
usually results in spatially autocorrelated model residuals that can yield incorrect
results and a restricted predictive capacity of the models [Fortin and Dale, 2009,
Legendre et al., 2002].

A good solution to improve model fit and prediction is to introduce spatial
terms in our models. Spatial terms are based on the principle that close obser-
vations have more in common than distant observations [Tobler, 1970]. Conse-
quently, by applying a distance-based function, these terms are capable of improv-
ing fine scale predictions and identifying hidden spatial hot and/or cold spots that
may be important for management purposes. In addition, from a management
perspective it is crucial to address the uncertainty associated with our predic-
tions and estimates. In this respect, the Bayesian hierarchical approach is able
to accommodate complex systems and obtain a proper uncertainty assessment by
relying on quite straightforward probability rules [Clark, 2005].

The reminder of this article goes as follows. First, we summarise the charac-
teristics of the hierarchical spatial beta regression. Then, we introduce the princi-
ples of the Integrated Nested Laplace Approximation (INLA from now on) using
the Stochastic Partial Differential Equations (SPDE) approach (http://www.r-
inla.org) [Rue et al., 2009] as an effective way to deal with spatially sampled
proportional data. As an example, we apply this approach to a fishery dis-
cards database to identify discard proportion high-density areas in the Western
Mediterranean Sea. Finally, we end up with some conclusions.

2. HIERARCHICAL SPATIAL BETA REGRESSION

Traditionally the beta distribution is denoted by two scaling parameters

Be(a,b). In order to apply regression it is necessary to reparametrize its density

a

o435 and a dispersion ¢ = a + b, so that:

distribution in terms of its mean y =

() — I'(¢) b7 \(1=p)é—1
BT = Sy Y T s
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where I is the gamma function, E(y) = p and Var(y) = “(11;];*). Note that here,

as opposed to the Gaussian distribution, the variance depends on the mean, which

translates into maximum variance at the centre of the distribution and minimum
at the edges, to support the truncated nature of the beta distribution.

It is also important to note that the probability density (2.1) does not
provide a satisfactory description of the data at both ends of the distribution,
zero and one. An ad hoc solution may be to add a small error value to the
observations to satisfy this criterion [Warton and Hui, 2011]; otherwise zero and
one inflated models are required [Liu and Kong, 2015].

Following the Be(u,®) reparametrisation, a given set of observations
Y1, ---, Yn, that represent proportions, can be related to a set of covariates and
functions using a similar approach to the generalised linear model:

(2.2) Logit(p;) = i

ng ng
mio= o+ Bizi+ Y fuluk) + v

j=1 k=1

where 7); enters the likelihood through a logit link, « is the intercept of the model,
B; are the fixed effects of the model, fi() denote any smooth effects (including
spatial dependence effects) and v; are unstructured error terms (random vari-
ables).

At the time of writing, a handful of R packages allow beta regression:
betareg [Griin et al., 2011], mgcv [Wood, 2011] and gamlss [Stasinopoulos and
Rigby, 2007] in the frequentist field and Bayesianbetareg [Marin et al., 2014],
zoib Liu and Kong [2015] and R-INLA (the implementation of INLA in R [Martins
et al., 2013]) in the Bayesian counterpart. zoib allows zero/one inflated beta
regression but only R-INLA allows a wide range of flexible hierarchical models to
be fitted at a user-friendly and computationally efficient environment, as we will
show in the following Section.

Indeed, Bayesian hierarchical methods are becoming very popular in many
fields due to the complexity of the relationships involved in natural systems
[Clark, 2005]. Modelling these relationships often requires specifying sub-models
inside the additive predictor that allow a suspected hidden or latent effect to be
inferred that characterise these relationships.

A good example may be the use of spatial latent fields that apply distance-
based functions to model the spatial dependence of the data. In these cases, the
main intensity of the process is driven by a set of covariates X 3, also called large-
scale variation, to which a spatial term is added based on a correlation function
fw() that describe the unobserved small-scale variation. Consequently, we end up
with a spatial correlation model, which depends on its own hyperparameters, as
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part of a broader model that characterises the intensity of the process; in other
words, we have a hierarchical model with a spatial latent variable.

A popular point-referenced spatial model, the geostatistical model, has the
characteristic that the spatial covariance function f,() is continuous over the
range of the spatial effect. Based on this function, it is customary to assume a
Gaussian latent field W ~ N(0,Q(x7)) with covariance matrix @ that depends
on two hyperparameters, in the case of R-INLA, x and 7. These hyperparame-
ters determine the range and the variance of the spatial latent field. When we
include this in the additive predictor of a beta distributed process Y, we obtain
a hierarchical model with at least three stages:

e First stage: V|3, W ~ Be(XB+ W, p)

where Y are conditionally independent given W.

e Second stage: W]k, 7 ~ N(0,Q(kT))
where W is a Gaussian latent spatial model.

e Third stage: priors on (8, p, K, T).

A common problem with this kind of hierarchical model is that there is no
closed expression for the marginal posterior distributions of the parameters and
hyperparameters, so numerical approximations are needed. The typical approach
to approximate these posteriors is to use MCMC simulation methods. Unfortu-
nately, MCMC can get very computationally inefficient when applied to complex
models such as spatial models.

3. THE INLA APPROACH FOR GEOSTATISTICAL MODELS

Performing inference and prediction under a geostatistical Gaussian field
W entail the so-called “big n problem” [Banerjee et al., 2003]. This problem is
related to the dense covariance matrix @), which traduces into very high MCMC
computational costs. In this vein, the stochastic partial differential equations
(SPDE) approach in R-INLA allows reducing the required number of computations
from O(n?) [Stein et al., 2004] to O(n%/?) [Cameletti et al, 2013] in the two
dimensional spatial domain. In what follows, we first present the INLA method
followed by the SPDE approach.

The INLA algorithm, proposed by Rue et al. [2009], is a numerical approx-
imation method to perform Bayesian inference. The most remarkable feature of
INLA, as opposed to MCMC, is that it allows the posterior distributions of latent
Gaussian models to be accurately approximated through Laplace approximations
[Laplace, 1986, Tierney and Kadane, 1986], even for complex models without be-
coming computationally prohibitive. INLA exploits the fact that latent Gaussian
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models admit conditional independence properties [Rue and Held, 2005], which
allows expressing them as computationally efficient Gaussian Markov random
fields (GMRFs) with a sparse precision matrix [Rue and Held, 2005].

The estimation of the latent components, collected in a set of parameters
0 = {3, W} and hyperparameters £ = {p, k, 7} in R-INLA, is computed in three
steps. First, the posterior marginal distribution of the hyperparameters is ap-
proximated by using the Laplace integration method
Y6, Q2)p(6]2)p(2)
p(01Q2,Y)

(3.1) p(fy) ~ P — FQpY),

0=6*()

where p(0|Q,Y) is the Gaussian approximation, given by the Laplace method, of
p(0|Q,Y) and 0*(€2) is the mode for a given Q.

Then, R-INLA approximates p(6;|€2,Y") by using again the Laplace integra-
tion method
p(0|Q,Y
(3.2) p(6:[Q2.Y) ~ (618}, ¥)

A\ o L — 56|, Y),
5010, Q.Y) PE:[, )

0_,=06" ,(0;,Q2)

where p(60_;|0;,€2,Y) is the Laplace Gaussian approximation to p(6_;|0;,Q,Y)
and 0 ,(0;,Q) is its mode. This strategy can be very computationally expensive
since p(0_;]0;,Q,Y) has to be recomputed for each value of 8 and . See section
3.2 in Rue et al. [2009] for a more detailed text on the different approximation
approaches available in R—INLA.

Finally, R-INLA approximates the marginal posterior distributions based on
the previous two steps

(3.3) zwmvz/mmaymmwwm

where the integral can be numerically solved through a finite weighted sum ap-
plied in certain integration points and then interpolating in between. For a more
detailed text on the selection of integration points see section 3.1(c) in Rue et al.
[2009].

As mentioned above, INLA exploits the good computational properties of
GMRFs to perform fast Bayesian inference. Nevertheless, continuous GFs (like
the ones involved in geostatistical models) are continuously indexed, thus, in
principle, not applicable in INLA. In this regard, Lindgren et al. [2011] provided
a clever approximation of a GF with Matérn covariance function (3.4) to a GMRF
using a fractional stochastic partial differential equation.

Lindgren et al. [2011]’s approximation of a GF requires that its covariance
function is of the Matérn family. Following Lindgren et al. [2011]’s notation, the
Matérn covariance function for an stationary and isotropic GF is

(3-4) C(d) (kllsi = s51)" Ko (%l]si = s5l]),

o
- 2v-IT(v)
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where k is a scaling parameter that determines the effective range r of the spatial
effect.

The approximation by Lindgren et al. [2011] fall on the fact that a GF z(s)
with Matérn covariance function is a solution to the linear fractional SPDE

(3.5) (k2= A)25(18) = W(s), seRY\a=v+d/2,x>0,v>0,

where A is the Laplacian, d is the dimension of the GF z(s), v is the smoothness
parameter of the Matérn function and W is the Gaussian spatial white noise
process.

Finally, the solution to the SPDE can be approximated using the Finite
Element Method [Zienkiewicz et al., 1977] through a deterministic basis function
representation defined on a triangulation of the domain D (see Figure 1 for the
triangulation used in the case study of the following Section). The triangulation,
so-called mesh, of the study area is based on Delaunay triangulations [Delaunay,
1934], which, as opposed to a regular grid, allows a flexible partition of the region
into triangles that can satisfy different types of constraints to better accommodate
different characteristics of the study area.

Constrained refined Delaunay triangulation

Figure 1: Triangulation of the study area. The outer ring of
sparse triangles allows us avoid having a border
effect inside the study area.

4. APPLICATION TO TRAWL DISCARD PROPORTIONS

The modelling approach proposed to tackle spatially sampled proportions
was applied to a trawl fishery discard database in the Spanish Mediterranean.
Fishery discards, i.e. the part of the catch that is thrown back to the sea dead,
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constitute an unnecessary biomass loss from the marine systems. A repeatedly
proposed discard mitigation measure is the spatial management of fishery re-
sources [Kelleher, 2005, Bellido et al., 2011, Pennino et al., 2014]. In this regard,
spatial beta regression is specially important to the fishery discards framework
since it allows the spatial assessment of discard proportions, which allows assess-
ing the economic benefit of a fishing operation against its ecological impact due
to the discard portion of the catch.

4.1. Data

Trawl discard data were collected according to European Comission [2009]
regulation, which establishes a métier-based discard sampling programme. Specif-
ically this study was based on bottom trawl data for the south-eastern part of
the Spanish Mediterranean Sea (Figure 2) [see Pennino et al., 2014, for a more
detailed description of the métiers].

2000
1500
1000

500

o

Figure 2: Map of the study area with bathymetric contours in meters.
Black dots represent the centroids of the 391 sampled hauls
and size plotted according to the observed discard proportion.

The database, provided by the Instituto Espanol de Oceanografia (IEO,
Spanish Oceanographic Institute), contains a total of 391 hauls collected between
2009 and 2012, including catch and discard data disaggregated by species. The
characteristics of each fishing operation (date, geolocation and depth) were also
extracted directly from this database.
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A discard proportion response variable of regulated species was created as
the fraction of discarded biomass of the total catch. Unlike total discards, discard
proportions represent benefit versus loss, and are therefore a better indicator to
assess whether or not discards are disproportionate to the catch.

4.2. Modelling trawl discard proportions

The analysis of trawl discard proportions included the total catch of each
fishing haul, the mean bathymetry of the haul, a geostatistical term and a vessel
effect as predictors (Table 1). Therefore, assuming that the discard proportion
Y; at location i follows a beta distribution, the final model can be expressed as:

Y, ~ Be(ﬂ'iaqsi)a i= 17 w1
logit(pi) = Beci +di +W;

Be ~ N(0,0.001)
A2d_7 = d] - 2dj+1 + dj+2 ~ N(O7pd)7 Jj=1..,m
(4.1) logpp ~ LogGamma(0.5,0.00005)

W ~ N(0,Q(x, 7))
2logr ~ N (px, pr)
logr ~ N(ur,pr)
where the mean of discard proportions enters the model through the logit link, ¢
indexes the location of each haul and j indexes different depths (d;, representing
the different values of bathimetry starting at d; = 40 metres till d,,—30 = 720

metres). In the last two rows p stands for the mean of the normal distributions
while p denotes its corresponding precision.

Table 1: List of covariates included in the analysis and the effect assigned to them.

Variable Description Unit Effect

Total catch ~ Total catch of the haul  Kilograms Linear

Location Geolocation UTM Geostatistical
Depth Mean depth of the haul Meters Non-linear effect
Vessel Sampled vessel ID Random noise effect

Based on the work by Rochet and Trenkel [2005], who found that discard
proportions are not fully proportional to the catch, the total catch of each haul
C = (c1,...,cn) was introduced as a linear effect with vague normal prior distri-
butions as implemented by default in R~-INLA. The exploratory analysis revealed
non-linear relationships between depth and the discard proportion, so a second
order random walk (RW2) latent model was applied based on constant depth
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increments d;. These RW2 models, which perform as Bayesian smoothing splines
[Fahrmeir and Lang, 2001], can be expressed as a computationally efficient GMRF
[Rue and Held, 2005], and are therefore applicable in INLA. The smoothing of
the bathymetric effect was selected visually by subsequently changing its prior
distribution while models were scaled to have a generalized variance equal to one
[Sgrbye and Rue, 2014].

The two dimensional geostatistical latent model W, introduced to identify
fine-scale hot-spots, depends on two hyperparameters x and 7 that define the
variance and the range of the spatial effect. Specifically, and with the smoothing
parameter of the Matérn (3.4) fixed (v = 1), the range of the spatial terms is
approximately v/8/x and the variance 1/(4nx?72). The priors for x and 7 are
specified over the logr and 2logk. Default R-INLA prior distributions were used,
where p,, is specified so that the range of the field is 20% of the longest distance
in the field and p, is chosen so that the mean variance of the field is one. The
rest of the prior distributions in use are described in (4.1).

4.3. Results

Figure 3 shows the posterior mean and the standard deviation of the spatial
component, which represents the intrinsic spatial variability of the data without
the rest of the independent variables. This effect highlights (in blue), high discard
proportion areas or hot-spots. Similarly, two cold-spots were found (in red), one in
the coastal shallow waters in front of the lagoon and another in the mid-northern
part of the 150-300 meter strata. These hot-spots characterise the areas where
more discards are expected as compared to other areas with similar environmental
conditions. As a consequence, a marine spatial planning framework could consider
these areas for protection so that discarded/wasted biomass is minimised.

(a) Mean (b) Standard deviation

Figure 3: Posterior predictive mean and standard deviation maps of the
spatial component of discard proportions.
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As expected, the total catch of the haul had a positive effect on the expected
discard proportions (posterior mean = 0.038; 95% CI = [0.0027, 0.0049]), i.e. the
discard proportion increases with total catch increments. The bathymetric effect
showed a negative relationship of discard proportions to depth, suggesting that

the highest discard proportions are located in shallow waters and decrease with
depth (Figure 4).

0.1-

e
=
;

Depth effect

01 ‘\\

02- . . ;
200 400 600
Depth

Figure 4: Marginal effect of the bathymetry in the linear predictor.
The continuous line represents the mean effect and dashed
lines their 95% credible intervals.

Finally, no vessel effects was identified in the study area suggesting that
discard proportions are reasonably homogeneous across vessels.

5. CONCLUSIONS

In this paper, we use a Bayesian hierarchical spatial beta model to analyse
spatially sampled proportion data. To this end, we use a simple reparametrisation
of the beta distribution to apply regression on the mean of the process. The
Bayesian approach allows a straightforward quantification of uncertainty, which
is important for decision making, while the hierarchical structure allows a more
natural model specification, especially when including complex latent models such
as geostatistical terms.



Modelling Spatially Sampled Proportion Processes 83

Beta regression overcomes all the drawbacks of the traditional data trans-
formations [Warton and Hui, 2011, Ferrari and Cribari-Neto, 2004]. First, it
allows a direct interpretation of model parameters in terms of the original data;
second, the analysis is not sensitive to the sample size; and lastly, posterior distri-
butions are expected to concentrate well within the bounded range of proportions.
It is only when observations on the extremes of the distribution are present, i.e.
0 and 1, that the beta distribution does not provide a satisfactory description of
the data. A possible solution to this problem is to add some small value to the
proportion, which introduces minimal bias while still satisfying the above crite-
ria [Warton and Hui, 2011]; otherwise, zero and/or one inflated models may be
required [Ospina and Ferrari, 2012], now available in the zoib package [Liu and
Kong, 2015] for R.

The incorporation of spatial random effects in beta regression models can
be very useful in a wide range of disciplines. For example mapping plant coverage
in ecology; mapping budget allocation in econometrics; mapping the percentage
of retirees in sociology, mapping sex-ratios in species, etc. Furthermore, combin-
ing the Bayesian spatial hierarchical modelling approach [Banerjee et al., 2003]
and the temporal extension of Da-Silva and Migon [2016], the beta regression
framework can be extended to the spatio-temporal domain. Consequently, it is
possible to tackle problems such as the evolution of plant epidemics [Stein et al.,
1994], the spatio-temporal evolution of temperature [Hengl et al., 2012] or the
understanding of the spatial dynamism of species over time, as in Paradinas et
al. [2015]. It must be taken into account that the computational burden of these
models can be even more demanding than in the purely spatial domain, making
R-INLA and its SPDE module two almost necessary tools to deal with them.

The Bayesian analysis of fisheries distribution is a very important field of
research in marine ecology [Munoz et al., 2013, Quiroz et al., 2015]. The case
study presented here applies spatial beta regression to identify fishery discard
hot-spots based on discard proportions, which, as opposed to total discard units,
assess the biomass benefit against the amount of wasted biomass that constitute
discards. Our results have identified at least one high discard proportion hot-
spot in the study area. Under a marine spatial planning framework that seeks
to minimise the ecological impact of the fishing activity, the characterisation of
hot-spots could be specially useful for policy makers, as it would allow them to
protect those hot-spots as areas of special interest.

To conclude, we would like to mention that the geostatistical beta regres-
sion approach proposed here to analyse proportions is not only applicable to
non-binomial proportional data but also to binomial proportional data, i.e. pro-
portions measured as x out of n. In fact, applying beta regression in these cases
may be an easier and more natural approach to avoid the usual problem of overdis-
persion in logistic regression than that proposed in Wilson and Hardy [2002] using
GLMMs.
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1. INTRODUCTION

The Lindley distribution was first proposed by Lindley [20] in the context of
fiducial and Bayesian inference. In recent years, this distribution has been studied
and generalized by several authors, see Ghitany et al. [15], Zalerzadeh and Dolati
[29], Ghitany et al. [14], Bakouch et al. [4], Barreto-Souza and Bakouch [5] and
Ghitany et al. [13].

In this paper, we introduce a new generalization of the Lindley distribution
referred to as the Weibull Lindley (WL) distribution by compounding Lindley
and Weibull distributions. The compounding approach gives new distributions
that extend well-known families of distributions and at the same time offer more
flexibility for modeling lifetime data. The flexibility of such compound distribu-
tions comes in terms of one or more hazard rate shapes, that may be decreasing
or increasing or bathtub shaped or upside down bathtub shaped or unimodal.

Many recent distributions have been introduced by using a compounding
approach. For example, Adamidis and Loukas [1] proposed a distribution by tak-
ing the minimum of N independent and identical exponential random variables,
where N is a geometric random variable. But this distribution allows for only
decreasing hazard rates. Kus [18] proposed a distribution by taking the minimum
of N independent and identical exponential random variables, where N is a Pois-
son random variable. But this distribution also allows for only decreasing hazard
rates. Barreto-Souza et al. [6] proposed a distribution by taking the minimum of
N independent and identical Weibull random variables, where N is a geometric
random variable. But this distribution does not allow for bathtub shaped hazard
rates, the most realistic hazard rates. Morais and Barreto-Souza [22] proposed
a distribution by taking the minimum of N independent and identical Weibull
random variables, where N is a power series random variable. But this distribu-
tion also does not allow for bathtub shaped hazard rates. Asgharzadeh et al. [3]
proposed a distribution by taking the minimum of N independent and identical
Pareto type II random variables, where IV is a Poisson random variable. But this
distribution allows for only decreasing hazard rates. Silva et al. [27] proposed
a distribution by taking the minimum of N independent and identical extended
Weibull random variables, where NV is a power series random variable. This distri-
bution does allow for bathtub shaped hazard rates, but that is expected since the
extended Weibull distribution contains as particular cases many generalizations
of the Weibull distribution. Bourguignon et al. [7] proposed a distribution by
taking the minimum of N independent and identical Birnbaum—Saunders random
variables, where N is a power series random variable. But this distribution does
not allow for bathtub shaped hazard rates.

The WL distribution introduced here is obtained by compounding just two
random variables (Lindley and Weibull random variables). Besides the WL dis-
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tribution has just three parameters, less than several of the distributions cited
above.

Let Y denote a Lindley random variable with parameter A > 0 and survival
function G(y) = Hﬁ%”e_w, y > 0. Let Z denote a Weibull random variable
with parameters o > 0 and 8 > 0, and survival function Q(z) = e~ (B2)% 2 > 0.
Assume Y and Z are independent random variables. We define X = min(Y, Z)
as a WL random variable and write X ~ W L(«, 3,\). The survival function of
X is

The cumulative distribution function (cdf) of X can be written as

1+ A+A o
LTATAT e ()

(1.1) Fle)=1- "

for x >0, « >0, 8>0and A > 0. The probability density function (pdf) of X
is

(1.2) f(x) = 1_11_)\ [aA(B2)* + aB(1 + A (Bz)*L + 221 + z)] o~ a—(Bz)

forx>0,a>0,6>0and A > 0.

Some special cases of the WL distribution are: the Weibull distribution
with parameters o and (§ for A = 0; the Rayleigh distribution with parameter «
for A = 0 and B = 2; the exponential distribution with parameter § for A = 0 and
«a = 1; the Lindley distribution with parameter A for g = 0.

The WL distribution can be used very effectively for analyzing lifetime
data. Some possible motivations for the WL distribution are:

e The WL distribution accommodates different hazard rate shapes, that
may be decreasing or increasing or bathtub shaped, see Figure 2. Bath-
tub shaped hazard rates are very important in practice. None of the
known generalizations of the Lindley distribution accommodate a bath-
tub shaped hazard rate function.

e The WL distribution has closed form expressions for survival and hazard
rate functions, which is not the case for some generalizations of the Lind-
ley distribution. Hence, the likelihood function for the WL distribution
takes explicit forms for ordinary type-II censored data and progressively
type-II censored data. Hence, the WL distribution could be a suitable
model to analyse ordinary type-II censored data and progressively type-
IT censored data.

e The Lindley and Weibull distributions are special cases of the WL dis-
tribution.
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e Suppose a system is composed of two independent components in series;
let Y and Z denote their lifetimes; suppose Y is a Lindley random
variable and Z is a Weibull random variable; then the lifetime of the
system is a WL random variable.

e Suppose a system is composed of n independent components in series;
let Y, Z1, Zs, ..., Z,_1 denote their lifetimes; suppose Y is a Lindley ran-
dom variable and Z1, Zo, ..., Z,_1 are identical Weibull random variables;
then the lifetime of the system is also a WL random variable.

e The pdf of the WL distribution can be bimodal, see Figure 1. This
is not the case for the Weibull distribution or any generalization of the
Lindley distribution. So, any bimodal data set (see Figure 8 for example)
cannot be adequately modeled by any of the known generalizations of
the Lindley distribution.

e Additive hazard rates arise in many practical situations, for example,
event-history analysis (Yamaguchi [28]), modeling of excess mortalities
(Gail and Benichou [12], page 391), modeling of breast cancer data
(Cadarso-Suarez et al. [8]), modelling of hazard rate influenced by
periodic fluctuations of temperature (Nair et al. [24], page 268), and
“biologic” and “statistical” interactions in epidemiology (Andersen and
Skrondal [2]). Hence, it is import to have distributions based on addi-
tive hazard rates. The WEL distribution is the first generalization of
the Lindley distribution based on additive hazard rates.

The rest of this paper is organized as follows: various mathematical prop-
erties of the WL distribution are derived in Sections 2 to 4; estimation and
simulation procedures for the WL distribution are derived in Section 5; three real
data applications are illustrated in Section 6.

Some of the mathematical properties derived in Sections 2 to 4 involve in-
finite series: namely, (3.1), (3.2) and (4.1). Extensive computations not reported
here showed that the relative errors between (3.1), (3.2) and (4.1) and their ver-
sions with the infinite series in each truncated at twenty did not exceed 10720,
This shows that (3.1), (3.2) and (4.1) can be computed for most practical uses
with their infinite sums truncated at twenty. The computations were performed
using Maple. Maple took only a fraction of a second to compute the truncated
versions of (3.1), (3.2) and (4.1). The computational times for the truncated
versions were significantly smaller than those for the untruncated versions and
those based on numerical integration.

Throughout this paper, we report conclusions on various properties of the
WL distribution: the last four paragraphs of Section 2.1 reporting conclusions
on the shape of the pdf of the WL distribution; the last paragraph of Section 2.2
reporting conclusions on the shape of the hazard rate function of the WL dis-
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tribution; Section 2.3 reporting conclusions on the shape of the quartiles of the
WL distribution; the last paragraph of Section 3 reporting conclusions on the
mean, variance, skewness and kurtosis of the WL distribution; the last paragraph
of Section 4 reporting conclusions on the Lorenz curve of the WL distribution.
These conclusions are the result of extensive graphical analyses based on a wide
range of parameter values (although the graphics presented here are based on a
few choices of parameter values). However, we have no analytical proofs for these
conclusions.

2. SHAPES

Here, we study the shapes of the pdf, (1.2), the corresponding hazard rate
function and the corresponding quartiles. Shape properties are important because
they allow the practitioner to see if the distribution can be fitted to a given data
set (this can be seen, for example, by comparing the shape of the histogram of
the data with possible shapes of the pdf). Shape properties of the hazard rate
function are useful to see if the distribution can model increasing failure rates,
decreasing failure rates or bathtub shaped failure rates. Shape properties of the
hazard rate function has implications, for example, to the design of safe systems
in a wide variety of applications. Quartiles are fundamental for estimation (for
example, quartile estimators) and simulation.

2.1. Shape of probability density function

We can see from (1.2) that

00, a <1,
BL+A)+A )
lim f(z) = 1+x 70
1
1+ M «“=
and
A pe B < 1,
1+ A/\ \
f(x)N (ﬁ_‘_ ) xef)\mfﬂx7 17
5
AP A g=re—(pa) 1
1+ 2° &2

as r — OQ.
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Note also that f(x) can be written as

fz) = 9(2)Q(x) + ()G (),

where

and
q(x) = aﬁaa:a_le_(ﬂm)a.
So, the first derivative of f(x) is

fl(z) = ¢ (@)Q(z) + ¢ ()G (x) — 29(x)q(x).

Therefore, f(x) is decreasing if ¢’(z) < 0 and ¢’(x) < 0. This is possible if A > 1
and o < 1.

The first derivative of f(x) is

e*Aﬁ?*(IBZE)D‘

T |dHATA) [af?(a = 1)(Bx)* % — (aB)?(Bx)**?]

fl(x) =
—2afN(Bx)* L+ N2 (1 — A= Az)|.

So, the modes of f(x) at say & = z( are the roots of

(21) (1A +22) [af(a = 1)(82)72 = (aB)*(B2)** %] =
= 208M2(B2)* 1 — N3 (1— A — Aa).

The roots of (2.1) are difficult to find in general. However, if § = 0 then zy = %,
the mode of the Lindley distribution, for 0 < A < 1.

We now study (2.1) graphically. Figure 1 shows possible shapes of the pdf
of the WL distribution for selected (c, 3, \).

The left plot in Figure 1 shows bimodal shapes of the pdf with a maximum
followed by a minimum. The x coordinates of the (local minimum, local maxi-
mum) are (0.395,0.933) for A = 1.2, (0.451,0.921) for A = 1.4, (0.500,0.906) for
A = 1.6 and (0.547,0.889) for A = 1.8. The location of the minimum moves more
to the right with increasing values of A\. The location of the maximum moves
more to the left with increasing values of .

The right plot in Figure 1 shows unimodal shapes of the pdf. The z co-
ordinates of the mode are 0.370 for A = 1.2, 0.298 for A = 1.4, 0.227 for A = 1.6
and 0.157 for A = 1.8. The location of the mode moves more to the left with
increasing values of A.
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Figure 1: Pdfs of the WL distribution for g = 1.

Monotonically decreasing shapes and monotonically decreasing shapes con-
taining an inflexion point are also possible for the pdf.

In each plot, the upper tails of the pdf become lighter with increasing values
of A. The lower tails of the pdf become heavier with increasing values of .

2.2. Shape of hazard rate function

Using (1.1) and (1.2), the hazard rate function of the WL distribution can
be obtained as

N(1+ )

(2:2) M) = e

+ aB(Bz)* .

It is obvious that the hazard rate functions of Lindley and Weibull distributions
are contained as particular cases for =0 and A = 0, respectively. Also, (2.2)
can be expressed as

hx(z) = hy(x) + hz(z),

i.e., the hazard rate function of the WL distribution is the sum of the hazard rate
functions of Lindley and Weibull distributions. As a result, the hazard rate func-
tion of the WL distribution can exhibit monotonically increasing, monotonically
decreasing and bathtub shapes, see Figure 2.
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We can see from (2.2) that

00, a<l1,
B(L+ )+ N2
lim h(z) = it o *=h
TN a>1
and

A a<l,

lim h(x) =< A+ 6, a=1,

e oo, a>1.

Bathtub shapes of the the hazard rate function appear possible when « is
close enough to 0 or « is close enough to 1, see Figure 2. Monotonically decreasing
shapes are possible for all values of « in between (i.e., in between « being close
enough to 0 and « being close enough to 1). Monotonically increasing shapes are
possible for all other values of .
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Figure 2: Hazard rate function of the WL distribution for g = 1.

2.3. Shape of quartiles

The p-th quartile say x, of a WL random variable defined by F' (x,) = p is
the root of
Tp = % [(1 _p)e)\:rp+(ﬁxp)a — 1}
for 0 < p < 1. Numerical investigations showed that x, are monotonic decreasing
functions of A and monotonic increasing functions of a except for high quartiles.
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3. MOMENT GENERATING FUNCTION AND MOMENTS

The moment generating function is fundamental for computing moments,
factorial moments and cumulants of a random variable. It can also be used for
estimation (for example, estimation methods based on empirical moment gener-
ating functions).

Moments are fundamental for any distribution. For instance, the first four
moments can be used to describe any data fairly well. Moments are also useful
for estimation (for example, the method of moments).

Several interesting characteristics of a distribution can be studied by mo-
ments and moment generating function. Let X ~ W L(«, 3, A). Then the moment
generating function of X can be expressed as

Mx(t) = E(etX)

-3 R [ g Ay,

of°T (ai +1)) | aAFT (a(i+1) + 1) }
(A —t)e M+ =ttt [

(3.1)

where I'(a) = [;°t* 'e~'dt denotes the gamma function. The r-th raw moment
of X can be expressed as

;o g Flia+1r+2)
= E (X7 —1+)\E Zl)\mﬂﬂ[(za—i-r%—l)—%)\
az(— B [y T(ia+a+7r+1)

1=0

The central moments, coefficient of variation, skewness and kurtosis of X
can be readily obtained using the raw moments of X. Numerical investigations of
the behavior of the mean, variance, skewness and kurtosis versus a and A showed
the following: i) mean is a monotonic decreasing function of \; ii) mean is either
a monotonic increasing function of « or initially decreases before increasing with
respect to «; iii) variance is either a monotonic decreasing function of A or initially
increases before decreasing with respect to A; iv) variance is either a monotonic
decreasing function of o or a monotonic increasing function of «; v) skewness is
either a monotonic decreasing function of A or initially decreases before increasing
with respect to A; vi) skewness is either a monotonic decreasing function of «
or initially increases before decreasing with respect to «a; vii) kurtosis is either a
monotonic decreasing function of A, a monotonic increasing function of A, initially
decreases before increasing with respect to A, or initially increases, then decreases
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before increasing with respect to A; viii) kurtosis is either a monotonic decreasing
function of «, initially increases before decreasing with respect to «, initially
decreases before increasing with respect to «, or initially increases, then decreases
before increasing with respect to a.

4. LORENZ CURVE

The Lorenz curve for a positive random variable X is defined as the graph
of the ratio

EX | X <x)F(x) _ Jo «f (x)dx
E(z) 0+°O zf(z)dx

L(F(x)) =

against F'(x) with the property L(p) < p, L(0) = 0 and L(1) = 1. If X represents
annual income, L(p) is the proportion of total income that accrues to individuals
having the 100p percent lowest incomes. If all individuals earn the same income
then L(p) = p for all p. The area between the line L(p) = p and the Lorenz curve
may be regarded as a measure of inequality of income, or more generally, of the
variability of X.

The Lorenz curve has also received applications in areas other than income
modeling: hierarchy theory for digraphs (Egghe [9]); depression and cognition
(Maldonado et al. [21]); disease risk to optimize health benefits under cost con-
straints (Gail [11]); seasonal variation of environmental radon gas (Groves-Kirkby
et al. [16]); statistical nonuniformity of sediment transport rate (Radice [26]).

For the WL distribution, we have

x ﬂza
2
/0 xf(x)dx = 1+)\Z z')\w‘ (i + 2, Ax)

/B'LO[
1+)\Z: Dviat1 (tor + 3, Ax)

( ﬁzaJra 1
taf Z l)\za+a+1 (o +a+1,Az)

)ﬂzaJra
1+)\Z Tviatadl y(ia+ a+ 2, \x),

where y(a,z) = fox t*~le~tdt denotes the incomplete gamma function. So, the
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Lorenz curve for the WL distribution is

[e.e]

L(p) = 1 Z (_.1)%1& y(ic + 2, \x) + T Z ﬁmv (i + 3, \x)

|\t g1 \ia+1
w| = i IA

ﬁza+a 1
+ap Z l/\m+a+1 ——————(ia + a+ 1, \x)

)6za+a
(4.1) 1+)\Z Thiatatl v+ a+ 2, \x)|.

Possible shapes of (4.1) versus « and A are shown in Figure 3. When o = 0.5, the
curves bend further towards the diagonal line as A increases. When a = 1, the
curves bend further away from the diagonal line as \ increases. For each fixed A,
the curves bend further towards the diagonal line as « increases.
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Figure 3: Lorenz curve of the WL distribution for g = 1.

5. ESTIMATION AND SIMULATION

Maximum likelihood estimation of the three parameters of the WL distri-
bution is considered in Section 5.1. An assessment of the performance of the
maximum likelihood estimators is performed in Section 5.2. Maximum likelihood
estimation of the three parameters in the presence of censored data is considered
in Section 5.3. A scheme for simulating from the WL distribution is given in
Section 5.4.
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5.1. Maximum likelihood estimation

Suppose 1, ..., Ty is a random sample from the WL distribution. The log-
likelihood function is

E(Oé,ﬁa Zlog [A2 (1+$Z)+C¥)\(,8131) —I—Oéﬂ(l—l-)\) /3531 a— 1:| )\le

=0

(5.1) = " (Br)™ — nlog(l+ A).
=0

The maximum likelihood estimators of («, 3,\) can be obtained by solving the
likelihood equations

oMo.BY) _ -1 . o (G| (B
ol = ;W@j){wwm B(1+ \)log (8z:)] (Bz)
(5.2) + [A 4 aXlog (Bz;)] (Bzi)* } )\Z Bx)* log (Bx;) = 0,
(Oé,,B,)\) _ & 1 o T . a—1 042 )%
(5.3) _ay (Bas)™ =
6 =0

and

M Z [ (Bzi)* + aB (Bxi)*™ +2A(1+xi)}
(5.4) =0,

where W (x) = A\2(14+2) + aX(B2)* + aB(1+ \)(Bx)*~L. Alternatively, the MLEs
can be obtained by maximizing (5.1) numerically. We shall use the latter approach
in Sections 5.2 and 6. The maximization was performed by using the nlm function
in R (R Development Core Team [25]). In Sections 5.2 and 6, the function nlm
was executed with the initial values taken to be:

(i) The true parameter values (applicable for Section 5.2 only);

(ii) «=0.01,0.02,...,10, 8 = 0.01,0.02, ...,10 and A = 0.01,0.02, ..., 10;

(iii) The moments estimates, i.e., the solutions E(X) = (1/71)25%

E (X?) = (1/n) zn:a: and E (X%) = (1/n) Zx where E(X),
=1 =1
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E (X?) and E (X?) are given by (3.2). These equations do not
give explicit solutions. They were solved numerically using a quasi-
Newton algorithm. Numerical investigations showed that this in-

1 ] 6£(a7ﬁ7>\) —
volved roughly the same amount of time as solving of —7:=~ =0,

%’?A) =0 and W = 0 using a quasi-Newton algorithm.

In the cases of i) and iii), the function nlm converged all the time and the MLEs
were unique. In the case of ii), the MLEs were unique whenever the function nlm
converged. In the case of ii), the function nlm did not converge about five percent
of the time.

For interval estimation of (a, 3, A), we consider the observed Fisher infor-
mation matrix given by

Ina Iozﬁ Ia)\

Ip(o, B,2) = — | Iga s Ipn |,
Ina Ing I

where I, 4, = 020/0¢10¢5.

Under certain regularity conditions (see, for example, Ferguson [10]) and
Lehmann and Casella [19], pages 461-463) and for large n, the distribution of
Vn <@ - a, B\ — B, X — ) can be approximated by a trivariate normal distribu-
tion with zero means and variance-covariance matrix given by the inverse of
the observed information matrix evaluated at the maximum likelihood estimates.
This approximation can be used to construct approximate confidence intervals,
confidence regions, and testing hypotheses for the parameters. For example,
an asymptotic confidence interval for o with level 1 —  is (& F 21—y /2\/Ia7>,

where 1% is the (1,1)-th element of the inverse of I <62, @, /):) and z;_. /o is the

(1 — v/2)-th quartile of the standard normal distribution.

5.2. Simulation study

Here, we assess the performance of the maximum likelihood estimators
given by (5.2)—(5.4) with respect to sample size n. The assessment was based on
a simulation study:

1. Generate ten thousand samples of size n from (1.2). The inversion
method was used to generate samples, i.e., variates of the WL distri-
bution were generated using

U= ? (1 — p)eMXHE" _q

where U ~ U(0, 1) is a uniform variate on the unit interval.

)
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2. Compute the maximum likelihood estimates for the ten thousand sam-
ples, say (ai,@,ii) for i = 1,2, ...,10000.

3. Compute the biases and mean squared errors given by

10000 10000

@rw) M%“m:m&o“m_@

1
~ 10000 <
1=1

biasy,(n)
for h =a, 8, \.

We repeated these steps for n = 10,11, ...,100 with a« =1, =1 and A =1, so
computing biasy(n) and MSEy(n) for h = a, 8, A and n = 10, 11, ..., 100.
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Figure 4: Biases of (@,ﬁ,z\) versus n.

Figures 4 and 5 show how the three biases and the three mean squared errors
vary with respect to n. The following observations can be made: the biases for
each parameter are negative; the biases appear largest for the parameter, «; the
biases appear smallest for the parameters, § and \; the biases for each parameter
increase to zero as n — 00; the mean squared errors for each parameter decrease to
zero as n — oo; the mean squared errors appear largest for the parameter, «; the
mean squared errors appear smallest for the parameter, A\. These observations
are for only one choice for (a, 3, ), namely that (a,3,A) = (1,1,1). But the
results were similar for a wide range of other values of («,3,\). In particular,
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the biases for each parameter always increased to zero as n — oo and the mean
squared errors for each parameter always decreased to zero as n — oo.

n

o 4
,a\o' - -

©

& x 3 @
s 2 2 9
5 y |
= 8 2 o
kS o o = 4
w0 w3
» o

o 4 = -
EO- °

T T T T T 2 T T T T T
20 40 60 80 100 20 40 60 80 100
n n

= |
©°
£ |
s 2
- o 4
w <
- o
E —
ks
Y |
U)co
s 5

o

o

Figure 5: Mean squared errors of (&, B\, X) Versus n.

Section 6 presents three real data applications. The sample size for the
first data set is eight hundred and seventy seven. The sample size for the second
data set is twenty six. The sample size for the third data set is two hundred and
ninety five. We shall see later in Section 6 that the WL distribution provides
good fits to the three data sets. Based on this fact, the biases for @, B and \ can
be expected to be less than 0.025, 0.007 and 0.0075, respectively, for all of the
data sets. The mean squared errors for @, B and \ can be expected to be less
than 0.04, 0.02 and 0.0088, respectively, for all of the data sets. Hence, the point
estimates given in Section 6 for all data sets can be considered accurate enough.

5.3. Censored maximum likelihood estimation

Often with lifetime data, we encounter censored data. There are different
forms of censoring: type I censoring, type II censoring, etc. Here, we consider
the general case of multi-censored data: there are n subjects of which
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e np are known to have failed at the times z1, ..., xp,;
e n, are known to have failed in the interval [s;_1,s;], 7 = 1, ..., n1;

e ng survived to a time r;, j = 1,...,n2 but not observed any longer.

Note that n = ng + n1 + ng and that type I censoring and type II censoring are
contained as particular cases of multi-censoring. The log-likelihood function of
the model parameters for this multi-censoring data is:

s BA) = 3 log [N (1+ @) +aX (Ba))° + a1+ A) (B2:)" '] =AY w
i=0 1=0

- Z (Bx;)* — nglog(1 + \)

=0

+> log {F (s;) — F(si-1)}
=1

(5.5) —i—ilog{l —F(r)},

where F(-) is given by (1.1). The MLEs can be obtained by maximizing (5.5)
numerically. The maximization can be performed by using the nlm function in
R.

5.4. Generating data

Section 5.2 gave an inversion method for simulating from the WL distribu-
tion. Here, we present an alternative method for simulation.

We know that a WL random variable is the minimum of independent
Weibull and Lindley random variables. So, to generate a random sample from
the WL distribution, the following algorithm can also be used:

1. First generate a random sample vy, ..., v, from Weibull(e, 5);

2. Independently, generate a random sample wy, ..., wy, from Lindley(\);

3. Set x; = min (v;, w;) for i =1,...,n.

Then z1, x9, ..., 2, will be a random sample from WL(«, 3, A).
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6. APPLICATIONS

In this section, we fit the WL distribution to three real data sets. We
compare the fits of the WL distribution to the fits of some related distributions:
the extended Lindley (EL) distribution due to Bakouch et al. [4] with the pdf

A1+ X+ Az)ot
(1+X)e

f(z) = 5(1+—A+—Axxxxy*4._a}efuxw

for © >0, @ € (—00,0) U{0,1}, >0 and X\ > 0; the weighted Lindley (WEL)
distribution due to Ghitany et al. [14] with the pdf

90+1

33‘0_1 T e—@x
G or” 1o

fz) =

for x > 0, ¢ > 0 and 6 > 0; the exponential Poisson Lindley (EPL) distribution
due to Barreto-Souza and Bakouch [5] with the pdf

- BO2(1 4 0)%eP* (3+ 6 — e %)

f(@) (1430 +62)(1+0—ebr)

for x > 0, 0 > 0 and 8 > 0; the Lindley distribution with the pdf

)\2

_ -z
= >\+1(1+x)e

f(x)

for x > 0 and A > 0; the generalized Lindley (GL1) distribution due to Zalerzadeh
and Dolati [29] with the pdf

02(0z)* Yo + yx)e 0"
v+ 0)(a+1)

fz) =

for £ >0, a >0, # >0 and v > 0; the power Lindley (PL) distribution due to
Ghitany et al. [13] with the pdf

af?

= s amar e

f(x)

for £ > 0, « > 0 and 8 > 0; and, the generalized Lindley (GL2) distribution due
to Nadarajah et al. [23] with the pdf

a? T+A+xz 1%

fz) = (1+x) 1—1+7)\e e

forx >0, a>0and XA > 0.
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6.1. Dataset 1

The first data are times to reinfection of STD for eight hundred and seventy
seven patients. The data were taken from Section 1.12 of Klein and Moeschberger
[17]. We fitted the eight distributions to the data. Table 1 gives the parameter
estimates, standard errors obtained by inverting the observed information ma-
trix, log-likelihood values, values of Akaike information criterion (AIC), values of
Bayesian information criterion (BIC), p values based on the Kolmogorov—-Smirnov
(KS) statistic, p values based on the Anderson-Darling (AD) statistic, and p val-
ues based on the Cramér—von Mises (CVM) statistic. The fitted pdfs of the three
best fitting distributions as well as the empirical histogram are shown in Figure 6.
The corresponding probability plots are shown in Figure 7.

Table 1: Parameter estimates, standard errors, log-likelihoods, AICs,
BICs and goodness-of-fit measures for data set 1.

Distribution | Parameter estimates (s.e) [-lsL AIC  BIC  Ks AD cVM
X = 8.806 x1071(1.302 x10~2),
EL @ = —9.804x1071(3.034 x1072),| 9203.4 18412.9 18427.2 4.080 x10~% 2.700x107° 1.979 x10~*
B =9.935x10"7(8.098 x10~3)
8 =2.878 x1073(1.076 x10™ %), 3 4 2
' X . _ . _ _
WEL & = 9.359 x10~2(1.324 x 10-2) 6082.4 12168.7 12178.3 9.474x107 2 2.879 x10~% 6.021 x10
EPL 6 = 2.326(7.568 x 10 ), 6055.1 12114.1 12123.7 8.151x1072 1.395x1072 1.174x10~!
B =2.190 x10~3(1.854 x 10~ %) 00 : S0 8. 151X 390 X X
Lindley X = 5.397 x1073(1.313 x 10~ %) 6413.0 12828.1 12832.9 1.996 x103 1.762x10~% 5.579 x10~4
8 =7.872x1072(4.339 x1073),
GL1 @ =1.453x1075(4.164 x1072), |27827.1 55660.1 55674.4 1.864x107° 2.149 x10~° 1.697 x10~4
7 = 7.595 x1071(6.225 x10~2)
PL 8 = 5.696 1071 (1.864 x1077), 6056.3 12116.7 12126.2 6.872x1072 1.232x1073 7.611x1072
B = 7.671 x1072(6.420 x10~3) : : 2 0872 X 282X 011X
GL2 A =2.980 x1079(1.891 x1077), 6031.8 12067.5 12077.1 1.695x10"! 7.568 x1072 1.480 x10~!
& = 3.660 x10™1(1.509 x10~2) : : 41O X H08 X 480X
X =2.331 x1073(2.714 x 10~ %),
WL @ = 6.435x1071(3.870 x1072), | 6022.9 12051.7 12066.0 3.131x10~! 8.243x1072 2.735x107!
B =1.740 x 10~ 3(2.792 x10~%)

We can see that the WL distribution gives the smallest AIC value, the
smallest BIC value, the largest p value based on the KS statistic, the largest
p value based on the AD statistic, and the largest p value based on the CVM
statistic. The second smallest AIC, BIC values and the second largest p values
are given by the GL2 distribution. The third smallest AIC, BIC values and the
third largest p values are given by the EPL distribution. The fourth smallest AIC,
BIC values and the fourth largest p values are given by the PL distribution. The
fifth smallest AIC, BIC values and the fifth largest p values are given by the WEL
distribution. The sixth smallest AIC, BIC values and the sixth largest p values
are given by the Lindley distribution. The seventh smallest AIC, BIC values and
the seventh largest p values are given by the EL distribution. The largest AIC,
BIC values and the smallest p values are given by the GL1 distribution.
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Hence, the WL distribution provides the best fit based on the AIC values,
BIC values, p values based on the KS statistic, p values based on the AD statistic,
and p values based on the CVM statistic. The density and probability plots also
show that the WL distribution provides the best fit.
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Figure 6: Fitted pdfs of the three best fitting distributions for data set 1.
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6.2. Data set 2

The second data are times to death of twenty six psychiatric patients. The
data were taken from Section 1.15 of Klein and Moeschberger [17]. The eight
distributions were fitted to this data. The parameter estimates, standard errors
and the various measures are given in Table 2. The corresponding density and
probability plots are shown in Figures 8 and 9, respectively.

Table 2: Parameter estimates, standard errors, log-likelihoods, AICs,
BICs and goodness-of-fit measures for data set 2.

Distribution | Parameter estimates (s.e) | —log L AIC BIC KS AD CVM
X =7.510 x10~1(9.604 x10~2),

EL &= —8534x1071(2.414x1071), | 164.9  335.8 339.5 1.163x1073 3.780x107° 9.083x107°
B =2.050 x1075(1.197 x1071)

WEL § = 7.727 x 10~ %(2.090 x 10~%), 107.7  219.3 221.8 4.691x10~! 1.392x107% 3.064 x10~2
& =1.107(4.659 x 10~ 1) : : 8 409X 992X 004X

EPL § = 1.267 x10* (4.662 x10%), 111.1 226.3 228.8 1.840 x10~2 4.964x107° 1.024x10~*%
B = 3.784 x1072(7.442 x 10~ 3) : : -8 1.840x 904 x 024 X

Lindley X = 7.311 x1072(1.016 x 10~ 2) 107.7  217.4 218.6 7.924x1071 1.126x1072 4.895x1072
6 = 8.282 x1072(2.152 x10™ 2),

GL1 @ = 1.420(5.569 x 10~ 1), 107.1  220.3 224.0 2.920x10~2 1.163x10~* 7.787x10~%
7 =2.742x1071(3.199 x 107 1)

PL & = 1.225(2.069x10 1), 106.9  217.8 220.3 6.957x10~! 8.737x107% 3.715x10~ 2
B = 3.452 x1072(2.470 x 10~ 2) : : 3 6957 X 18T X o x

GL2 A = 7.547 x102 (1398 x107?), 107.7  219.3 221.8 1.081x10~% 1.582x10~% 4.384x103
& =1.069(2.874 x 10~ 1) : : & 108l x 82X 984X
X = 4.340 x1072(1.051 x10~2),

WL & = 9.901(2.822), 93.4  192.8 196.5 8.998x10~ ' 8.372x10”! 2.849x107 !
B =2.832 x1072(1.014 x10~3)

We can see again that the WL distribution gives the smallest AIC value,
the smallest BIC value, the largest p value based on the KS statistic, the largest
p value based on the AD statistic, and the largest p value based on the CVM
statistic. The second smallest AIC, BIC values and the second largest p values
are given by the Lindley distribution. The third smallest AIC, BIC values and the
third largest p values are given by the PL distribution. The fourth smallest AIC,
BIC values and the fourth largest p values are given by the WEL distribution.
The fifth smallest AIC, BIC values and the fifth largest p values are given by
the GL2 distribution. The sixth smallest AIC, BIC values and the sixth largest
p values are given by the GL1 distribution. The seventh smallest AIC, BIC values
and the seventh largest p values are given by the EPL distribution. The largest
AIC, BIC values and the smallest p values are given by the EL distribution.

Hence, the WL distribution again provides the best fit based on the AIC
values, BIC values, p values based on the KS statistic, p values based on the AD
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statistic, and p values based on the CVM statistic. The density and probability
plots again show that the WL distribution provides the best fit.
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Figure 8: Fitted pdfs of the three best fitting distributions for data set 2.

Expected Expected

Expected

Figure 9: PP plots of the three best fitting distributions for data set 2
(brown for the Lindley distribution, blue for the PL distribu-
tion and black for the WL distribution).
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6.3. Data set 3

The third data are times to infection for AIDS for two hundred and ninety
five patients. The data were taken from Section 1.19 of Klein and Moeschberger
[17]. The eight distributions were fitted to this data. The parameter estimates,
standard errors and the various measures are given in Table 3. The corresponding
density and probability plots are shown in Figures 10 and 11, respectively.

Table 3: Parameter estimates, standard errors, log-likelihoods, AICs,
BICs and goodness-of-fit measures for data set 3.

l Distribution | Parameter estimates (s.e) | —log L AIC BIC KS AD CVM
X =2.066 x1071(5.340 x 1073),
EL @ = —1.425x10"1(8.097 x1072), | 537.5  1080.9 1092.0 7.775x10”! 9.719x10™! 1.866 x107*
B = 3.503(2.776 x10™ 1)
6 =1.396(1.130 x 107!
WEL s 025E4 479 ><10’1§’ 563.3 1130.6 1138.0 2.072x107! 1.269x107! 9.133x1073
6 = 1.145 x 10% (1.091 x 10%), o s _4
EPL B—2.403x10-1(1.402x10-2) |713:2 14304 14378 6.394x1077 2.022x1077 7.102x10
Lindley X =4.106x1071(1.731x1072)  |659.7 1321.4 1325.1 1.113x10” 1 8.193x1072 1.443x1073
6 = 1.402(1.157 x 10~ 1),
QL1 @ = 5.099(5.533 x107 1), 563.3  1132.5 1143.6 1.744x1071 9.239x10™2 3.008 x10~3
7 = 3.872(4.373)
a = 2.099(8.683 x1072), 1 1 2
PL B 8.357x10-2(1.176x10-2) |5447  1093.5 11009 5.437x107" 1.664x107" 3.248x10
X =7.544 x1071(3.321 x1072), 1 o 3
GL2 & = 4.536(4.812 x10-1) 571.4  1146.9 1154.2 1.136 x10~! 9.136x10™2 1.616 x10
X = 1.595 x10~1(3.235 x 10~ 2),
WL @ = 4.036(4.329 x107 1), 535.7 1077.4 1088.4 8.059 x10~ ! 9.908 x10~! 8.666 x10~!
B =1.949 x1071(6.412 x1073)

We can see yet again that the WL distribution gives the smallest AIC value,
the smallest BIC value, the largest p value based on the KS statistic, the largest
p value based on the AD statistic, and the largest p value based on the CVM
statistic. The second smallest AIC, BIC values and the second largest p values
are given by the EL distribution. The third smallest AIC, BIC values and the
third largest p values are given by the PL distribution. The fourth smallest AIC,
BIC values and the fourth largest p values are given by the WEL distribution.
The fifth smallest AIC, BIC values and the fifth largest p values are given by
the GL1 distribution. The sixth smallest AIC, BIC values and the sixth largest
p values are given by the GL2 distribution. The seventh smallest AIC, BIC values
and the seventh largest p values are given by the Lindley distribution. The largest
AIC, BIC values and the smallest p values are given by the EPL distribution.

Hence, the WL distribution yet again provides the best fit based on the AIC
values, BIC values, p values based on the KS statistic, p values based on the AD
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statistic, and p values based on the CVM statistic. The density and probability
plots yet again show that the WL distribution provides the best fit.
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Figure 10: Fitted pdfs of the three best fitting distributions for data set 3.
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Figure 11: PP plots of the three best fitting distributions for data set 3
(pink for the EL distribution, blue for the PL distribution and
black for the WL distribution).
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7. CONCLUSIONS

We have introduced a three-parameter generalization of the Lindley distri-
bution referred to as the Weibull Lindley distribution. We have provided at least
seven possible motivations for this new distribution. We have studied shapes
of probability density and hazard rate functions, moments, moment generating
function, Lorenz curve, maximum likelihood estimators in the presence of com-
plete data and maximum likelihood estimators in the presence of censored data.
We have assessed the finite sample performance of the maximum likelihood esti-
mators by simulation. We have provided three real data applications.

We have seen that the probability density function can be bimodal, uni-
modal, monotonically decreasing or monotonically decreasing with an inflexion
point. The hazard rate function can be monotonically increasing, monotonically
decreasing or bathtub shaped. The maximum likelihood estimators appear to be
regular for sample sizes larger than twenty. The data applications show that the
Weibull Lindley distribution provides better fits than all known generalizations
of the Lindley distribution for at least three data sets.
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1. INTRODUCTION

In many environmental applications, extreme events are the main aspects of
practical concern. Financial time series are increasingly being analyzed to assess
the risk from extreme events. A description of extreme events is usually based
on observations that exceed a high threshold. Serial dependence leads to large
values occurring close in time and thus forming clusters. Clustering of extremes
does not take place in an independent and identically distributed (i.i.d.) setting.

Consider {X,},>1 a stationary sequence with common distribution func-
tion (df) F and {Y,}n>1 an ii.d. sequence with the same parent df F. We say
{X,}n>1 has extremal index 6 (0 < 6 < 1) if, for all 7 > 0, there is a sequence of
levels u,, = u,(7), n > 1, such that

P(max(Yl,...,Yn) < un) = Fn(un) — e 7

n—oo

(1.1) and P(max(Xl,...,Xn) Sun) — 0

n—od
(Leadbetter et al. [20] 1983). The sequence u,, = un(7), n >1, satisfying F" (u,,) —
exp(—7) or, equivalently, n(1 — F(u,)) — 7, as n — 00, is usually denoted as nor-
malized levels.

There are several characterizations of the extremal index bringing out differ-
ent estimators. Many of these estimators can be stated as functions of a number &
of upper order statistics. Analogous to the semiparametric estimation of various
tail measures (e.g., the tail index and tail dependence coefficients in a multivari-
ate framework), there is a proverbial tradeoff between bias and variance. The
first increases with k (large bias for a large amount of top order statistics used in
estimates) and the second increases as k gets smaller (large variability as fewer
top order statistics are considered). A typical path is plotted in Figure 1. After
the great variability in the beginning, there is a stable sample path, as function
of k, around the true value and then the bias starts to stand out and dominate.

Thus & needs to be chosen from the stability zone that mediates the variance
domain and the bias domain. There are several methods developed in literature
towards this choice of k concerning the estimation of tail measures. A survey
within the tail index estimation can be seen in Beirlant et al. ([2] 2004). More
recently, a general procedure was introduced in Gomes et al. ([14] 2013) for the
tail index estimation, which was latter adopted in Neves et al. ([23] 2015) to
estimate the extremal index. This consists of a pure heuristic procedure to find
the “plateau” region of the estimates path from which we may infer the true value
of the parameter. The methodology in Frahm et al. ([12] 2005), developed within
the estimation of the tail dependence coefficient of random pairs, also seeks a
stable region but after a smoothing of the sample path; see Frahm et al. ([12]
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2005) and Ferreira and Silva ([9] 2014). In Ferreira ([5] 2014) and Ferreira ([6]
2015a) it was also adapted to the tail index estimation.
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Figure 1: Runs estimates sample path of a moving maximum process,
Xi = max(aOZi, alZi,l, GQZZ',Q)7 ) > 17 where {Zi}i2,1 is an
i.i.d. unit Fréchet sequence, ag = 1/3, a; = 1/6 and ay = 1/2,
with run length r = 2. The horizontal line corresponds to the
true value.

Here we are going to apply the methodology of Frahm et al. ([12] 2005) to
several estimators of the extremal index. For comparison, we also analyze the
performance of the procedure in Neves et al. ([23] 2015) applied to those esti-
mators. As these are threshold-free methods, we also compare with the blocks
and sliding estimation threshold-free procedure presented in Robert et al. ([25]
2009). The description of the methods is addressed in Section 2. The comparison
of the procedures is assessed through simulation in Section 3 and an illustration
with real data is stated in Section 4. A small discussion is presented in Section 5.

2. ESTIMATION METHODS

The extremal index can be interpreted in different ways, leading to different
estimators. In O’Brien ([24] 1974) it is proved that

(2.1) P(max(Xg,...,Xrn < up|Xp > un)) — 0,

n—oo

where 7, is such that r, — oo and 7, = o(n). Under a mild mixing condition,
Hsing et al. ([17], 1988) stated that

(2.2) B[ Ly suny 0 1 suny 2 1] = 078
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with 1(-) denoting the indicator function, i.e., the limiting mean number of ex-
ceedances of u, in an interval of length r,, corresponds to the arithmetic inverse
of the extremal index, given that there are exceedances.

Also under a slight mixing condition, Ferro and Segers ([11] 2003) show
that

(2.3) P(F(up) T(un) >t) — 0%, >0,

n—oo
where T'(u,) = min{n > 1: X;,11 > u,|X1 > un}, ie., the process of inter-
exceedance times normalized by exceedances of u, follows a mixture of a point
mass and an exponential distribution Exp(6~1!).

Relations (2.1)—(2.3) yield the most common approaches to estimate 6,
respectively, the runs, the blocks and the intervals method.

The blocks and the runs estimators are based on their own clusters identifi-
cation procedure and both correspond to the ratio between the number of clusters
and the number of exceedances of a high threshold w,, (Hsing [15] 1991; Weissman
and Novak [29] 1998; Nandagopalan [22] 1990; Hsing [16] 1993). The intervals
estimator is based on an inter-exceedance times method (Ferro and Segers [11]
2003).

More precisely, the runs estimator is expressed as
n—r
(2.4) o = (No ()™ " Lixisunt Lxi<un) * 1Xapo<uns
=1

where N, (uy,) is the number of exceedances of u,. Independent clusters are
identified as runs of observations above wu,, separated by r, consecutive values
under u,,.

By considering b,, = [n/ry] blocks of length r,, ([-] means the integer part),
the simple blocks estimator corresponds to

(2.5) g = Cnlun)

where C,(u) is the number of clusters, i.e, in this context it corresponds to the
number of blocks in which at least one exceedance of u,, occurs. The variant

log(1 — Cn(un)/kn)

ZBL _
(2.6) 0= = rp1og(1 — Ny (uy) /1)

has been proposed in Smith and Weissman ([27] 1994) as having a better asymp-
totic behavior of second order.
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After some considerations and based on the result in (2.3), the intervals
estimator is stated as

2(xX'n)’
2.7) 6 e EET
0 )
(N-1) SN N (T -1)(T-2)

yifmax{T;: 1 <i<N—-1} <2

yifmax{T;: 1 <i< N -1} > 2,
where T; denotes the i-th inter-exceedance time, i = 1,..., N — 1 and N = N, (uy,).

The analysis of convenient local dependence conditions may eliminate the
need for a cluster identification scheme, such as the local dependence condition
D™ (u,) of Chernick et al. ([4] 1991), with m some positive integer. Consider
notation M; ; = max{X;1,..., X;}, fori < j, M; ; = —ocif i > j and My ; = M;.
Under condition D(u,) of Leadbetter ([19] 1974) which holds whenever «, ;, — 0,
as n — oo, for I, = o(n), where

Qp,| = SUP{‘P(Mn,ner <ty My, jyvg < Un)

- P(Mil,iler S ’LLn) P(Mjl,jl+q S ’LLn)

L<ih<iitp+l<i<p+q<n},

we say that D™ (uy,) is satisfied by {X,},>1 if, for some {b,}n>1 such that, as
n — oo,

b, =00, byapg, =0, byly/n—0,

we have
nP(Xl >un’M1,m < up <Mm,rn) — 0, n — oo,

with {r, = [n/by]}n>1. The stronger conditions

Tn
n ZP(X1>un,MLm§un<Xj)—>0, n — 00,
j=m+1

also stated in Chernick et al. ([4] 1991), lead to D’ (uy,) if m =1 and D" (u,,) if m =2,
considered in Leadbetter et al. ([20] 1983) and Leadbetter and Nandagopalan ([21]
1989), respectively. Condition D’(u,,) inhibits clustering of exceedances and thus
resembles an i.i.d. behavior and brings out § = 1, whilst D”(u,,) allows clustering

but inhibits the occurrence of two or more upcrossings. Moreover, if condition
D("0) (u,,) holds then D™ (u,,) also holds for all m > my.

Ferreira and Ferreira ([10] 2015) stated a new estimator that works un-
der D™ (u,,). More precisely, if {X,},>1 satisfies condition D™ (u,,), we can
estimate 6 by

(2.8) grr _ U (un)
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where UZ (u,,) is the number of upcrossings of u,, within {71, ..., Zin/(m—1))} With
Zn = Mpn-1)(m—1),n(m—1)» ? = 1. Other estimators developed in the same context
were also considered in that work whose overall performance did not surpass OFF .
Estimation approaches working only for series that satisfy condition D (u,,) can
also be seen in Siiveges (28] 2007), Ferreira and Ferreira ([8] 2012) and Ferreira
([7] 2015b).

Chernick et al. ([4] 1991) also show that, under D™ (u,), the extremal
index exists and can be computed by the limit

(2.9) 0 = lim P(Mm < un|X1 > up).

n—oo

Observe that the runs estimator in (2.4) corresponds to the empirical counterpart
of (2.9) by considering r = m. Diagnostic tools to analyze condition D™ (u,,) may
be seen in Siiveges ([28] 2007) and Ferreira and Ferreira ([10] 2015).

Observe also that taking r = 2 in (2.4) corresponds to the Nandagopalan’s
runs estimator derived in Nandagopalan ([22] 1990) under D" (uy,).

The disjoint blocks and the sliding blocks estimators presented in Robert
et al. ([25] 2009) are derived from the extremal index definition in (1.1).

Consider, for r positive integer,

log F,
F.(u) == P(M, <u), 7(u):=r(1—-F(u) and 0,(u):= —LT(U).

7 (u)
We have 0 = lim,_, 0, (u,) for normalized levels u, = u,(7) according to defini-
tion in (1.1). The estimation of the block maxima df F, through b = [n/r] disjoint

blocks or n — r 4 1 sliding blocks, that is

R 1 b R 1 n—r+1
F,];)’Jr(u) = b ZH{M@A)TMSU} and F?“Sbﬁ"(u) = n—r+1 Z ]l{Mifl,iflJrrSu}
i=1 1=1

originates the estimators, respectively,

log FP (4 log St (4,
(2.10) oo = o8 Furlun) g g —%"7”"("),
T, (Un) Tor(Un)
with N
~ r Ny, (u
Tn,r(un) —__nmm/

n
In order to achieve consistency in the estimators above, 7 must be actually taken
as an intermediate sequence 7,,, n > 1, that is,

Tn — o0 and 7,/n — 0.

Gomes et al. ([13] 2008) and Neves et al. ([23] 2015) considered the lev-
els u, in the interval between the k4 1 and the k-th upper order statistics,
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[Xp—km, Xn—k+1:n), for the Nandagopalan’s runs estimators. The advantage is
to move the framework to a similar context of the semiparametric estimation of
other important tail measures existing in the literature which allows new estima-
tion methods of the extremal index by adapting the existing ones. In this paper
we will consider those levels u,, € [Xy—kmn, Xn—k+1:n) in the estimators (2.4)—(2.8)
and (2.10) and denote, respectively,

(2.11) O O 0% Ok OF. O and OF.

Observe that we are replacing 7 by k. Indeed, we consider that k = k,,, n > 1, is
replacing 7, and thus it is also an intermediate sequence on behalf of consistency.
Estimators in (2.11) are functions of k, the number of order statistics higher than
the chosen level, where an increasing/decreasing k increases the bias/variance
(see Figure 1). Thus the choice of k is central in the estimation, not only of the
extremal index, but also of many other tail measures, making this topic largely
addressed in literature (see, e.g., Beirlant et al. [2] 2004).

The “plateau-finding” algorithm of Frahm et al. ([12] 2005), applied to the
estimation of the tail dependence coefficient of random pairs and here adopted to
estimate the extremal index, is based on a smoothing of the estimator’s sample
path by a simple box kernel with integer bandwidth d > 0. The resulting trajec-
tory thus corresponds to the moving average of 2d 4+ 1 successive points of the
initial one and will be used in the rest of the procedure that consists on the ap-
plication of a plateau definition and respective finding criterium. In the following
we detail the method which we denote Algorithm 1.

Algorithm 1:

For a sample (X7, ..., X},), consider bandwidth d = [wn] € N and compute
the means of 2d + 1 successive points of HA;C, 1 <k < n, with smoothing degree
w = 0.005 (thus each moving average is about 1% of the data, as suggested in
Frahm et al. [12] 2005). In the resulting smoothed values, 51, ...,é\n,gd, define
the plateaus py = (é\k‘v"'?é\k‘-i—m—l)a k=1,....n—2d—m+ 1, with length m =
[v/n — 2d]. The algorithm stops at the first plateau satisfying

k+m—1 _ o
> 10— 0| < 25,
i=k+1
where s is the empirical standard deviation of 51, cees én,Qd. Estimate 6 as the

mean of the values of the chosen plane region (consider the estimate zero if no
stable region fulfills the stopping condition).

For comparison, we also consider another heuristic procedure introduced in
Gomes et al. ([14] 2013), also seeking the plane region that presumably includes
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the “optimal” sample fraction k to be estimated. The algorithm is described below
and denoted Algorithm 2.

Algorithms 2 and 3:

For a sample (Xji,..., X,), obtain the minimum value jj, such that the
rounded values to j decimal places of @k, 1 <k < n, denoted 67;.3(3) are not all
equal. Identify the set of values of k associated to equal consecutive values of
§k (jo). Consider the set with largest range ¢ := kpayx — knin. Take all the estimates
gk(jo + 2) with kpax < k < knin, i.e., the estimates with two more decimal points
and obtain the mode. Denote IC the set of k-values associated with this mode.
Consider %, where % is the maximum of K.

We also consider the variant /0\75 by taking k = ¢ as mentioned in Neves et
al. ([23] 2015). This will be denoted Algorithm 3.

Observe that the described methodologies are all threshold-free. Robert
et al. ([25] 2009) also presented a threshold-free procedure based on blocks and
sliding estimators defined in (2.10). It is described downwards and will be called
Algorithm 4:

Algorithm 4:

For a sample (X1, ..., X)), choose a block size r, take b = [n/r], 7 =1 and

U= Xn—[bT]—‘rl:n' Consider Na,b(u) = Za<i§b 1{X¢>u}7 Nnﬂ“(u) = (1/(71—7’—1—/\1)) x
S Nogr(w), 52,(0) i= 00 (N (1) — N 0))? and @2, (a) 1= 22 x

3377«(10 — 1. Calculate 6 = 5[1;7_

T e {SL,DJ} and ¢ = ¢, (u). Obtain i through

pst = 0a"2(e® — 1 —a) + a~10c?
'LL =
pps = 0(2a) " (e — 1) + a~10c?,

replacing 6, ¢ and a by, respectively, 5, Zand 7. Obtain the bias-corrected § — /b
and estimate the variance by evaluating v = 2(62/a3)(e® — 1 —a —a?/2) +6%c?/a
at 0 = /0\, c=7¢and a = 0r. Take @ as the value that minimizes v when § = §
and ¢ = ¢. Now repeat the procedure for the founded optimal value 7 = a/ 0.

In the sequel, we use the abbreviations Al, A2, A3 and A4, respectively,
to refer the algorithms above.
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3. SIMULATION STUDY

We are going to analyze through simulation the performance of the esti-
mators in (2.11) within the methodologies A1-A4 described above. This study is
based on the following models:

Max-autoregressive process (MAR), X; = aX;_1 V¢, where 0 < a < 1
and {€;};>1 is an i.i.d. sequence of r.v.’s with d.f. Fi(z) =exp(—(1—a)/z),
x> 0. This process has # =1 —«a. We consider o = 1/2 and hence
0=1/2.

Moving maxima process (MM), X; =V, _q _,, aj€i—j, with 377 ja; =1
and a; > 0, {€;};>1 is an i.i.d. sequence of unit Féchet distributed r.v.’s.
This processhas ¢ =\/;,_, _,, ;. We consider m =3, ap =1/3, a1 =1/6,
ag = 1/2 leading to 6 = 1/2.

Autoregressive Gaussian process (AR), X; = aX;_1 +¢;, where {¢;};>1 is
an i.i.d. sequence of N(0, 1 — o?) distributed r.v.’s. This process satisfies
condition D'(u,,) and thus § = 1 (Leadbetter et al. [20] 1983).

A first order autoregressive process, with Cauchy marginals (ARCauchy)
of Chernick ([3] 1978), X; = sX;_1 +¢€;, with |s| < 1. The extremal index
is given by 1 — s2. We take s = —3/5 and thus 0 = 0.64.

A negatively correlated uniform autoregressive process (ARUnif) of
Chernick et al. ([4], 1991), X; = —(1/s)X;_1 + €;, where {¢;}i>1 is an
i.i.d. sequence such that P(e; =j/s)=1/s for j=1,...,s. We have
6 =1—1/s. Here we consider s = 2 and thus § = 3/4.

Bivariate extreme value Markov process with standard Gumbel mar-
ginals and logistic dependence function, i.e.,

P(X; < @, Xipa ) = exp(=(a"/ +y'/)°).

We consider the dependence parameter o = 0.5 which gives 6 = 0.328
(Smith [26] 1992), and denote the process MCBEV.

A GARCH(1,1) process, X; = oie;, with 0? = a+ AX2 | + Bo2 |,
a, A, 3> 0, where {¢; };>1 is an i.i.d. sequence of standard Gaussian r.v.’s.
We consider o = 1076, A = 1/4 and 3 = 7/10 resulting in 6 = 0.447 (see

details in Laurini and Tawn, [18] 2012).

We consider samples of sizes n = 100, 1000, 5000 and generate 100 inde-

pendent replications of each and for each model. We compare the estimation

procedures by computing the absolute mean bias and the root mean square error

(rmse).
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Remark 3.1. Observe that the methods being compared avoid threshold
selection but need a cluster identification parameter, whether be it a block size
or a run length. Recall that the dependence condition D™ (u,) of Chernick et
al. ([4], 1991) is a diagnostic tool for cluster identification within the runs estima-
tor é\% and estimator HAEF defined in (2.8). More precisely, we take the run length
r equal to m in the first (see discussion concerning (2.9)) and cycles of size m — 1
in the second as stated in (2.8). The MAR process satisfies condition D®(u,,),
whilst the processes MM, ARCauchy and ARUnif satisfy condition D®)(u,,).
See Ferreira and Ferreira ([10] 2015) and references therein for more details.
In this latter reference, we validated conditions D™ (u,) and D®)(u,) for the
processes MCBEV and GARCH, respectively. In what concerns the remaining
estimators which are based on blocks schemes, the respective cluster parameters
were chosen according to an overall good performance found on further simula-
tions.

The results are presented in Tables 1-6 (the bold numbers correspond to
the smallest estimates obtained in each model). A high bias is observed in the AR
model and also in models ARCauchy, ARUnif and GARCH concerning the runs,
the intervals and the FF estimator, under algorithms A2 and A3. The lowest val-
ues of rmse rely frequently on blocks 52 and 521“ estimators under algorithms A1,
A2 and A3, followed by estimators 52 and 5? within algorithm Al. In the AR
process, the results differ from the others where the estimators 52*] and 521“ tend
to behave better over the four algorithms. Observe that in this case we have the
boundary value # = 1 (as in i.i.d. sequences) where inference is usually problem-
atic (see Ancona-Navarrete and Tawn [1] 2000). The intervals estimator, 5}2, is
parameter-free under the methods in study and may be considered within MAR,
AR, MM and MCBEV models. The worst performances concern mainly estima-
tors §£F and 52 for algorithm A2, where the method is returning a too high k,
corresponding to estimates with very large bias. In Gomes et al. ([13] 2008)
it was presented a reduced-bias version of Nandagopalan’s estimator based on
the Generalized Jackknife (GJ) methodology, which is given by

N R IR R
(31) GkGJ - 59[k/2]+1 - 2 (6[k/4}+1 + gk) .

Notice that Nandagopalan’s estimator corresponds to the runs estimator when-
ever we take the run length 2, which in turn requires D”(u,). In our examples,
only models MAR and AR satisfy this condition. We have also applied the es-
timator (3.1) to all models within algorithms A2 and A3. Indeed, except in the
GARCH case, the rmse of (/9\2(” decreases to about the half of the rmse of the
runs estimator, mostly for larger sample sizes (n > 1000) and with algorithm A2.
In the case of algorithm A3, the rmse of 52“ is smaller than the runs estimator
only within the largest sample size (n = 5000) of models MAR and ARUnif.
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Root mean squared errors obtained for simulated samples of size n = 100.
For estimators 67" and 67 we considered blocks of length 3 except in
MCBEV and GARCH models where we used blocks of length 4 and 5,

respectively. For estimators 521 and §§L we considered blocks of length 5.
For estimator é\% (52‘7) we considered runs (cycles) of length 2 in MAR
and AR, of length 3 in MM, ARCauchy and ARUnif, of length 4 in
MCBEV and length 5 in GARCH. See Remark 3.1.

’Al \ MAR AR MM ARCauchy ARUnif MCBEV GARCH
g | 01338 03603 01215 01534 01528  0.1249  0.1782
9. | 02754 02809 02271 03549 02487 03071  0.5170
FF | 01469 05336 0.1488 01831  0.1474  0.1352  0.2018
| 0.1467 04548 01780  0.2869  0.1820  0.1544  0.1626
| 01233 04826 01594 01948  0.1459  0.1380  0.1539
| 02971 05041 02803  0.3296  0.3406 02909  0.5316
B | 02583 0.2327 02474 02907 03419 03052  0.5185
]Az \ MAR AR MM  ARCauchy ARUnif MCBEV GARCH
B | 03183 07928 04133 06283  0.7399 02663  0.4366
2 | 03003 05448 05071  0.3925  0.2500  0.3404  0.5569
9. | 02621 05387 03032 02500 02500 02133  0.5511
O | 04353 09410 04627  0.6400  0.7500  0.4447  0.2910
| 00996 05217 00948 02176  0.1079  0.0734  0.1793
® | 01216 06186 01162 02118 03018  0.0495  0.2108
2 | 02646 04831 02146 02801 03010 02405  0.3230
6% | 03035 04431 02110 03158 04289 02457  0.4511
]As \ MAR AR MM  ARCauchy ARUnif MCBEV GARCH
g | 01199 04192 01746 03026 02923  0.1158  0.3151
9% | 06235 05285 05323 03673 02505  0.6538  0.6584
6. | 02770 02846 02527 02500 02500  0.3095  0.4959
B | 01801 06620 0.2295 04697  0.4486 03133  0.1766
2 | 01663 04521 01890 02587 02051  0.1517  0.1580
2 | 0.0967 05245 0.0775  0.1105  0.1179 00570  0.1439
| 04813 02096 04017 04394 03769 04782  0.5875
B | 04802 04092 04041 04609 04946 05056  0.6435
’A4 \ MAR AR MM ARCauchy ARUnif MCBEV GARCH
| 03001 02423 02748 02888  0.3457  0.3496  0.4886
L | 02482 02445  0.2302 0.2644 0.3279  0.3562  0.4811
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Table 2:  Absolute bias obtained for simulated samples of size n = 100.
For estimators 67" and 6} we considered blocks of length 3
except in MCBEV and GARCH models where we used blocks
of length 4 and 5, respectively. For estimators 677 and 67 we
considered blocks of length 5. For estimator 0% (6F) we con-
sidered runs (cycles) of length 2 in MAR and AR, of length 3
in MM, ARCauchy and ARUnif, of length 4 in MCBEV and
length 5 in GARCH. See Remark 3.1.

] Al \ MAR AR MM  ARCauchy ARUnif MCBEV GARCH
52 0.0152 0.3280 0.0833 0.0618 0.0569 0.0076 0.0303
@i 0.1577 0.2040 0.1234 0.3545 0.2487 0.1875 0.5006
(9),?7 0.0780 0.5172 0.1243 0.1276 0.0003 0.1070 0.1841
/0\;21“ 0.0063 0.4319 0.0709 0.0307 0.0321 0.0439 0.0771
(92 0.0120 0.4657 0.0432 0.0350 0.0756 0.0265 0.1071
éEJ 0.0454 0.3721 0.1328 0.2646 0.2934 0.2091 0.4143
(9\;5@1“ 0.2050 0.1729 0.2186 0.2519 0.2993 0.2797 0.4928

] A2 \ MAR AR MM  ARCauchy ARUnif MCBEV GARCH
4/9\2 0.2971 0.7778 0.4045 0.6283 0.7399 0.2586 0.4366
@,iGJ 0.0057 0.4671 0.3341 0.3714 0.2500 0.0889 0.5222
é\lfc 0.0031 0.4575 0.0879 0.2500 0.2500 0.0017 0.5505
@[;F 0.4294 0.9393 0.4599 0.6400 0.7500 0.4445 0.2861
5;%]“ 0.0371 0.5127 0.0113 0.1278 0.0389 0.0097 0.1673
é}i 0.1135 0.6172 0.1051 0.1628 0.2906 0.0311 0.2047
52‘1 0.0107 0.3768 0.0187 0.0198 0.1110 0.0554 0.1470
é\,scL 0.1030 0.2913 0.0594 0.0748 0.1952 0.1127 0.2979

] A3 \ MAR AR MM  ARCauchy ARUnif MCBEV GARCH
é},‘; 0.0488 0.4056 0.1598 0.2875 0.2800 0.0937 0.3110
@‘k,“ 0.0057 0.4671 0.3341 0.3714 0.2500 0.0889 0.5222
éi 0.1607 0.2045 0.1672 0.2500 0.2500 0.2044 0.4792
OF | 01593  0.6558  0.2182 0.4652 04444 03097  0.1711
1/9\,? 0.0275 0.4163 0.0766 0.0566 0.0702 0.0565 0.0561
/0\,2 0.0547 0.5184 0.0120 0.0179 0.1023 0.0025 0.1280
(9}? 0.3553 0.0206 0.2558 0.3441 0.3146 0.3330 0.4882
éEL 0.2852 0.0424 0.2375 0.2385 0.2952 0.3101 0.4835

] A4 \ MAR AR MM ARCauchy ARUnif MCBEV GARCH
/GEJ 0.2433 0.1865 0.2096 0.2462 0.3059 0.3099 0.4571
4/9\1561“ 0.2110 0.2031 0.1921 0.2238 0.2821 0.3219 0.4544
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Root mean squared errors obtained for simulated samples of size n = 1000.
For estimators 6} and 6} we considered blocks of length 3 except in
MCBEV and GARCH models where we used blocks of length 4 and 5,

respectively. For estimators é\gj and 5,?‘ we considered blocks of length 20.
For estimator é\% (5?) we considered runs (cycles) of length 2 in MAR and
AR, of length 3 in MM, ARCauchy and ARUnif, of length 4 in MCBEV
and length 5 in GARCH. See Remark 3.1.

’Al \ MAR AR MM ARCauchy ARUnif MCBEV GARCH
& | 00666 02877 00645  0.0874 00583  0.0508  0.1059
9. | 00795 03243 00658 02312 02498 00670  0.2217
FF | 00853 04148 00744 01014 00566 00809  0.1295
g | 0.0467 04381  0.0767  0.0882 00944 00836  0.0845
| 00532 04499 00680 00624  0.1022 00675  0.0993
| 02161 04323 02225 01859 03059  0.1351  0.2101
& | 01342 03379 01101 01303 01563  0.1057  0.1877
]Az \ MAR AR MM  ARCauchy ARUnif MCBEV GARCH
B | 01915 07503 04357  0.6388  0.7489 02656  0.4457
2 | 03003 05448 05071  0.3925  0.2500  0.3404  0.5569
9. | 0.1227 05738 00688 03600 02500  0.0565  0.5202
O | 04435 09582 04794  0.6397  0.7500 02768  0.4458
7 | 0.0283 04765 0.0647  0.2051  0.0631 00680  0.0615
| 00926 05931 00803 01206 02387 0.0188  0.1398
| 00932 03744 03845 01216 02352 0.1007  0.2247
6% | 01211 03330 01085 01636 02534  0.1402  0.2763
]As \ MAR AR MM  ARCauchy ARUnif MCBEV GARCH
9 | 00950 04033 01573 03373 03289  0.1097  0.3671
2 | 01910 02089  0.3553 03774 02954 02495  0.4270
B | 00781 03848 00640 03600 04200  0.0573  0.3668
g | 01726 06209 01978 04741 04548  0.1633  0.2951
| 00321 04584  0.0641  0.0948  0.0562  0.0728  0.0657
2 | 00839 05430 0.0385  0.0320  0.0868  0.0208  0.1542
® | 01130 02348 01095 01169  0.1568  0.098  0.1913
B | 00992 02507 00937 01143  0.1497  0.1013  0.1851
’A4 \ MAR AR MM ARCauchy ARUnif MCBEV GARCH
| 01203 02496 01350  0.409  0.1757  0.1336  0.2330

0.1054 0.2313 0.0931 0.1300 0.1753 0.1279 0.2279
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Table 4: Absolute bias obtained for simulated samples of size n = 1000.
For estimators 67" and 6} we considered blocks of length 3
except in MCBEV and GARCH models where we used blocks
of length 4 and 5, respectively. For estimators 677 and 67 we
considered blocks of length 20. For estimator 0% (6FF) we con-
sidered runs (cycles) of length 2 in MAR and AR, of length 3
in MM, ARCauchy and ARUnif, of length 4 in MCBEV and
length 5 in GARCH. See Remark 3.1.

] Al \ MAR AR MM  ARCauchy ARUnif MCBEV GARCH
é},; 0.0301 0.2748 0.0481 0.0607 0.0128 0.0134 0.0608
,0\{@, 0.0007  0.2901 0.0016 0.1815 0.2498 0.0107 0.1523
é\? 0.0604 0.4010 0.0593 0.0780 0.0074 0.0707 0.1184
(/9);?“ 0.0032 0.4350 0.0595 0.0400 0.0625 0.0683 0.0703
52 0.0146 0.4461 0.0420 0.0174 0.0881 0.0494 0.0886
5;2‘1 0.0368 0.3275 0.0347 0.0332 0.0237 0.0260 0.0934
é\% 0.0417 0.2780 0.0459 0.0562 0.1221 0.0800 0.1571

] A2 \ MAR AR MM  ARCauchy ARUnif MCBEV GARCH
52 0.1768 0.7390 0.4300 0.6388 0.7489 0.2584 0.4457
@}im 0.0437 0.3963 0.2290 0.6301 0.2500 0.1622 0.6187
é}c 0.1075 0.5675 0.0368 0.3600 0.2500 0.0334 0.5136
5}? 0.4389 0.9578 0.4783 0.6397 0.7500 0.2700 0.4458
é}?‘ 0.0029 0.4747 0.0533 0.1550 0.0156 0.0629 0.0570
/9),2 0.0894 0.5922 0.0650 0.0608 0.2316 0.0041 0.1370
,92‘] 0.0283 0.3423 0.3701 0.0453 0.1888 0.0847 0.1956
é\,scL 0.0872 0.3160 0.0839 0.1281 0.2122 0.1176 0.2455

] A3 \ MAR AR MM ARCauchy ARUnif MCBEV GARCH
/9\2 0.0853 0.4012 0.1554 0.3363 0.3278 0.1070 0.3667
@im 0.0031 0.2511 0.1745 0.3805 0.2954 0.0456 0.3930
é\,i 0.0231 0.3732  0.0015 0.3373 0.2490 0.0106 0.3145
@;F 0.1703 0.6203 0.1965 0.4735 0.4545 0.1620 0.2945
é\,EL 0.0006 0.4565 0.0550 0.0677 0.0254 0.0660 0.0597
(/9);2 0.0775 0.5422 0.0314 0.0017 0.0855 0.0124 0.1522
5,2‘] 0.0597 0.2013 0.0679 0.0519 0.0959 0.0792 0.1490
(/9\;?“ 0.0647 0.2340 0.0673 0.0700 0.1147 0.0848 0.1533

] Ad \ MAR AR MM ARCauchy ARUnif MCBEV GARCH
(/9\;2'1 0.0658 0.2172 0.0699 0.0860 0.1134 0.1104 0.2088
521“ 0.0668 0.1988  0.0460 0.0833 0.1302 0.1106 0.2057
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Root mean squared errors obtained for simulated samples of size n = 5000.
For estimators 6} and 6} we considered blocks of length 3 except in
MCBEV and GARCH models where we used blocks of length 4 and 5,

respectively. For estimators é\gj and 5,?‘ we considered blocks of length 20.
For estimator é\% (5?) we considered runs (cycles) of length 2 in MAR and
AR, of length 3 in MM, ARCauchy and ARUnif, of length 4 in MCBEV
and length 5 in GARCH. See Remark 3.1.

’Al \ MAR AR MM ARCauchy ARUnif MCBEV GARCH
B | 00434 02504 00395 00518 00314 00409  0.1257
8. | 0.0460 02004 0.0327 00799 02499  0.0387  0.1004
F7 | 00541 04309 00423 00558  0.0303 0.0608  0.1072
| 00231 04234 00554 00585  0.0803 00715  0.0683
| 00200 04272 00572 00457  0.0865  0.0656  0.0823
| 00587 02439 00755 00895 01030  0.0789  0.1415
B | 00592 02317 00557 00796 00954  0.0781  0.1407
]Az \ MAR AR MM  ARCauchy ARUnif MCBEV GARCH
B | 01500 07498 04382  0.6396  0.7498 02648  0.4464
% | 0.0700 03918 02273 04596 02500  0.1532  0.6150
9. | 0.0940 05357 00446 03600 02500  0.0370  0.5351
FF | 04416 09505 04915  0.6398  0.7500 02749  0.4456
7 | 0.0113 04786  0.0606  0.2282  0.0510  0.0688  0.0547
| 00838 05925 00502 00505 01818  0.0189  0.1308
| 00862 03085 00942 01364 02416  0.1171  0.2121
6% | 01056 02843 01056  0.1595 02502  0.1350  0.2456
]As \ MAR AR MM  ARCauchy ARUnif MCBEV GARCH
9 | 00970 02576 0.1530  0.3369  0.3316  0.1063  0.3688
2 | 0.0700 03918 02273 04596 02500  0.1532  0.6150
8. | 00611 04150 0.0300  0.3600 02499  0.0378  0.3648
g% | 0.1663 06147 01941 04709 04544  0.1587  0.2940
2 | 00190 04818 00606  0.082 00253 00728  0.0777
2 | 00787 05461 0.0366  0.0308  0.0858  0.0164  0.1553
® | 00716 02528 00777 0.0992 01202 01035  0.1692
8% | 00842 02695 00908 01062  0.1312  0.1152  0.1769
’A4 \ MAR AR MM ARCauchy ARUnif MCBEV GARCH
| 00664 0.2149 00561 009890  0.1147  0.1259  0.2109

0.0644 0.2155 0.0523 0.0916 0.1066 0.1224 0.2100
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Table 6: Absolute bias obtained for simulated samples of size n = 5000.
For estimators 67" and 6} we considered blocks of length 3
except in MCBEV and GARCH models where we used blocks
of length 4 and 5, respectively. For estimators 677 and 67 we
considered blocks of length 20. For estimator 0% (6FF) we con-
sidered runs (cycles) of length 2 in MAR and AR, of length 3
in MM, ARCauchy and ARUnif, of length 4 in MCBEV and
length 5 in GARCH. See Remark 3.1.

] Al \ MAR AR MM  ARCauchy ARUnif MCBEV GARCH
é},; 0.0180 0.2431 0.0293 0.0273 0.0035 0.0015 0.1093
,0\{@, 0.0065 0.2784  0.0024 0.0522 0.2499 0.0118 0.0482
é\? 0.0360 0.4132 0.0321 0.0343 0.0015 0.0500 0.1023
(/9),?“ 0.0044 0.4223 0.0050 0.0363 0.0660 0.0669 0.0638
52 0.0015 0.4258 0.0462 0.0238 0.0774 0.0586 0.0779
5;2‘1 0.0372 0.2241 0.0383 0.0640 0.0752 0.0613 0.1229
é\% 0.0379 0.2251 0.0469 0.0570 0.0711 0.0648 0.1202

] A2 \ MAR AR MM  ARCauchy ARUnif MCBEV GARCH
52 0.1394 0.7498 0.4374 0.6396 0.7498 0.2612 0.4464
@}im 0.0475 0.3896 0.2176 0.4050 0.2500 0.1428 0.6102
é}c 0.0852 0.5310 0.0280 0.3600 0.2500 0.0267 0.5330
5}? 0.4406 0.9501 0.4908 0.6398 0.7500 0.2688 0.4456
é}?‘ 0.0009 0.4783 0.0580 0.2202 0.0349 0.0680 0.0532
/9),2 0.0814 0.5919 0.0308 0.0040 0.1602 0.0048 0.1284
,92‘] 0.0747 0.3002 0.0856 0.1167 0.2156 0.1073 0.1987
é\,scL 0.0959 0.2793 0.0976 0.1393 0.2163 0.1240 0.2304

] A3 \ MAR AR MM ARCauchy ARUnif MCBEV GARCH
/9\2 0.0947 0.2573 0.1526 0.3367 0.3314 0.1055 0.3687
@im 0.0107 0.2890 0.1773 0.3896 0.2990 0.0859 0.4441
é\,i 0.0546 0.4124 0.0164 0.3600 0.2499 0.0210 0.3389
@;F 0.1657 0.6146 0.1939 0.4708 0.4544 0.1584 0.2939
é\,EL 0.0011 0.4813 0.0580 0.1006 0.0152 0.0701 0.0765
(/9);2 0.0777 0.5460 0.0346 0.0064 0.0856 0.0114 0.1545
5,2‘] 0.0609 0.2470 0.0692 0.0857 0.1075 0.0990 0.1592
(/9\;?“ 0.0758 0.2660 0.0854 0.0988 0.1217 0.1121 0.1688

] Ad \ MAR AR MM ARCauchy ARUnif MCBEV GARCH
(/9\,2'1 0.0562 0.2079 0.0451 0.0835 0.0853 0.1212 0.2049
521“ 0.0570 0.2097 0.0449 0.0812 0.0778 0.1190 0.2065
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4. APPLICATION TO REAL DATA

We consider the daily maximum temperatures (in degrees Celsius) at Uccle
(Belgium), from 1901 to 1999, on the warmest month of July (thus station-
arity is assumed), consisting in n = 3051 observations. The data is available
at “http://lstat.kuleuven.be/Wiley/Data/ecad00045TX.txt” and is plotted in
Figure 2. The extremal index of this series was analyzed in Beirlant et al. ([2]
2004), where the respective estimates, obtained through parametric modeling,
ranged between 0.49 and 0.56.
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daily maximum temperatures
25
!

20
|

15
|
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Figure 2: July daily maximum temperatures (in degrees Celsius) at Uccle,
over the years 1901-1999.

We start by checking if we can validate some condition D*)(u,). To this
end, we use the empirical methodology of Ferreira and Ferreira ([10], 2015) by
calculating the proportion of anti—D(m)(un) events among the exceedances for
several pairs of normalized levels u,, and block sizes ry:

{Xj >Un, Xj+1<Un;e o o, Xj+m—1 Sunyj\/[j+m71,rn+j71>un}

P(tn,Tn) =
o Zz'l:l ]I{Xj>un}

More precisely, for each fixed 7 > 0, we take u,, as the empirical (1 —7/n)-th
quantile for increasing sample sizes n and choose the sequence {b, = [n/r,]|}n
growing at a slower rate than n, e.g., b, = [(logn)?], for some a > 0. If D(™)(u,,)
holds with b, the points (n, p(un,r,)) approach zero as n — oo. Based on the
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suggested declustering parameter r = 4 in Beirlant et al. ([2] 2004), we have ana-
lyzed the proportions of anti-D(*) (u,, ), plotted in Figure 3 (right panel) for 7 = 15
(full line) and 7 = 20 (dashed line), with k,, = [(logn)*?]. Observe that the val-
ues are small and almost indistinguishable from the proportions of anti-D®)(u,,)
(left panel). We have also taken k, = [(logn)3] which led to null proportions in
both cases. Therefore, we assume the validity of the D®) (u,,) local condition and
consider run length 3 for the runs estimator and cycles of length 2 for the FF
estimator in (2.8); see Remark 3.1. We also take block-length 3 in the blocks esti-
mators. The disjoint and slides methods were implemented with block-length 15.
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I I
0.20 0.25 0.30
1 1 1

0.15
I
0.15
1

p(Up, 1)
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0.00
I
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1

500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000

n n

Figure 3: Observed proportions of anti-D®) (u,,) (left) and anti-D™) (u,,)
conditions for Uccle data, for 7 =15 (full line) and 7= 20
(dashed line), with k,, = [(logn)?-%].

The sample paths of the considered estimators in (2.11) and (3.1) are in Figure 4.
Under algorithm A4, we obtained the estimate 0.51 for both disjoint and slide
estimators. We have also applied the bias-reduced GJ Nandagopalan’s runs esti-
mator in (3.1) from which the values 0.41 and 0.57 were derived under A2 and A3,
respectively. The remaining estimates are summarized in Table 7. The results
are mostly in agreement with the simulation study.

Table 7: Extremal index estimates for Uccle data.

R nI DFF DB 7BL DI nSL
O 0% O Ok O O 0%

Al | 049 047 046 050 051 0.53 0.57
A2 | 010 033 0.05 039 050 052 0.53
A3 | 032 030 028 042 050 049 0.53
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Figure 4: Sample paths of estimators in (2.11) and estimator (3.1)
for Uccle data.

5. DISCUSSION

We have analyzed several estimators of the extremal index under different
methodologies. The procedure based in Frahm et al. ([12] 2005) revealed an over-
all satisfactory performance. The best results were mostly observed within the
blocks estimators, 08 and 6, under the methodology of Neves et al. ([23] 2015).
The large biases observed in the AR process makes inference within weak depen-
dence, i.e., 8 = 1, an open topic to explore in this framework. Other methods to
analyze the local dependence D-conditions are also welcome. The bias-reduced
GJ Nandagopalan’s estimator is sensitive to the restricted condition D” and a
generalization of the method to the broader runs estimator may be more advan-
tageous. These points will be addressed in a future work.
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1. INTRODUCTION

Let (X,Y) be a bivariate random vector satisfying the general nonpara-
metric regression model

(1.1) Y =m(X) +o(X)e,

where m(z) = E(Y | X =1) is the regression function, o%(z) = Var(Y | X = x)
is the conditional variance function and ¢ is the regression error, which is assumed
to be independent of X. Note that, by construction, E(¢) = 0 and Var(e) = 1.
The covariate X is continuous with density function fx. The regression func-
tion, the variance function, the error distribution and that of the covariate are
unknown and no parametric models are assumed for them.

Because the knowledge of the error distribution will improve the statistical
analysis of model (1.1), several authors have proposed tests for such distribution,
that is, tests of the null hypothesis

Hy: F e F,

versus the alternative
H12 F ¢ .7:,

where F' stands for the cumulative distribution function (CDF) of € and F is a
parametric family,

F={F(s0), 0 €0}, © C RP.

Examples are the tests in Neumeyer et al. [17] and Heuchenne and Van Keilegom
[6], which are based on comparing the empirical CDF of the residuals to a para-
metric estimator of the CDF under the null hypothesis. Since the equality of the
CFDs can be also interpreted in terms of the associated characteristic functions
(CFs), Huskovéd and Meintanis [11] have proposed a test for Hy that is based on
comparing the empirical CF of the residuals to a parametric estimator of the CF
under the null hypothesis. As commented in Jiménez-Gamero [13], it is interes-
ting to observe that the last paper requires weaker conditions for the validity of
the procedures than the ones based on the CDF. Nevertheless, in all cases the
limit distribution of the proposed test statistics is unknown, even under the null
distribution, because it depends on the unknown value of the parameter 6. To
overcome this difficulty, these papers propose to use a parametric bootstrap (PB)
for approximating the null distribution of the test statistic. Although very easy
to implement, the PB can become very computationally expensive as the sample
size and/or the number of unknown parameters increase.

This paper studies another method for estimating the null distribution of
the test statistic 77,,,(6) in [11]. Specifically, a weighted bootstrap (WB) appro-
ximation in the sense of Burke [2] is considered (see also Zhu [23]). This method
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has been previously suggested in Kojadinovic and Yan [15], to approximate the
null distribution of goodness-of-fit (GOF) tests based on the empirical CDF, and
in Jiménez-Gamero and Kim [14], to approximate the null distribution of GOF
tests based on the empirical CF (ECF), among others. Both papers assume ob-
servable independent and identically distributed (IID) data. They show that the
properties of the WB are quite similar to those of the PB (it provides a con-
sistent estimator of the null distribution and the resulting test is able to detect
any alternative) but, from a computational point of view, it is more efficient.
In view of the good properties of the WB in these and other papers, it is also
expected to work satisfactorily for estimating the null distribution of the test
statistic considered in this paper. The purpose of the current study is to investi-
gate, both theoretically and empirically, the use of the WB for approximating the
null distribution of Tn,w(é). A main difference between the setting in this paper
and the one in [14, 15] is that in our case the errors are not observable. So we
replace the errors by the residuals, but the residuals are not independent.

The paper is organized as follows. Section 2 describes the test statistic and
explains some problems with the WB approximation. Section 3 gives a solution
to the problems described in the previous section and proves the consistency
of the proposed WB approximation. It also shows that the resulting test is
consistent, in the sense of being able to detect any alternative. The application
of the proposed WB approximation requires the estimation of certain functions
appearing in the linear expansion of the parameter estimators. The estimation
of such functions is dealt with in Section 4. Section 5 reports the results of
some simulation experiments designed to study the finite sample performance of
the proposed approximation and to compare it to the PB. From this numerical
study it is concluded that both approximations behave quite closely but, from a
computational point of view, the WB outperforms the PB. Section 6 concludes
and outlines possible extensions of the results presented in this paper. All proofs
and technical details are deferred to the last section.

The following notation will be used along the paper: all vectors are col-
umn vectors; for any vector a, aj denotes its k-th coordinate and ||a| its Eu-
clidean norm; the superscript 7 denotes transpose; Ey and Py denote expec-
tation and probability, respectively, assuming that the data has CDF F(-;0);
P, denotes the conditional probability law, given the data; all limits in this
paper are taken when n — oo; £ denotes convergence in distribution; L de-
notes convergence in probability; “> denotes the almost sure convergence; for
any complex number z = a + ib, |z| is its modulus; an unspecified integral de-
notes integration over the whole real line R; for a given non-negative real-valued
function w we denote || - ||,y to the norm and (-,-),, to the scalar product in the
Hilbert space L*(w) ={g: R — C, [|g(t)[*w(t)dt < oo}; if F is a CDF, then
LYX(F)={g:R —C, [|g(t)]?dF(t) < oo}; for any real function f(t;6) differen-
tiable at t € R and at 6 = (61,602, ...,0,)T € RP the following notations will be
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used: 9 P
f(t;:0) = /0 S (t:0) = 20,

T
VI(t:0) = (f)(t:0), Sy (:6), s fi)(5:6))

(t;0), 1<r<p,

2. THE TEST STATISTIC

Let (X1,Y7),..., (Xp,Yy) be IID from model (1.1), that is, Y; = m(X;) +
o(Xj)ej, 1 < j < n. Since the hypothesis Hy is on the common error distribution,
€1,...,En, and the errors are not observable, the inference must be based on the
residuals, Y — ()

. G — m(X; .
gj = W; 1<j<n,
where m(-) and (-) are estimators of m(-) and o(-), respectively. Several choices
are possible for m(-) and &(-). Here, as in [11], we use the following kernel
estimators for the density function fx of X, the regression function m(-) and the

variance function o?(-),

1 n

= = K, (Xj -
n 4
J=1

() = —— S Ky, (X; - 1),

nfx(x) j=1

5*(x) = ZKhn 2) {Y; —i(2)}?,

an

where K, (+) = ﬁK(E)’ K(-) is a kernel and h,, is the bandwidth, satisfying
certain conditions that will be specified later.

Huskova and Meintanis [11] proposed the following test for testing Hy,

o { 1, if Thw(d) > thwa,

0, otherwise,

where ¢, o is the 1 — o percentile of the null distribution of me(é),

(2.1) Tnw(f) = n/ len(t) = e(t, 0)Pw(t)dt = nllea(t) — c(t,0)]3,

cn(t) is the ECF of the residuals,

Zexp 1t€j Zcos taj +i— Zsm tsj ,
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¢(t; ) is the CF associated to F(g;0), that is, ¢(t;0) = Ep{exp(ite)} = R(t;0) +
1(t;0), w(t) is a nonnegative function such that [ w(t)dt < oo, which may depend
on @, and 0 is a consistent estimator of § satisfying the following assumption.

. 1 &
(A.1) Under Hy, vn( — 0y) = % Zw(aj;é?o) + 0p(1), where 6y is the
j=1

true parameter value, Eg,{t¢(gj;00)} =0 and Eg,{||¢(g5; 60)||* } < oc.

Assumption (A.1) implies that, when the null hypothesis is true and 6y
denotes the true parameter value, \/ﬁ(é — 6y) is asymptotically normally dis-
tributed. This assumption is satisfied by commonly used estimators such as ma-
ximum likelihood estimators and method of moment estimators when ¢4, ...,&,
are observable and, in such a case, the expression of the function ¢ is well-known
(see, for example, [1, Ch. 5]). In our setting, the errors are not observable and
the expression of the function ¢ differs from the observable case. This topic will
be discussed in detail in Section 4.

Theorem 1 in [11] states that if § satisfies (A.1), Hy is true and  is the true
parameter value, under certain additional conditions (assumptions (A.2)-(A.7) in
Section 7),

N L
(2.2) T (0) == 11 Z(t; 0012,

where {Z(t;0p), t € R} is a centered Gaussian process on La(w) with covariance
structure of the form Covy,{Z1(g;t,00,v), Z1(e; s,60,%)},

(2.3) Z1(e;t,0,v) = cos(te) +sin(te) — R(t;0) — I(t;0) — te{R(t;0) — I(t;0)}

‘ SR (80) + T'(1:0)) — 7 (e:0){VR(t:0) + VI(t;0)}.
Clearly, the asymptotic null distribution of Tn,w(é) is unknown. It depends on
the hypothetical the error distribution, on the chosen estimator and the true
unknown value of the parameter.

In order to try to approximate the null distribution of me(é) we first
observe that it resembles a degree-2 V-statistic, because

with p(e, z;0) = u(e—2) —ug(e; 0) —uo(z; 0) +uoo(0), uo(e; 0) = [u(e—2)dF(z;0),
ugo(0) = [u(e — z)dF(g;0)dF (z;0), and u(t) = [ cos(te)w(e)de.

Dehling and Mikosch [4] (see also Huskova and Janssen [10]) showed that if
€1,y ...,&n are IID, &1, ..., &, are IID with E(£) = 0 and Var(£;) = 1, independent
of €1,...,ep and V,, = # Zlgj,k;gn g(gj,€x) is a degenerate degree-2 V-statistic,
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then the conditional distribution, given €1, ..., &,, of

L > glejen)ésn

1<jk<n

3

consistently estimates that of nV,,. In the light of this result, since £; and 6
are approximations to ¢; and 6, respectively, one may be tempted to estimate

the null distribution of T;,,,(f) by means of the conditional distribution, given
(Xl, Yl), ceey (Xru Yn), of

1 -
(2.4) W= > p(E ks 0k

1<j,k<n

We will see that this approach is wrong. The next result gives the limit distribu-
tion of W*. The required assumptions are listed in Section 7.

Theorem 2.1. Suppose that ||§ — 0, = 0,(1), for some 0; € ©, that as-
sumptions (A.2)-(A.6) hold, that the first partial derivatives R, (t;0), I((t;0),
1 <r < p, exist and are continuous functions V6 € U(6;) C ©, an open neighbor-
hood of 61, and they are bounded by functions in Ly(w), V6 € U(6;), then

sup| P AW* < a} — P{Wy < 2} =5 0,

where Wy = || Zo(t;01) %, {Zo(t;61), t € R} is a centered Gaussian process on
Lo(w) with covariance structure of the form Cov{Zy(e;t,01), Zo(g;s,01)},
Zo(g;t,0) = cos(te) +sin(te) — R(t;0) — I(t;0).

From the result in Theorem 2.1 and (2.2), it is clear that the conditional
distribution of W* does not provide a consistent estimator of the null distribution
of T}, () because replacing m(-), o(-) and 6 by 7(-), 6(-) and 6, respectively,
has an impact on the asymptotic null distribution of the test statistic that is not
captured by the conditional distribution of W*. The next Section shows how to
deal with this problem.

Before ending this section we do some comments on the behaviour of 6
under the alternative. Theorem 2.1 assumes that 6 has a limit (in probability),
f1. In practice, to estimate 6 one proceeds as if Hy were true. For example, 6 is
usually estimated by its quasi maximum likelihood estimator, which maximizes
the likelihood under the null hypothesis (with the errors replaced by the resi-
duals). If Hy is true, under certain assumptions, the resulting estimator converges
to the true parameter value (see Section 4); if Hy is not true, then proceeding as
in White [22] for observable data, it can shown that, under certain conditions,
the estimator also converges to a well-defined limit. Similar comments could be
done for other estimators.
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3. CONSISTENCY OF THE WB APPROXIMATION

If assumptions (A.1)—(A.7) hold and Hj is true, from the proof of Theorem 1
n [11], it follows that

(3.1) Tnw(0) = Ty w(80) + 0p(1),

where

1 n
Tl,n,w(e) = ||% Z Zl (8]7 t) 95 w)chua
7j=1

with Z(g;t,0,1) as defined in (2.3). Now, from (3.1) and applying the results in
[4], we get that the conditional distribution, given (X1,Y7), ..., (Xy, Yy), of

* 1 .
Tino(00) =1l 7= > Z1(ejst, 0. 012
j=1

provides a consistent estimator of the distribution of me(é), when Hj is true.
From a practical point of view, this result is useless because Zi(ej;t, 6o, 1) de-
pends on the non-observable error €;, on the unknown value of 6y and on the
function 1 (ej;6p), whose explicit expression is usually unknown. Suppose that
16 — 61]| = 0,(1), for some 6; € O, ; being the true parameter value if Hy is
true. To overcome these difficulties we replace €; by £, p by 6 and Y(ej;00) by
Yn(é5; é), where ¥, (+; é) is a function of the data which approximates ¢ in such
a way that

P

1 & o
EZ [¥n(&5:0) — (55 01) 1> — 0,
j=1

with E{||v1(g;601)]1?} < oo and 1(g;601) = (g;01) if Hy is true.

(3.2)

The choice of 1, will depend on 1, that is, on the estimator of # considered.
Section 4 studies some proposals for 1, satisfying (3.2) for two common choices
for #: the maximum likelihood estimator and the method of moments estimator,

both based on the residuals. So, the null distribution of 75, ,,(#) is now estimated
by means of the conditional distribution, given (X1, Y1), ..., (Xp,Y,), of

* A 1 - A A
GRS SEACHAXA
j=1

The next theorem gives the limit of the conditional distribution of Té"’n’w(é), given
(X1,Y1), ..( X0, V).

Theorem 3.1. Suppose that ||0 — 6] = op(1), for some 0, € ©, 6 being
the true parameter value if Hy is true, and that assumptions (A.1)-(A.7) and
(3.2) hold, then

sup
X

P, {T;,W(é) < ac} —P{n <z} Lo,



Computationally Efficient Goodness-of-Fit Tests... 145

where Ty = || Zo(t;61) |2, {Z2(t;01), t € R} is a centered Gaussian process on
Lo(w) with covariance structure of the form Cov{Z(g;t,01,¢1), Z1(e;s,01,91)}.

The result in Theorem 3.1 is valid whether the null hypothesis Hy is true
or not. An immediate consequence of this fact and (2.2) is the following.

Corollary 3.1. If Hy is true and the assumptions in Theorem 3.1 hold,
then

sup | P, {T;n,w(é) < x} o {T,W(é) < x}‘ Lo

Let aw € (0,1) and

x* =

- { 1, if Tn,u(é) 2 tgn,w,a’

0, otherwise,

where 3, , , is the 1 — a percentile of the conditional distribution of T;vn’w(é),

or equivalently, ¥, =1 if p* < «, where p* = P, {T;nw(é) > Tn,w(é)obs} and

T.w(0)ops is the observed value of the test statistic. The result in Corollary
3.1 states that WU, is asymptotically correct, in the sense that its type I error is
asymptotically equal to the nominal value a.

Corollary 3.2. Suppose that Hy is not true and let ¢(t) denote the true
CF of the errors. If the assumptions in Theorem 3.1 hold and w is such that

(3.3) k= |e(t) — c(t;01)]|2 > 0,

then P(V, =1) — 1.

Corollary 3.2 shows that, if w is such that (3.3) holds, then the test W, is
consistent in the sense of being able to asymptotically detect any (fixed) alterna-
tive. Since two distinct characteristic functions can be equal in a finite interval
(Feller [5, p.506]), a general way to ensure (3.3) is to take w positive for almost
all (with respect to the Lebesgue measure) points in R.

Remark 3.1. If model (1.1) is homoscedastic, that is, if o(x) = o, Vz,
for some unknown o > 0, we can use the residuals £; = Y; —m(X;), 1 <j <n,
and consider o as a parameter of the family F. In this framework, the result in
Theorem 3.1 (with weaker assumptions) keeps on being true with the following
simpler expression for Z(e;t,0,),

Zi(g;t,0,v) = cos(te) — R(t;0) + sin(te) — I(t;0) — teR(t;0) + tel(t; 0)
~T (€ 0){VR(t:0) + VI(t:6)}.
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Remark 3.2. If the null hypothesis is simple, then the result in Theorem
3.1 (with weaker assumptions) is also true with the following simpler expression
fOI' Zl (87 tv 07 1/}) = Zl (€7 t)7

Zi(g;t) = cos(te) — R(t) + sin(te) — I(t) — teR(t) + tel(t)

e2 -1
{R'(t) + I'(1)},

-t
2

where R(t) and I(t) denote the real and the imaginary parts of the CF of the law
in the null hypothesis.

Remark 3.3. If model (1.1) is homoscedastic and the null hypothesis
is simple, which implies that o(x) = o, Vz, for some known o > 0, as observed
in Remark 3.1, we can use the residuals ¢ =Y; —m(Xj;), 1 <j <n. In this
setting, the result in Theorem 3.1 (with weaker assumptions) is also true with
the following simpler expression for Z;(g;t,0,v) = Z1(e;t),

Z1(g;t) = cos(te) — R(t) + sin(te) — I(t) — te R(t) + tel(t),

where R(t) and I(t) denote the real and the imaginary parts of the CF of the law
in the null hypothesis.

Remark 3.4. When the null hypothesis is simple, the asymptotic null
distribution of the test statistic me(é) does not depend on unknown parameters.
So, in this case the asymptotic null distribution could be used to approximate
the null distribution. The simulations carried out (reported in Section 5) reveal

that, for small to moderate sample sizes, the WB provides a better fit.

Remark 3.5. Theorem 3 in [11] shows that the PB null distribution
estimator of Tn,w(é) satisfies a result which is similar to that stated in Corollary
3.1 for the WB estimator. Nevertheless, although the tests ¥, and the one
obtained by approximating ¢, . through its PB estimator, are both of them
consistent against all fixed alternatives, their powers will be different for finite

sample sizes.

So far we have assumed that the weight function does not depend on 8, but
in some cases it does. Such dependence is motivated by the recommendations
in Epps and Pulley [8], who suggest to choose w(t) giving high weight where
the ECF is a relatively precise estimator of the population CF. It entails taking
w(t) = v{|e(t; )|}, for some v, a nonnegative increasing function. For example, if
[ |e(t; 0)]2dt < oo, one could choose w(t) = |e(t;0)|?/ [ |e(x; 6)|2dz, which is the
choice for w in Epps and Pulley [8] (see also Epps [7]). In addition, as observed
in Jiménez-Gamero et al. [12], such choice for w(t) may have some computational
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advantages when the density (under the null hypothesis) of ey — €3, €1 — €2 + €3
and £; — 2 + 3 — &4 is known since from expression (14) in [12], the test statistic
(2.1) can be expressed as

n Z fz—:l 52 Ekv A)

f€1 62(06 g k=1 n

- 22f81—€2+€3(éj3é) + nf€1—62+53—54(0§9) s
j=1

where fy(z;0) is the density function of U.

If the weight function w depends on 6, w(t) = w(t; ), then the test statistic
(2.1) becomes

To(0) = n/ [en(t) — et 0) Pw(t; 6)dt = nlea(t) — c(t: 0)]3,

where the subindex @ means that the weight function depends on é, that is,
w(t) = w(t;0). To deal with this case we will assume that the weight function is
smooth as a function of 6, as expressed in the next assumption.

(A.8) |w(t;01) —w(t;0)] < wo(t;01)]|0 — 01|, VO in an open neighborhood
of 01, with wy(¢; 01) satisfying [ wo(t;61)dt < co.

If assumption (A.8) holds, assumptions (A.2), (A.7) hold with w(t) = wo(¢; 0)
and Hj is true, then

A~

( ) =Ty, (0) + 0p(1),
with 71, (0) = n [ |en(t) — c(t, 0)Pw(t; 91)dt.
Let T3,,,,(0) = Hﬁ Z}Ll Zy(¢55t,0,9n)&5]12 and
L if Too(0) > 15,0 0
1x —
0, otherwise,

where 43, , , is the 1 — a percentile of the conditional distribution of T;nw(é)
Now, proceeding as in the case where w does not depend on the parameter 0, we
state the following result.

Theorem 3.2. Suppose that |0 — 6, = op(1), for some 0; € ©, 0; being
the true parameter value if Hy is true, that assumptions (A.1)—(A.8) and (3.2)
hold, where both (A.2) and (A.7) hold with w(t) = wy(t;61) and w(t) = w(t; 61).

(a) If Hy is true, then

, {T§7n7w(é) < 3:} o {Tn,@(é) < x}‘ Lo

(b) If Hy is not true and (3.3) holds with w(t) =w(t;61), then
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The observation in Remark 3.1 also applies in this case.

Remark 3.6. The results stated up to now keep on being true if instead of
using the raw multipliers, &1, ..., &,, we use the centered multipliers, &,—¢, ..., &—&,
as suggested in [2, 15], where £ = % Z?:l &

Remark 3.7. In practice, to calculate the WB approximation to the null

distribution of Ty, ,(8) (analogously for Th»(0)) we proceed as follows:

1. Calculate the residuals €1, ..., &, (or €y, ..., &y, if the model is homoscedas-
tic).
Calculate 6 and the observed value of the test statistic an(é)obs.

3. Calculate mjp = (Z1(£5;t,0,¢n), Z1(Ek;t,0,90))w, 1 <j <k <n, and
take Ml = Myj.

4. For some large integer B, repeat the following steps for every b €
{1,...,B}:

(a) Generate n IID variables &, ..., &, with mean 0 and variance 1.

(b) Caleulate 3%, ,,(0) = 5 3, 1, &€kmn (or T55, () =7 32,16~ )

- (& — £)mj, as noted in Remark 3.6).
5. Approximate the p-value by p = & Zle I{T;f;“w(é) > T (0) obs }-

4. PARAMETER ESTIMATORS

The maximum likelihood estimator (MLE) satisfies Assumption (A.1) for
observable random variables. In our case, the errors are not observable. It seems
reasonable to replace the errors by the residuals in the likelihood and then maxi-
mize in 6 the resulting function. Specifically, assume that the CDF F(z;0) has
a Radon—Nikodym derivative f(x;6) with respect to some o-finite measure over
(R, B), where B is the class of Borel sets of R. To estimate 6 we treat the residuals

as it they were the true errors and consider
n

01, = arg max log f(£;;0).

ML g e Z_; g f(€5:0)

Theorem 3.1 in Heuchenne and Van Keilegom [6] shows that (under certain con-
ditions) 0/, satisfies (A.1) with ¥ (e; ) = ¢hprr(e;60) given by

e2 -1
2

(4.1) Yumr(e;b) = p(e;0) +epi(0) + p2(0),
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where py(0) = Eo{p'(:6)}, p2(6) = Eolep/(£:6)}, ple: 6) = —A(6) 'V log f(<; ),
A(6) = (Ars(0)) and

Ars(0) = Eq < 0

50 10gf(€;9)810gf(6;9)), 1<s,7<p.

06,
In view of (4.1), a natural choice for ¢, (&; ) is ¥ (e;0) = ¥y mr(e; 0) with

e2—1
2

VYnmL(50) = pn(e;0) +ep1(0) + p2(9),

where
pn(é‘;a) = —An(0)71V10gf(5;9)7

N
101(9) - Ezpn(g_%g%
7=1

. I~ .
pa0) = — > Ein(E530),
j=1

Phle:0) = —An(0) TV log [(=:0),

1<~ 0 . 5, .
An,rs('g) = ﬁZaTIng(Ej;e)aielogf(Sj;e)’ 1§57T§p'

The next theorem shows that o, ar(e;0) satisfies (3.2). Let Ap(6) =
(Apyrs(0)), with Ap,s(0)=E (a% log f(&; 6) a%logf(eﬂ)), 1<s,7<p, prr(0)
= E{pp(c;0)}, p2,r(0) = E{epp(e;0)} and pr(e;0) = —Ap(0)~'Vlog f(e:0).

Theorem 4.1. Suppose that || — 61| = 0,(1), for some 6; € ©, 6 being
the true parameter value if Hy is true, and that assumptions (A.3)-(A.6), (A.9)
hold, then ¥y, a1, (e; 0) satisfies

1 < o
=3 e (53 8) = i (55 00 = 0,
j=1
with 11(g;0) = pr(e; 0) +ep1,r(0) + ‘EQT_lpg,F(O).

Clearly, 1 (e;;60) in Theorem 4.1 satisfies 11 (e;5;01) = ¥arr(e;61) when Hy
is true.

Remark 4.1. If model (1.1) is homoscedastic then the expressions for
Yarr(e;0) and Y, arr (e 6) simplify to Yarr (5 0) = p(e; 0) +ep1(0) and ¢y, arr(€;0)
= pn(g;0) + €p1(0), respectively.
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Another estimator that is commonly used is the method of moment esti-
mator (MME). Although these estimators are not usually optimal, they are fre-
quently used because their calculation is less time consuming than that of MLEs.
MMEs satisfy Assumption (A.1) for observable random variables. As noticed
before, in our setting the errors are not observable. Next, we study if (A.1) still
holds when the errors are replaced by the residuals. Assume that, under the null
hypothesis, 6y = g(uo), for some known function g = (g1, ..., gp)7, g : RF"! - R,
1<7<p, o= (02, por)l and pos = Fa,(c*), Vs. The first moment has
not been included because, by construction, it is known and equal to 0. In
heteroscedastic models the second order moment is also known (thus in this case
po = (po,3, -, [L07k)T), but it is not in homoscedastic models (thus in this case pg =
(10,2 - fto.) 7). Nevertheless, we will work with p9 = (10,2, .-, o k), by implic-
itly understanding that in heteroscedastic models g(10,2; ---, tt0.k) = 910,35 -+, L0 k) -
Let Onrar = g(f1), with fi= (g, .., )T, fre = 237 &3, Vs. The next theo-
rem states that, under certain conditions, assumption (A.1) holds for Oy/p7. Let

T
Vgr(x) = (%gr(m), . %QT(CE)) , 1 <r <p, and let Vg(x) be the p x (k —1)-

matrix with rows Vg (z)7, ..., Vg,(2)T, for any = = (2, ..., 7;)T € RF1.

Theorem 4.2. Suppose that assumptions (A.3)—(A.6) hold, that g is con-
tinuously differentiable at i, that po 2, < oo and that Hy is true, then

\/ﬁ(éMM — 90) = \/177 ZwMM(gj;MO) + Op(l)ﬂ
j=1

2_
where Yarar (€5 10) =V g(po)v, v=(Va, ..., v5) T, vs =€ — f1g,s — H0,s—1€ — H0,s 5,

2<s<k.

In the light of the result in Theorem 4.2, to approximate ¥sar(g; 1) we
could replace the population moments by their empirical counterparts based on
the residuals. The next theorem shows that this approximation for s/ (e;0)
satisfies (3.2). Let ups = E(e®) and up = (2, ooy pirg) L -

Theorem 4.3. Suppose that assumptions (A.3)-(A.6), (A.10) hold and
that p1p 9 < 0o, then

1 — o P
- > larne (E5; 1) — arne (g5 pr)lI> = 0.
=1

Clearly, Yarn(ej; r) = Y (e55 po) when Hy is true.

Remark 4.2. If model (1.1) is homoscedastic then the expressions for

Yara(€; ) simplifies to Yarar(e; o) = Vg(po)v, v = (va, ..., vp) ", vs = % — po s —
po,s—1€, 2 < s < k.
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5. FINITE SAMPLE PERFORMANCE

With the aim of studying the finite sample performance of the proposed
procedure, two simulation experiments were carried out: first, a homoscedastic
regression model was considered, and then a heteroscedastic regression model.
The main goal of these experiments is to compare the approximations provided
by the asymptotic null distribution (when the null hypothesis is simple), the
PB (as described in [11]) and the WB proposed in this paper, in three senses:
closeness of the approximation under the null, the power for fixed alternatives of
the resulting test and the consumed time (for the PB and the WB). This section
reports and summarizes the numerical results obtained. All computations were
performed using programs written in the R language [20].

In both models the hypotheses Hy : € ~ N(0,6), that corresponds to test-
ing that the error distribution is normal with CF exp(—0.50t?), and Hp : € ~
L£(0,0), that corresponds to testing that the error distribution is Laplace with
CF ﬁ, were studied. As in Huskovd and Meintanis [11], and following the
recommendations in Epps and Pulley [8], the weight functions considered were:
w(t; 0) = exp(—A0t?), when testing normality, and w(t; 0) = (1 + 0t2)* exp(—At?),
when testing for the Laplace distribution. For the homoscedastic model two cases
were considered: 6 known and € unknown. In this second case, the parameter

was estimated by a MME. Specifically, 6 = % 2?21 éjz», for testing normality, and
6 = % Z?:l éjz, for the Laplace distribution. To estimate the regression function

and the conditional variance, the Epanechnikov kernel K (u) = 0.75 x (1 — u?)
was employed.

As for the choice of the bandwidth, in a recent review about GOF problems
in nonparametric regression, Gonzélez-Manteiga and Crujeiras [9] say that the
bandwidth selection for tests based on smoothing is a “really tough problem”
and “it is far from being solved” (see also the discussions of Sperlich [21] and
de Una-Alvarez [3] to the mentioned article). Because of this reason, to choose
h, we proceeded as in the simulation study in Pardo-Fernandez et al. [18]: we
took h = ¢ x n®, where ¢ and a are real constants and n is the sample size; to
determine ¢, a and A\ some preliminary simulations were performed with the
purpose of finding values giving type I error close to the nominal. For all tried
combinations of ¢ € (1, 1.8), a € (—0.50, —0.25) and X € (0.03, 0.54) good results
were obtained for the WB. Here we only report the results for ¢ = 1.2, a = —0.375
and A = 0.04.

The error distribution were generated from: the normal distribution (de-
noted as N in the tables), the Laplace distribution (denoted as LP), the logistic
distribution (denoted as LG), the Gumbel distribution (denoted as G), the beta
distribution with parameters a =1 and b = 0.5 (denoted as [3), the chi-squared



152 G.I. Rivas-Martinez and M.D. Jiménez-Gamero

distribution with 3 degrees of freedom (denoted as x3) and the Student ¢ distribu-
tion with 5 degrees of freedom (denoted as ¢5). All aforementioned distributions
were conveniently centered and scaled to have mean 0 and variance 1.

To approximate the p-value, 1000 replications were generated for both the
PB and the WB. For the WB, the raw multipliers and the centered multipliers
were considered, denoted by WB1 and WB2 in the tables, respectively. The
multipliers were generated from a univariate standard normal distribution. As
for the asymptotic distribution (when the null hypothesis is simple, denoted as
A in the tables), it is rather difficult to calculate because it coincides with that
of 2321 /\jxij, where X%71,X%72, ... are independent chi-squared variables with
one degree of freedom, the set {);, j > 1} are the non-null eigenvalues of the
integral equation [ C(t,s)G;(t)dt = \jG;(s), with corresponding eigenfunctions
{G;(-), j > 1}, C(t,s) is the covariance kernel of Z;(e;t) (see Remarks 3.2 and
3.3 for the expression of Zj(e;t)), and determining the eigenvalues of an integral
equation is tricky. Because of this reason, we approximated it by generating
10,000 samples of size 1000 obeying Hy and calculated the test statistic at each
sample, obtaining 10,000 values. The empirical CDF of these 10,000 values was
taken as an approximation to the asymptotic null distribution.

1000 samples with size n = 25 were generated from each distribution and
the fractions of p-values less than or equal to 0.05 and 0.1 were calculated. The
experiment was repeated for n = 50, 100.

5.1. Homoscedastic model

The reported results correspond to the model
Vi=X;+X+e;, 1<j<n,

where X follows the uniform (0, 1) distribution. We first considered that 6 is
known. Since the model is homoscedastic and the null hypothesis is simple, the
simplifications in Remark 3.3 can be applied. Table 1 displays the results obtained
for the type I error and the power for testing normality and Table 2 for testing
GOF to the Laplace distribution. Looking at these tables it can be concluded
that, in terms of type I error, both the PB and the WB behave very close to the
nominal levels, while the asymptotic approximation is a bit conservative, specially
for testing GOF for the Laplace distribution. As for the power, the test based on
the WB approximation seems to be a bit more powerful than one based on the PB.
In most cases (all but alternatives 8 and x3 in Table 2) the WB approximation
is also more powerful than one based on the asymptotic approximation.

Tables 3 and 4 show the results when 6 is assumed to be unknown. In this
case, the simplifications in Remark 3.1 can be applied. Looking at these tables it
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can be concluded that, in terms of the type I error, as before, both the PB and
the WB behave very close to the nominal levels. As for the power, for n = 25,50
in some cases the WB is more powerful than the PB, but in others cases the

opposite is observed; for n = 100 the test based on the WB approximation seems

to be a bit more powerful than one based on the PB.

Table 1:

(Homoscedastic model, simple null hypothesis) Percentage of rejections
for the normality null hypothesis at the significance levels 5% (upper entry)
and 10% (lower entry).

n =25

n = 50

n =

100

PB

WB1

WB2

PB

WB1

WB2

PB

WB1

WB2

3.60
8.20

6.10
11.50

4.10
10.20

6.40
12.30

4.00
9.00

5.00
10.04

4.12
9.24

4.84
10.48

5.20
10.20

4.74
9.64

4.12
9.34

4.74
10.40

LP

25.50
35.90

36.10
48.70

57.80
70.60

64.80
74.70

45.40
57.40

56.30
68.50

86.60
90.40

88.30
91.00

76.60
83.60

77.70
83.20

98.90
99.60

99.00
99.70

LG

10.30
18.10

57.60
70.40

56.40
72.00

63.10
76.00

12.70
20.60

88.10
93.20

87.30
94.30

89.30
95.10

17.80
27.80

99.90
99.90

100.00
100.00

100.00
100.00

18.40
30.60

33.50
46.30

45.80
62.80

52.00
67.70

36.70
49.80

61.80
74.40

87.30
94.30

89.30
95.10

71.70
81.80

90.70
96.70

100.00
100.00

100.00
100.00

54.10
65.20

37.50
49.40

76.20
87.60

83.10
89.60

87.50
92.70

61.20
69.90

98.40
99.60

99.00
98.80

99.70
99.90

85.30
90.70

100.00
100.00

100.00
100.00

48.60
61.30

44.20
57.30

76.50
87.80

82.50
89.60

84.60
92.70

73.40
83.10

98.40
99.10

98.60
99.30

99.90
99.90

94.50
97.00

100.00
100.00

100.00
100.00

15.50
25.00

44.50
59.50

49.10
63.00

55.00
67.90

24.50
35.40

74.00
84.70

87.30
93.70

89.20
94.90

39.30
51.10

97.50
99.50

99.90
100.00

99.90
100.00

Table 2:

(Homoscedastic model, simple null hypothesis) Percentage of rejections
for the Laplace null hypothesis at the significance levels 5% (upper entry)
and 10% (lower entry).

n =25

n = 50

n =100

PB

WB1

WB2

PB

WB1

WB2

PB

WB1

WB2

3.70
8.40

22.60
30.90

17.20
25.00

19.10
27.20

4.20
9.10

42.60
51.80

38.10
48.10

39.30
50.20

8.30
14.60

69.70
77.60

68.60
78.10

69.20
78.20

LP

2.70
7.30

4.70
9.40

3.60
7.70

4.20
8.90

3.80
8.20

4.80
10.60

3.80
8.00

3.80
9.20

3.90
8.90

5.50
9.20

4.40
9.00

4.50
9.10

LG

4.20
7.50

25.60
35.00

18.90
28.50

20.60
31.20

4.70
9.30

40.60
48.80

36.90
46.60

37.50
47.50

5.90
11.90

69.90
78.30

70.00
78.30

70.70
79.00

6.00
10.90

23.30
31.70

17.70
25.90

18.80
28.20

11.60
20.70

41.60
50.60

36.60
47.50

38.20
48.60

27.10
40.40

67.10
77.10

68.20
77.10

68.90
77.80

35.50
48.80

12.80
19.20

13.40
21.80

15.30
24.30

78.60
86.20

19.30
27.70

30.90
43.20

32.60
44.50

99.30
99.60

36.20
46.60

66.00
74.00

66.60
75.60

17.50
27.20

20.00
27.60

16.00
24.00

17.80
25.70

44.40
59.10

34.00
44.00

32.60
43.70

33.80
44.60

92.30
96.90

61.50
72.00

65.60
76.20

66.50
76.70

3.20
8.00

21.50
31.10

16.20
24.60

18.10
27.10

5.40
10.00

39.30
49.60

35.00
45.90

36.70
48.00

8.70
14.10

71.60
79.80

70.80
80.10

71.40
80.70
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Table 3: (Homoscedastic model, composite null hypothesis) Percentage of rejections
for the normality null hypothesis at significance levels 5% (upper entry)
and 10% (lower entry).

n =25 n = 50 n = 100

PB WB1 WB2| PB WB1 WB2| PB WB1 WB2
6.50 560 7.30| 5.20 4.80 5.60| 540 5.10 5.20
10.70 10.90 14.50 | 10.00 9.90 11.10| 9.20 9.20 9.60
29.90 15.30 21.50 | 33.60 40.40 43.50 | 38.30 80.50 81.60
40.50 26.20 30.60 | 44.10 56.30 58.70 | 54.70 90.40 91.00
30.30 44.10 50.50 | 47.80 86.60 89.00 | 94.90 99.90 99.90
40.30 60.60 65.80 | 63.90 93.80 94.60 | 98.50 99.99 99.99
29.10 18.50 21.50 | 35.70 42.50 43.50 | 51.80 80.50 83.60
43.50 29.20 30.60 | 51.30 58.30 59.70 | 66.10 90.40 95.90
3 18.00 16.40 20.40 | 23.30 39.40 42.70|67.30 80.80 82.10
25.40 27.10 30.50 | 32.80 55.30 56.60 | 72.10 89.70 91.60

5 | 37.30 51.40 53.80|58.90 77.30 80.70|83.10 89.90 91.30
X3 14850 63.20 64.20 | 67.80 85.40 87.20 | 91.50 97.70 98.80
40.40 14.50 21.50 | 52.90 38.90 42.40| 76.80 82.30 83.10
58.70 28.70 31.40 | 69.20 53.70 56.00 | 88.20 89.50 90.30

LP

LG

Table 4: (Homoscedastic model, composite null hypothesis) Percentage of rejections
for the Laplace null hypothesis at significance levels 5% (upper entry)
and 10% (lower entry).

n =25 n = 50 n = 100
PB WB1 WB2| PB WB1 WB2| PB WB1 WB2
53.20 56.90 58.80|62.80 64.40 66.20 | 69.30 71.40 77.20
66.30 68.20 71.10 | 74.50 75.40 76.60 | 80.60 80.90 81.20

430 380 4.50| 460 460 4.40| 5.00 470 4.90

9.20 830 9.20(10.30 9.30 10.40| 9.50 9.80 9.50
52.40 48.20 50.50 | 60.40 58.50 60.20 | 74.60 77.50 78.50
65.30 62.00 65.70 | 72.10 71.70 73.90 | 90.80 93.20 93.70
52.20 47.20 50.30 | 50.40 51.10 58.70 | 63.80 65.50 66.90
64.30 60.70 64.60 | 62.20 61.50 73.20 | 80.40 82.30 83.10
50.50 57.00 62.90 | 55.80 60.60 65.60 | 76.40 83.50 87.70
s 63.60 71.50 76.50 | 72.30 74.20 77.30|87.70 95.60 98.80

5 | 37.50 67.30 70.60 | 41.40 78.50 80.10|43.50 88.00 88.40
X3 151,50 79.60 82.30 | 54.10 91.30 93.20 | 59.60 97.30 98.30

33.30 42.20 44.60 | 38.10 44.80 44.80 | 44.10 51.20 52.00
46.40 52.80 56.70 | 52.30 56.40 58.90 | 60.90 65.00 65.80

LP

LG

5.2. Heteroscedastic model

The reported results correspond to the model

Yj=X;+X; +(X; +05)e;, 1<j<mn,
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where X follows the uniform (0, 1) distribution. Since the model is heteroscedastic

and the null hypothesis is simple, the simplifications in Remark 3.2 can be applied.

Table 5 displays the results obtained for the type I error and the power for testing
normality and Table 6 for testing GOF to the Laplace distribution.

Similar

conclusions to those given for Tables 1 and 2 can be also expressed in this case.

Table 5:

(Heteroscedastic model) Percentage of rejections for the normality null
hypothesis at the significance levels 5% (upper entry) and 10% (lower entry).

n =25

n =

50

n = 100

PB

WB1

WB2

A

PB WB1

WB2

A

PB

WB1

WB2

4.50
10.30

6.00
10.80

5.40
10.20

6.50
12.50

4.90
10.50

5.36
10.70

4.82
10.12

5.92
11.74

4.90
9.40

5.32
10.30

5.08
10.64

5.74
11.24

16.40

LP 193 40

43.00
54.00

60.00
70.40

64.30
73.70

34.20
44.50

60.00
71.40

87.10
92.10

88.50
92.80

65.00
73.80

75.60
82.30

99.50
99.80

99.50
99.80

7.40

LG 11910

57.60
70.40

56.40
72.00

63.10
76.00

8.50
15.00

91.90
95.90

94.70
97.40

95.20
98.10

12.60
20.20

99.80
99.90

100.00
100.00

100.00
100.00

19.40
29.90

39.10
55.00

56.40
72.00

63.10
76.00

36.90
49.90

68.10
80.30

94.70
97.40

95.20
98.10

67.20
76.10

93.60
97.60

100.00
100.00

100.00
100.00

43.00
B 56.20

16.10
26.10

57.60
70.00

63.30
74.70

86.20
92.30

77.00

99.80

86.20 100.00

99.80
100.00

99.90
100.00

95.20
97.60

100.00
100.00

100.00
100.00

, | 50.90
X3 161.80

41.60
54.80

85.50
92.50

89.10
93.90

83.00
91.00

71.30
83.10

99.70
99.90

99.70
99.90

99.20
99.70

95.70
98.80

100.00
100.00

100.00
100.00

9.20
16.20

51.00
65.70

59.10
71.60

65.40
76.50

15.90
23.40

80.20
89.30

92.90
97.70

94.30
98.00

27.90
36.80

99.00
99.90

100.00
100.00

100.00
100.00

Table 6:

(Heteroscedastic model) Percentage of rejections for the Laplace null
hypothesis at the significance levels 5% (upper entry) and 10% (lower entry).

n =25

n = 50

n = 100

PB

WB1

WB2

A

PB

WB1

WB2

A

PB

WB1

WB2

2.00
4.90

31.80
40.30

25.00
34.70

27.10
37.10

2.60
7.40

55.30
64.80

51.20
61.80

52.50
62.90

2.80
7.80

86.10
90.50

85.70
91.20

86.20
91.40

2.10

LP 680

4.60
10.00

3.70
8.00

4.60
9.60

3.00
7.30

5.70
11.50

4.00
9.20

4.40
10.20

3.60
7.80

4.40
9.10

4.00
8.40

4.40
9.00

2.10

LG 6.30

33.80
43.80

27.10
37.60

29.30
40.20

2.30
6.80

54.80
64.40

50.80
61.60

52.30
62.50

3.10
7.00

85.00
89.30

84.40
89.60

84.70
89.90

2.10
6.70

31.30
41.10

23.50
34.40

25.50
37.10

2.80
6.80

53.90
65.10

50.20
62.70

51.50
63.70

3.00
7.50

85.30
91.10

85.10
91.10

85.60
91.50

3.00
B 8.00

19.20
27.40

18.40
29.10

21.00
31.70

6.00
14.60

33.50
43.70

43.20
55.30

45.90
56.80

27.60
39.60

56.70
68.50

81.20
87.30

81.50
87.80

, | 2.70
X3 1710

22.30
30.80

18.60
27.30

20.80
30.10

3.40
7.60

43.10
54.50

42.90
54.10

44.50
56.60

5.60
12.70

78.40
84.10

81.30
87.30

81.90
87.70

2.90
6.30

30.60
41.50

22.80
33.70

24.50
38.00

3.90
6.50

56.80
66.70

53.20
64.30

53.90
65.20

4.60
9.40

84.30
90.20

83.90
90.40

84.30
90.70
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5.3. Time consumed

Table 7 compares the PB and the WB (with raw and centered multipliers)
in terms of the required CPU time. This table shows the CPU time consumed
in seconds to get a p-value for testing GOF for the normal and the Laplace
distributions in the homoscedastic (for both single and composite null hypothesis)
and the heteroscedastic models with sample sizes n = 25, 50, 100, 200. Looking
at this table it becomes evident that the WB is more efficient than the PB,
in terms of the required computing time, specially for larger sample sizes. The
difference in time when using the raw and the centered multipliers is rather small.

Table 7: CPU time consumed for the calculation of one p-value in seconds
for testing normality and Laplace distribution for the homoscedastic
model and composite null hypothesis (upper entry), the hetero-
scedastic model (middle entry) and the homoscedastic model and
single null hypothesis (lower entry).

Normal distribution Laplace distribution
n

PB/WB1 WB1 WB2 | PB/WB1 WB1 WB2
2.72 0.71 0.74 3.49 1.00 1.01
25 7.45 0.33 0.35 7.17 0.54 0.60
4.42 0.31 0.34 5.34 0.50  0.55
5.61 0.71 0.70 7.51 1.08 1.09
50 30.88 0.17 0.22 38.15 0.26 0.25
15.63 0.19  0.19 23.68 0.28 0.25
12.15 0.84 0.86 23.40 1.11 1.12
100 52.80 0.25 0.27 74.33 0.42 0.45
30.64 0.25  0.26 64.56 0.37  0.39
27.56 1.25 1.27 76.37 1.54 1.58
200 66.19 0.59 0.62 127.80 0.83 0.83
41.14 0.56  0.58 117.51 0.78  0.76

The gain in computational efficiency of the WB over the PB stems from the
fact that one does not have to re-estimate the parameters at each iteration, which
slows down the process considerably. Note that in the WB the parameter 6, the
regression function m(.) and the conditional variance function o(-) are estimated
only one time. For the WB approximation, once the set {m;;, 1 <j <k <n}is
computed, the WB replicates 731 (), ..., T4B () can be calculated very rapidly.

2n,w 2,n,w
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6. CONCLUSIONS

This paper proposes a WB approximation for the null distribution of a
test statistic for testing GOF to the error distribution in nonparametric mod-
els. It provides a consistent estimator. The WB and the PB share this property.
Nevertheless, from a computational point of view, the WB approximation is more
efficient, in the sense of requiring less computation time. The numerical examples
support these attributes. In addition, in cases were the asymptotic null distribu-
tion does not depend on unknown quantities, the simulations carried out declare
that, for small to moderate sample sizes, the WB provides a better fit than the
asymptotic distribution.

To derive the results in this paper we considered certain estimators for
the regression function and the conditional variance function. In addition, we
assumed that the covariate was univariate. The results could be extended by
considering other estimators (such as other local polynomial estimators) as well
as covariates with higher dimension. The null distribution of other test statistics
(for example, those based on the empirical CDF) could be similarly approximated.

7. APPENDIX

7.1. Assumptions

(A.2) The weight function w satisfies
(7.1) w(t) =w(-t), WV,
w(t) >0, Vt, and [tlw(t)dt < co.

There is no restriction in assuming that the weight function w(t) satisfies (7.1)
because otherwise by defining wy (t) = 0.5{w(t) + w(—t)}, which satisfies (7.1), we

~

have that T, ,(0) = T}, ., (6).

A.3) ¢1,...,e, are IID with E(¢%) < 0o and ¢4, ...,&, and X1, ..., X,, are
J
independent.

Recall that by construction we have that E(e;) = 0 and Var(e;) = 1.

(A.4) (i) X has a compact support S.
(ii) fx, m and o are twice continuously differentiable on S.
(iii) infyeg fx(x) > 0 and infcgo(x) > 0.
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(A.5) nht —0,nh2/Inn — cc.

(A.6) K is a twice continuously differentiable symmetric pdf with com-
pact support.

Assumptions (A.4)—(A.6) are mainly needed to guarantee the uniform con-
sistency of the kernel estimators fx(-), 7m(:) and 6(-) for fx(:), m(-) and o(-),
respectively.

(A.7) The first partial derivatives R'(t;0), I'(t;0), R (t;0), 1y(t;0),
1 <r <p, exist and are continuous functions V¢ € R, V0 in an
open neighborhood of ¢;. In addition, R'(t;0), I'(t;0), R(t;0),
Iy (t;0), tR(t;0), tI'(t;0), tRy(t;0), tl,)(t;0), 1 <r <p, are
bounded by functions in Ls(w), V6 in an open neighborhood of 6.

The following assumption will be used for the maximum likelihood estima-
tor of the parameter.

(A.9) The following functions exist ¥ in an open neighborhood of 6;:
ur(;60) = 55-log f(x;0)
ur(2:0) = 5o log f(2:0),  uoss(2:0) = sy log f(w;6) ,
ug,r(10) = gt log f(w:60), w1r(w36) = gty log f(36)
and satisfy
lur r(a1 + agz; 0)] < by ,(x), with xby (), b1 ,(x) € Lao(F)
[uo.r,s(a1 + asw; 0)| < bors(x) € La(F) ,
luz,r (a1 + aga; 0)] < byr(z) € Lo(F)
[u1,r,s(a1 + a2x; 0)| < by ys(z) € La(F),
Vay,az,0 such that |a1],|az—1|, |6—61]| <9, for some small 6, 1 <r, s <p.
In addition, the following expectations exist:
E{up(e301) us(e;01)}
E{Eul,r(s;el)} ,
1<r,s<np.

The following assumption will be used for the method of moment estimator
of the parameter, which assumes that under the null hypothesis, 8y = g(uo), for
some known function g = (g1, ..., )7, gr : RF7! = R, 1 <7 < p:

(A.10) g, is twice continuously differentiable at a neighborhood of up,
1<r<np.
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7.2. Proofs

We now sketch the proofs of the results stated in the previous sections, as
well as some preliminary results. Along this section M denotes a generic positive
constant taking many different values.

Lemma 7.1. Suppose that assumptions (A.3)—(A.6) hold, then

(@) & 2j1(es —€5)* = 0p(1)
(b) %2?21@? - 5?)2 = op(1)
(€) % Xjm1(E =17 =0,(1)
(d) %Zg}:l 532 = 0p(1)

Proof: First, observe that under the considered assumptions (see, for
example, Masry [16])

(7.2) iléll;lm(fv) —m(z)] = op(n~'*),
(7.3) ilelléglf?(x) —o(x)| = op(n~*).

The difference between the residuals and the errors can be written as follows

. _ (X)) —6(Xy) m(X;) — m(X;)
w0 amams () - ()
The results in (a)—(d) follow from (7.2)—(7.4). O

Lemma 7.2. If||f — 6| = 0,(1) and (A.7) holds, then

() [IH{R(t:0) — R'(:600)}2 = 0p(1),
[t (£:6) — I'(t:00) 2 = o0p(1).

(b) [IIVR(t:0) — VR(t;01)|2w(t)dt = o,
JIVI(t:0) — VI(t:01)]2w(t)dt = op(

() R(t:0) — R(t:61)]12 = 0,(1),
11(t;0) — I1(t;61)]12 = 0p(1).

(d) [H{R(t:0) = R(t:01)} 12 = 0p(1),
[t{1(t;8) — I(£;00)}HI% = op(1).

(1),
1).

Proof: (a) From (A.7) tR'(t;0) € La(w), V0 in a neighborhood of 6. Since
6 £ 6y, the integral [{R'(t;0) — R'(t;61) }*t*w(t)dt is finite with probability tend-
ing to 1. Thus, Ve > 0,3M = M (e) > 0 such that

(7.5) / (R/(#:0) — R(t:00) 22w (t)dt < e,
R\~ M,M]
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with probability tending to 1. tR'(¢;6) is a uniformly continuous function in
[—-M, M] x Bs(61) = C, where Bs(61) = {0 :||6 — 01| < d}. Thus, Ve >0, 3 p=
p(€) > 0 such that ¥(t,, 6,), (tp, 0p) € C satistying ||(ta, 0a) — (tb, 0p)|| < p, we have
[t1 R (tq;00) — toaR (ty; 0p)| < €/1, with ¢ = [ w(t)dt. As a consequence

M
(7.6) /_ {R(660) = R (600 w0t < o

with probability tending to 1. As € is arbitrary, the result in (a) for the real part
follows from (7.5) and (7.6). The proof for the imaginary part is parallel.

(b) The proof of this part is quite similar to that of part (a).

Parts (c) and (d) can be proven by applying the mean value theorem. [

Proof of Theorem 2.1: W* can be expressed as W* = Wy + Wy + 2W3,
where W <WiWa, Wi = | 7= 327 Zo(eji t. 00112, Wa =5 X27-1{Z0(é5:t.9)
— Zo(gj3t,01) 351 From the results in [4],

sup | P, {W; < x} — P{Wy <z} £% 0.
x
Thus, to show the result it suffices to see that W5 = 0,, (1) in probability. With
this aim, observe that W5 can be expressed as Wy = Z?Zl S+ Z#k Sjk, with
SJQ-k <85Sk, 1 <j,k <4. In the proof of Theorem 3.1 it is given the expression

of S; and it is also proven that S; = 0, (1) in probability, 1 < j < 4. This proves
the result. ]

Proof of Theorem 3.1: T;}mw(é) can be expressed as Ty, ,(0) = D1 +
Dy +2Ds, where Dy = || = 370 Za(ejit,01);112, D2 = ||z Xj_1{Z2(é55t.0) —
Zs(gj3t,01) 3112, D3 < D1Ds. From the results in [4],

sup |P, {Dy <z} — P{T, < 2}| % 0.

Thus, to show the result it suffices to see that Dy = 0p, (1) in probability. With
this aim, observe that Dy can be expressed as

10
D=3 Sj+Y Sik
=1

k<j

with ka <SSk, 1 < j,k <10,
St = |l 2o {eos(te;) — cos(té;)}5112,
Sz = || 7= o1 {sin(te;) — sin(t€)) &2,

S5 = | AR(1:0) - R0} (1 &) 12,
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= | A1(5:0) - 1500} (S50 &) 12,
S5 = | 4= S0 {8 R(E:0) — 25 R(1:01) Y112,
So = |l 5161 (6:0) — e51(8:61) 35112,
S = lgbe 0 {(E = DR'(5:0) — (2 — DR'(5:61)}12,
S5 = lgls i {(E2 = DI'(1:0) — (2 = )I'(1:01) )12,
Sy = || g Yoo v (655 0)VR(t:0) — o (e5:0) VR(t: 01) 65112,
S10 = 1 iy 0T € 0) VI 0) — T (e5:0) VI (2 01) 15 12

We will show that S; = op, (1) in probability, 1 < j < 10. By the mean value
theorem,

Z &6n(es — &) (en — 1) / 2sin(t 2, sin(t Se)w(t)dt,

jkl

where €= ajej + (1 — a;)éj, for some a; € (0,1). Then, from Lemma 7.1 (a),

n

E.(S1) < %Z(é—j - 5j)2/t2w(t)dt — o,(1),

j=1
which implies S1 = op, (1) in probability. Analogously, S2 = 0, (1) in probability.
2 .
Since S3 = (ﬁ > i1 §j> | R(t;0) — R(t;61)|%, the central limit theorem

and Lemma 7.2 (c) imply that S3 = 0,,(1) in probability. Analogously, Sy =
0p, (1) in probability.

Observe that S5 = S51 + S59 + 2553, with 5%3 < 551550,
Ss1= 2301 (&5 — &) Bk — en)&&IER(E: 0) |12,
Ssa = = Y1y e5enliCil[H{R(t; 0) — R(t;01)}2.

From Lemma 7.1 (a) and Assumption (A.2), it follows that E,(S51) = 0p(1) and
thus Ss1 = op, (1), in probability. From Lemma 7.2 (d), it follows that E,(Ss2) =
op(1) and thus Ss2 = 0, (1), in probability. Therefore, S5 = oy, (1), in probability.
Analogously, S¢ = oy, (1), in probability.

Observe that S7 = S71 + S72 + 2573, with 533 < 571579,

St =
Sro =

LS (€2 = 1)(EF — DR (1:0) — R'(1;01)}]2,
L1 (€2 — eD) (e} — eR)E&k LR (15 601) 12

From Lemma 7.1 (¢) and Lemma 7.2 (a), it follows that E,(S71) = 0,(1) and thus
S71 = 0p, (1), in probability.

e L
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From Lemma 7.1 (b) and (A.7), it follows that E,(S72) = 0p(1) and thus
S72 = 0p, (1), in probability. Therefore, S7 = op, (1), in probability. Analogously,
Sg = 0p, (1), in probability.

Observe that Sg = Sg1 + S92 + 2S93, with 533 < S91S592,

= || g7 51 {en(E530) — ¥n(e;300)} VR 08112,
Soz2 = || 251 ¥ (3 00) T {VR(5:0) — VR(5:61) )12

From (3.2) and (A.7), it follows that E.(S91) = 0,(1) and thus Sg; = op, (1), in
probability. From (A.1) and Lemma 7.2 (b), it follows that E,(Sg2) = 0p(1) and
thus Sg2 = 0p, (1), in probability. Therefore, Sg = 0,, (1), in probability. Analo-
gously, Sig = 0p, (1), in probability. This completes the proof. O

Proof of Corollary 3.2: From Theorem 3.1 it follows that TQ*nw(é) =

O,, (1) in probability. From Theorem 2 in [11], R#W) L, k>0. These two
facts imply the result. O

Lemma 7.3. Suppose that ||0 — 61| = 0,(1), for some ; € ©, and that
assumptions (A.3)—(A.6), (A.9) hold, then

(a) 230, [ Vlog f(&5;60) — Viog f(ej;61)|% = 0p(1).
(b) Aprs(0) = Apyps(61) +0p(1), 1 < 7,5 < p.

(€) p1(0) = p1,r(61) + 0p(1).
(d) pa(B) = pa,r(61) + 0p(1).

Proof: (a) From the mean value theorem and (A.9),

] . 2
Ly {5 1og £(550) — 5 log f(ej501) }
n 2 ~ 7 2
= 1570 {55 10s F(E30)(& — &) + Y0y g log £(5:0) (0, — 01,)}
S S’r,l + S’r,2 + 257‘,37

with 5’273 < Sp1Sr2, €5 = (1 — aj)éj + ajej, for some o € (0,1), 1 < j <n, 6=
(1 — a)f + aby, for some a € (0, 1),

Ser = 18— 6P SN R

7j=1s=1
and

Sro = *Zblr £j)(€j — €5) = op(1).
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From (A.9), (7.2)-(7.4), it follows that S,1 = 0,(1), Sr2=0p(1), 1 <r <p.
This proves (a).

The proof of parts (b)—(d) follows similar steps to that of part (a). O

Proof of Theorem 4.1: Observe that > i1 1Y1n (€5 0) —(ej;01)|% <
D1 + Dy + D3 + Dy, with D? < >k DjDr,

DlszHA )" 'Vlog f(25;0) — Ap(61) ' Vlog f(e;;61)|7,

D, = ;Z €561(6) = 25020,
=1
€2 -

1 9112
a6

1 n
D3 =
n p—

By using the results in Lemmas 7.1 and 7.3 one obtain D; = 0,(1), 1 < j < 3,
and hence the result. d

Proof of Theorem 4.2: From (7.2)—(7.4),

3
3

—_

7.7 I N Ve '
(7.7) nzj n s n 63 7(X;)

Taking into account the following facts

m(z)—m(z) _ m(z)—m(z)

(m.1) sup,cg ’ @) ol

(m.2) sup,es (@) = m(@) — ko They Kn, (2 — Xi)o(Xe)en
= Op(n_1/2)7

= Op(nil/Q)a

it follows that

= ;1 Z 5$15kahn(Xj — Xi) + op(1).

Now, by using projections, we get (see, for example, the proof of Theorem 2 in
[18] for a similar development)

m(X;) — m(X;) 1 <
(7.8) gd ! L= —pups1— Y &5+ 0p(1)
\fz (X;5) a lﬁ; T
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Next we deal with the third term in the right-hand side of (7.7). Taking into
account the following facts

(s.1) supgeg )&(xg(—g(x) _ &(xg(—x(;(x)

~ 62(z)—c2(z
o(x) —o(x) — %

= Op(n_l/Z)v

= Op(”_1/2)u

(s.2) supgeg

(5:3) supses|72(2) — 02(@) — sy Loy K, (X; — @)
05 = m@) = 02@)]| = op(n=Y2),

it follows that

5(Xj) _
\FZE X)

“ v, Z ng()l()Khn(X = X0 [0%) ~ (¥~ m(X,)1] + 0,(0).

Now, by using projections, we get (see, for example, the proof of Lemma 11 in
[19] for a similar development)

1 & SO'(Xj)—a'(Xj) B ,U/FS
(7.9) \/ﬁjz_;gj (%)) = Z 1) + 0p(1).

The result follows from (7.7)—(7.9). O

Proof of Theorem 4.3: Notice that

n n
o= prs = S (E )+ S — )
J=1 J=1
From (7.2)—(7.4), the first term in the right-hand side of the above equality is
0p(1); from the SLLN, the second term in the right-hand side of the above equality
is o(1) a.s. Therefore iy — pips = 0p(1), 2 < s < k. The result follows from this
fact and (A.10). O
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