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Abstract:

• We present a new adaptive sampling method for statistical quality control. In this

method, called LSI (Laplace sampling intervals), we use the probability distribu-

tion function of the Laplace standard distribution to obtain the sampling instants,

depending on a k parameter that allows control of sampling costs. Several algebraic

expressions concerning the statistical properties of the LSI method are presented.

We compare the LSI method with fixed sampling intervals (FSI) and variable sam-

pling intervals (VSI) methods using a Shewhart X-bar control chart and evaluate the

sensitivity of these sampling methods when the lower sampling interval is truncated.

The results obtained show that the new method is a viable alternative in various

critical contexts and situations.
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1. INTRODUCTION

The success of a statistical quality control method is directly related to the

type of control chart and especially to the sampling method used. The variabil-

ity of the process is due to random causes (inherent to the process) or to the

presence of assignable causes. The former cannot be economically identified and

corrected, whereas the latter should be detected and eliminated. The choice of the

control chart depends upon the characteristic being controlled. The quantitative

characteristics are controlled using variable control charts (X̄-charts, R-charts,

or s-charts, for example) or special control charts (EWMA or CUSUM charts for

continuous random variables, for example). For a long time the control charts

used had fixed parameters (sampling intervals, sample sizes, and control limits).

However, since final of the 1980s, new adaptive control charts have been devel-

oped for improved performance. In terms of their implementation, these charts

can be classified in two broad categories. The first category encompasses control

charts with adaptive parameters (sampling intervals, sample size, and control

limits, depending on the sample information; see, for example, Reynolds et al.

(1988), Daudin (1992), Prabhu et al. (1993), Costa (1994), Prabhu et al. (1994),

Stoumbos & Reynolds (1997), Costa (1999), Rodrigues Dias (1999), Carot et al.

(2002), Mahadik & Shirke (2009)). The second category encompasses control

charts with predetermined parameters (parameters determined before the begin-

ning of the process to be controlled; see for example, Banerjee & Rahim (1988),

Rahim & Banerjee (1993), Lin & Chou (2005) and Rodrigues Dias & Infante

(2008)).

Several measures have been developed to assess the statistical quality con-

trols method’s performance across time regarding to how quickly they detect

assignable causes. The frequency of false alarms and the number of samples

and analysed items are two examples. The ARL (“average run length”) is per-

haps the most widely used statistical measure for assessing the performance

of a statistical control chart. The ARL is defined as the average number of

samples that needs to be drawn before an out-of-control indication is given.

If the control methods have constant and equal sampling intervals, then the time

interval up to the detection of a change is directly proportional to the ARL.

In the case of non-constant sampling intervals, the proportionality above fails

and the ARL is not a measure of the efficiency of the control method. The AATS

(“adjusted average time to signal”), also known in the literature as “steady-state

performance”, is defined as the average interval of time from the instant at which

a failure occurs in the system to the instant at which the control chart detects the

failure. In the case of a Shewhart control chart with variable sampling intervals,

AATS = E(G) +E(D)×(ARL− 1), where E(D) is the average sampling interval

and G represents the time interval between the instant at which the system fails

and the instant at which the first sample, after the failure, is drawn. The AATS



4 M. do Carmo, P. Infante and J.M. Mendes

is a measure that suits most practical situations. Morais (2002), Carmo (2004)

and Rodrigues Dias & Carmo (2009) are important sources on the previously

described approaches. In Morais & Pacheco (2001), stochastic order relations are

established using the RL (“run length”), allowing comparison of different quality

control methods without numerical computation of their performance.

In the following sections, we present a new sampling method called LSI

(“Laplace sampling intervals”), an adaptive and continuous sampling method in

which the sampling intervals are obtained on the basis of the probability density

function of the Laplace standard distribution and depends on a scale parameter, k.

The AATS will be used in section 3 to examine the statistical properties of this

method and to compare its effectiveness with that of the FSI (“fixed sampling

intervals”) and VSI (variable sampling intervals) methods. In section 4, the sen-

sitivity of this new method is compared to the sensitivity of the above mentioned

methods. Finally, in section 5, conclusions are drawn and future work is proposed.

2. NEW SAMPLING METHOD: LSI

(LAPLACE SAMPLING INTERVALS)

2.1. Methodology

Let X be a continuous quality variable so that when the system is in control

state, X is a random variable with expected value µ = µ0 and standard devia-

tion σ = σ0. If x1, x2, ..., xn are identical and independently distributed random

variables with the same distribution of X, where n is the sample size, then X̄ has

the same expected value µ0 and standard deviation σ0/
√

n. As a consequence of

the one assignable cause, corresponding to a failure of the system, the process

state may change and then µ and σ may assume new values µ1 = µ0 ± λσ0, and

σ1 = σ0, with λ > 0. If ti denotes a sampling instant of order i and xi is the

sample mean value of order i, according to the LSI method, the next sampling

at the instant of order i + 1 is given by

(2.1) ti+1 = ti + k .l(ui) , i = 0, 1, 2, ... ,

where ui =
xi−µ0

σ0

√
n, t0 = 0, x0 = µ0, l(ui) =

1

2
e−|ui|, n is the sample size, k is a

convenient scale constant and l(·) is the density function of the standard Laplace

variable. Therefore, according to (2.1), this sampling method considers consecu-

tive sampling intervals δi = ti− ti−1 = k .l(ui−1) = k×0.5×e−|ui−1|, i = 1, 2, 3, ....

These are values from independently and identically distributed continuous ran-

dom variables Di, i = 1, 2, 3, ..., with the same distribution of a generic variable D.

When we obtain the value of k we have only sampling intervals, Di, under control
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(E(D|λ = 0) = 1); when we obtain the values of the AATS we have only sampling

intervals out-of-control, subject to different shifts of the sample mean. Thus,

D is a function of X̄ and, consequently, of U , given by

(2.2) D =
k .e

−
��� X̄−µ

σ

√
n
���

2
= k .l(U) .

The constant k depends on several factors and, especially, on the costs associated

with the production process (not imposing, so far, any limits on the control chart

for means) and U =
(

X̄ − µ
)√

n/σ . Using this adaptive and continuous method,

the sampling frequency decreases (the sampling instants are spaced further apart

in time) when the sample mean is marked close to the mean of the distribution.

When the sample mean is marked close to control limits, the probability of a

shift in the mean increases, and the sampling frequency increases (the sampling

instants are less distant in time). Like the VSI sampling method, the LSI method

is an adaptive method in which the time interval to the next sample depends on

the information in the current sample. The disadvantage is that the sampling

intervals function of the LSI chart is a continuous function of the chart statistic

(and this implies an infinite number of possible sampling intervals). However,

the sampling interval function is a very simple function of the chart statistic.

It can be easy to implement in practice, particularly, in automatic monitoring.

The NSI (normal sampling intervals) method, presented by Rodrigues Dias (1999)

and studied in Infante (2004), showed limitations in practical applications.

In this method the sampling instants are obtained using the density function

of the standard Normal distribution; the smallest sampling interval is very small,

which reduces the application of this sampling method. The idea emerged to

study one analogous method in which the smallest sampling interval would be

greater than in the NSI method which, therefore, allowed practical applications.

Regarding the skewness and shape, the Laplace density function is similar to the

Normal density function, as in the Cauchy density function, but having heavier

tails. This fact addresses some of the difficulties seen in the practical application

of the NSI method. In our preliminary work we simulated sampling intervals for

three probability density functions (pdf (x, µ, σ)): those of the Normal, Cauchy,

and Laplace distributions. Considering “3-sigma” control limits and a time unit

average sampling interval, in control, the following results were obtained:

a) Normal distribution: pdf (0, 0, 1) = 0.399, k = 3.535, smallest sampling

interval = 0.016, largest sampling interval = 1.410.

b) Cauchy distribution: pdf (0, not defined, not defined) = 0.318, k = 4.778,

smallest sampling interval = 0.152, largest sampling interval = 1.521.

c) Laplace distribution: pdf (0, 0, 1) = 0.500, k = 3.813, smallest sampling

interval = 0.095, largest sampling interval = 1.907.

Based on these results, we selected the Laplace distribution’s probability den-

sity function. All the parameters are defined such that the sampling frequency
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decreases close to the central region and the smallest sampling interval is more

likely to apply in practice. In addition, the smallest and largest sampling intervals

are approximately equal to the sampling pair most frequently used in the VSI

method ((d1, d2) = (0.1, 1.9)). We are considering general sampling interval func-

tions that are continuous functions of the chart statistic. Stoumbos et al. (2001)

study what function would be the optimal function in some sense.

2.2. Statistical Properties

In the remainder of this paper we assume that X follows a normal dis-

tribution with expected value µ = µ0 and standard deviation σ = σ0. We will

consider a Shewhart chart with LCL and UCL, respectively, lower and upper

control limits, given by:

(2.3) LCL = µ0 − L
σ0√
n

, UCL = µ0 + L
σ0√
n

,

where L is the coefficient of the control limits (in practice, typically around three

units of standard deviation). As mentioned above, after shift, µ takes on the

new value µ1 = µ0 ± λσ0, where λ > 0 is the magnitude of the mean shift (in

the present work, only mean shifts are considered). Therefore, if ui denotes the

standard sample mean, for values to |ui| > L the process is considered to be

out-of-control, although this might be a false alarm.

Considering the assumptions in (2.2) and (2.3), and that f∗
(x) is the cor-

responding conditional density function of x, given by

(2.4) f∗
(x) =

√
n

βσ
√

2π
e−

n(x−µ)2

2σ2 , x ∈ ]LCL,UCL [ ,

then f∗
(x) dx is the elementary probability of x ∈ ]x, x + dx[ and the average

sampling interval is given by

E (D|λ, n, L) =

∫ UCL

LCL
k .l(x) .f∗

(x) dx

(2.5)

=

∫ UCL

LCL

k .
√

n

2βσ0

√
2π

e
−

[
∣

∣

∣

x−µ0

σ0

√
n

∣

∣

∣
+

n(x−µ0−λσ0)2

2σ2
0

]

dx ,

where β is the probability of the sample mean lies between the control limits, and

is given by

(2.6) β = Φ
(

L − λ
√

n
)

− Φ
(

−L − λ
√

n
)

.

Considering Φ(u) as the distribution function of the standard normal random

variable, the following expression for the average sampling interval arises

(2.7) E (D|λ, n, L) =
k
√

e

2β

[

eλ
√

n.A(L, λ, n) + e−λ
√

n.B(L, λ, n)

]

,
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where

A(L, λ, n) = Φ
(

−1 − λ
√

n
)

− Φ
(

−L − 1 − λ
√

n
)

,
(2.8)

B(L, λ, n) = Φ
(

L + 1 − λ
√

n
)

− Φ
(

1 − λ
√

n
)

.

The expression (2.7) depends on the sample size, n, the coefficient of the control

limits, L, the mean shifts, λ, and β (the probability of a Type II error if the

sample mean is out of the control limits). Assuming that the values of n, L and λ

are known, then E(D) is a linear function of k. When the process is in control,

λ = 0, the average sampling interval is given by

(2.9) E (D|L) =
k
√

e

β

[

Φ(L + 1) − Φ(1)
]

,

where β = 2Φ(L) − 1 and does not depend on the sample size, n. Therefore, if

the average sampling interval is equal to a time unit (without loss of generality,

the sampling period used in the FSI method), the constant k is given by

(2.10) k =
β√

e
[

Φ(L + 1) − Φ(1)
] ,

which is equal to 3.8134, based on the usual “3-sigma” limits. This result was

obtained by numerical integration using the R software.

The variance of the sampling intervals can be obtained by the equality

Var(D) = E(D2
) − [E(D)]

2
. The expression for E(D2

) is obtained using the

same reasoning applied to derive (2.5), leading to

E
(

D2|λ, nL
)

=

∫ UCL

LCL

[

k .l(x)
]2

.f∗
(x) dx

=
e2k2

4β

[

e2λ
√

n
[

Φ
(

−2 − λ
√

n
)

− Φ
(

−L − 2 − λ
√

n
)

]

(2.11)

+ e−2λ
√

n
[

Φ
(

L + 2 − λ
√

n
)

− Φ
(

2 − λ
√

n
)

]

]

,

which allows us to obtain the desired variance.

As mentioned above, there are different measures that are commonly used

to assess the effectiveness of control charts. In this study we use the AATS to

compare the effectiveness of the LSI method with the effectiveness of the FSI and

VSI methods. Let RL (run length) be a random variable denoting the number of

samples to be drawn before a false alarm or a failure occurrence, regardless of the

sampling method used. RL follows a geometric distribution with the parameter

1 − β, that is, with a mean and the variance, respectively, given by

(2.12) ARL(λ) =
1

1 − β
,
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and

(2.13) Var[RL(λ)] =
β

(1 − β)2
.

In general, a process starts in control. Therefore, the time interval between

occurrence of a failure and its detection is of particular importance. For example,

in a production process in which the malfunction costs are high, the average total

cost of a production cycle may increase. As the failure may occur in the interval

between two samples, it is necessary to adjust the ATS (average time to signal

— which is defined as the average interval of time between the beginning of

the process and an out-of-control sign, eventually a false alarm, being given by

the control chart). Thus, we consider G to be the time interval between the

occurrence of a failure and the moment when the first sample is drawn after the

mean shift. The AATS (adjusted average time to signal) is given by

(2.14) AATS = E(G) + (ARL − 1) .E(D) ,

where the expected value of G has to be determined. In the FSI method,

the expected value of G is, approximately, half of the inspection period used.

However, in this adaptive case, we do not have a constant sampling interval.

The distribution of the variable G depends on when the shift of the mean occurs.

Let us assume that the time when a shift occurs is uniformly distributed in each

sampling interval. If a failure occurs in a sampling interval of length d, the average

time until the next sample is drawn is 0.5× d. Although the number of sampling

intervals is infinite, we can assume that the probability of the shift occurring in

a sampling interval of length d is proportional to the product of the length of

the interval and the probability of selecting this interval, as long as the process

is in control, as Reynolds et al. (1988) and Runger & Pignatiello (1991) assumed

for the VSI method. Taking into account that the variable G is continuous, the

expression for its expected value can be obtained using the same reasoning that

Reynolds et al. (1988) used in the VSI case. Based on the assumptions stated

above, we obtain the following expression for the expected value of G

(2.15) E (G|L) =
E

(

D2|λ = 0
)

2E (D|λ = 0)
=

k .e3/2

4

Φ(L + 2) − Φ(2)

Φ(L + 1) − Φ(1)
,

which can be written as

(2.16) E(G) = k .e3/2 × C(L) ,

with

(2.17) C(L) =
Φ(L + 2) − Φ(2)

4 ×
[

Φ(L + 1) − Φ(1)
] .

Expression (2.17) depends only on the control limits and may be simplified to

(2.18) E(G) = 0.036 × ke3/2 .
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This simplified expression will be useful in future algebraic treatments. This

simplified version is originated by the data in Table 1, containing approximations

for C(L) for several values of L. It is clear that 0.036 is an excellent approximation

of C(L), particularly for values of L ≥ 2. This approximation is not as good as

one might expect for L < 2. However, this situation can be considered irrelevant

in many applications, as it results in a high number of false alarms.

Table 1: Values of C(L) for different multiples L of the standard deviation.

L 1 1.5 2 2.5 3 3.5 4 4.5 5

C(L) 0.0394 0.0369 0.0361 0.0359 0.0359 0.0358 0.0358 0.0358 0.0358

The values of the AATS can be obtained as

(2.19) AATSLSI = 0.036 × k × e3/2
+

(

β

1 − β

)

×E(D) .

In this case, the distribution of the sampling interval Di is the conditional dis-

tribution of the sample mean given that the process is out-of-control. D1, D2, ...

are independent of RL, and the variance of TS (time to signal) can be written as

(2.20) Var(TS ) = Var(G) + E(RL − 1) Var(D) + Var(RL − 1)[E(D)]
2

,

for which we need the value of Var(G). To get Var(G), we begin by determining

E(G2
). According to Reynolds et al. (1988), for the VSI method, and Infante

(2004), for the NSI method, the algebraic expression is given by

(2.21) E(G2
) =

E(D3|λ = 0)

3E(D|λ = 0)
=

k2e4

12

Φ(L + 3) − Φ(3)

Φ(L + 1) − Φ(1)
,

which depends only on L. Therefore, the variance of the variable G is given by

Var(G) = E(G2
) − [E(G)]

2

(2.22)

=
k2e4

12

Φ(L + 3) − Φ(3)

Φ(L + 1) − Φ(1)
− k2e3

16

[

Φ(L + 2) − Φ(2)

Φ(L + 1) − Φ(1)

]2

.

From (2.7), (2.11), (2.21) and (2.22) we obtain (2.20).

3. COMPARISONS BETWEEN THE LSI METHOD AND THE

FSI AND VSI METHODS

As mentioned in the previous section, comparisons of the effectiveness of the

LSI sampling method with the FSI and VSI methods is made using the AATS .
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Thus, the two sampling methods in comparison are considered to be both in

control, or in other words, the average sampling intervals are equal to one time

unity (d = 1) and the control limits are“3-sigma”(L = 3). Comparisons are made

for mean shifts, only. Because it is assumed that the characteristic X follows a

normal distribution, the direction of the shift is of no importance at all. Under

these assumptions the value of the parameter k in the LSI method is 3.8134.

3.1. Comparison between the LSI and FSI sampling methods

Assuming a fixed value for the sampling interval, d, the expected value of

G (the random variable previously defined for the FSI sampling method) can be

defined as half of the sampling interval, d. Infante & Rodrigues Dias (2002) and

Carmo (2004), in independent studies, analysed this approximation for different

lifetimes, and both concluded this approximation to be acceptable. Therefore,

the AATS of the fixed sampling method is given by

(3.1) AATSFSI = E(G) + (ARL − 1) × d ∼= d

1 − β
− d

2
.

To compare the effectiveness of the two sampling methods, LSI and FSI, we

assume that, in control, the average sampling interval of the LSI method is equal

to the sampling interval of the FSI method (without loss of the generality, d = 1),

obtaining a value of k = 3.8134 for the LSI method. Considering (2.19) and (3.1)

the ratio

(3.2) QLSI/FSI =
AATSFSI − AATSLSI

AATSFSI
× 100%

represents a measure of the relative variation, in %, of the AATS value when

AATSFSI is the reference. The results obtained for mean shifts with different

sample sizes are illustrated in Figure 1.

Figure 1: QLSI/FSI(%), as a function of λ and different values of n.
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From Figure 1, the following conclusions arise:

i) The control chart for means with the LSI method detects small and

moderate mean shifts more quickly than the control chart for means

with the FSI method. This means that the LSI method is more sensi-

tive to changes whose probability of detection is low. The reductions

in the AATS using the LSI method can be very large.

ii) For shifts in which the probability of the detection is high, the FSI

method performs better than the LSI method. This is not surprising,

because this is true for most known adaptive methods. In the situ-

ations described above, the average number of samples taken before

detection of a failure is very small. Therefore, the value of E(G) is

of great importance. It is approximately equal to the time of sys-

tem malfunction because only a single sample is required to detect

the shift. For an average sampling interval, in control, equal to unity,

E(G) ∼= 0.50 in the FSI method and E(G) ∼= 0.61 in the LSI method.

However, the reduction obtained with FSI method, in terms of the

AATS , is limited to a maximum of 22.5% (for n = 5), whereas the

reduction obtained with LSI method has a maximum of 50.3%.

iii) For the different sample sizes considered, the QLSI/FSI values begin

with an average rate of positive variation, reaching an absolute value

maximum, and then reaching an average rate of negative variation.

The average rate of positive variation increases more quickly as a

function of λ when the sample size increases. The average rate of

negative variation increases more quickly as a function of λ when the

sample size decreases.

iv) In general, when the sample size increases, the values that maximize

(λ) and the reductions obtained with the LSI method decrease. This

makes sense because the probability of detection of the shift increases

with the sample size.

3.2. Comparison between the LSI and VSI sampling methods

Looking for improvements in the performance of classical control charts,

Reynolds et al. (1988) divided the region of continuation, C = ]−L, L[, into two

sub-regions, C1 = ] − L,−w] ∪ [w, L[ and C2 = ] − w, w[, and used two sampling

intervals, d1 and d2 , with d1 < d < d2. The VSI method allows us to anticipate

the next sample (we use d1 if the sample mean belongs to the C1 region) or

to delay it (using d2 if the sample mean belongs to the C2 region). Reynolds

& Arnold (1989), Reynolds (1989), Runger & Pignatiello (1991), and Reynolds

(1995), in different contexts, gave theoretical justifications for the use of two
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sampling intervals. For two intervals the average sampling interval in the VSI

method is given by:

(3.3) E (D|λ, n) =
d1×p11 + d2×p12

β
,

where β is given by (2.6), and

p11 = Φ
(

L − λ
√

n
)

− Φ
(

w − λ
√

n
)

+ Φ
(

−w − λ
√

n
)

− Φ
(

−L − λ
√

n
)

,
(3.4)

p12 = Φ
(

w − λ
√

n
)

− Φ
(

−w − λ
√

n
)

,

are the probabilities of a sample mean occurring in regions C1 and C2, respec-

tively, when a mean shift occurs. W is given by

(3.5) W = Φ
−1

[

2Φ(L)×(d − d1) + d2 − d

2(d2 − d1)

]

,

according to the expression presented by Runger & Pignatiello (1991), when the

average sampling interval in the VSI method, in control, is equal to the sampling

period, d, in the FSI method. According to Reynolds et al. (1988), the average

time interval between the instant when a failure occurs and the instant when the

first sample is drawn after the shift occurs is given by

(3.6) E(G) =
d2

1p01 + d2
2p02

2(d1p01 + d2p02)
.

The adjusted average time to signal, AATS , is given by

(3.7) AATSVSI =
d2

1p01 + d2
2p02

2(d1p01 + d2p02)
+

d1p11 + d2p12

1 − β
,

where

(3.8) p01 = 2
[

Φ(L) − Φ(w)
]

and p02 = 2Φ(w) − 1

are the probabilities of a sample mean belonging to the regions C1 and C2, respec-

tively, when the process is in control.

To compare the effectiveness of the LSI and VSI methods, we assume that

the average sampling intervals in both sampling methods are equal to the fixed

sampling interval (d = 1 and k = 3.8134) in the expressions (2.19) and (3.7). Once

again, the ratio

(3.9) QLSI/VSI =
AATSVSI − AATSLSI

AATSVSI
× 100% ,

represents a measure in % of the relative variation of the AATS value, with

respect to the AATSVSI reference. The results obtained for mean shifts with

different sample sizes are presented in Table 2. The following conclusions are

immediate:



New Adaptive Sampling Method for Quality Control 13

Table 2: QLSI/VSI(%), as a function of λ, for different values of n
and different sampling pairs in VSI.

n (d1, d2)
λ

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 3.00

2

(0.1, 1.9) 0.1 −1.4 −5.9 −13.2 −21.6 −26.0 −19.8 −4.5 10.5 20.7 26.4 31.0
(0.1, 1.5) 0.0 −0.9 −3.7 −8.6 −14.9 −20.5 −20.9 −14.0 −4.0 4.4 9.7 14.2

AATSLSI 370.01 216.71 79.98 29.08 11.31 4.86 2.40 1.41 0.98 0.79 0.70 0.63

3

(0.1, 1.9) 0.1 −2.2 −8.9 −19.0 −25.9 −18.2 1.1 17.0 25.5 29.5 31.2 32.2
(0.1, 1.5) 0.0 −1.4 −5.7 −12.8 −20.1 −20.5 −10.6 1.2 8.8 12.7 14.4 15.4

AATSLSI 370.01 175.53 50.46 15.24 5.27 2.23 1.22 0.86 0.71 0.66 0.63 0.61

5

(0.1, 1.9) 0.1 −3.7 −14.6 −25.7 −15.4 9.3 23.9 29.6 31.5 32.1 32.3 32.3
(0.1, 1.5) 0.0 −2.3 −9.5 −19.4 −19.4 −4.9 7.3 12.8 14.7 15.3 15.4 15.5

AATSLSI 370.01 122.99 24.81 5.97 1.98 1.01 0.74 0.65 0.63 0.62 0.61 0.61

i) In sample sizes more widely used in the literature, n ≥ 3, the LSI

method is quicker than the VSI method in detecting shifts of magni-

tude λ > 1.5, i.e., in situations whose probability of detection is high.

ii) The effectiveness of the LSI method increases when the sample size

increases for moderate and large shifts in the mean. For small shifts in

the mean, the effectiveness of the LSI method decreases as the sample

size increases.

iii) If we consider (d1, d2) = (0.1, 1.9) in VSI, the maximum reductions

obtained with the LSI method are considerable (approximately 32%);

in general, the performance of the LSI improves significantly when the

sample size is larger; if the probability of occurrence of a shift is equal

for all λ, using the LSI method could be a competitive advantage.

iv) If we consider (d1, d2) = (0.1, 1.5) in VSI, the maximum reductions

obtained with the LSI method are significantly smaller (approximately

16%) than those obtained with the other sampling pair in the VSI

method; in general, the performance of the LSI improves as the sample

size gets larger.

An example of application

In sections 3.1 and 3.2 we compared, in a critical way, the performances

of the FSI and VSI methods with the performance of the LSI method in terms

of the AATS . For a better perception in absolute terms of the LSI method, we

present an example of application that allows checking the effectiveness in the

detection of the shift.

Thereby, if there is a mean shift of magnitude λ = 1.0, and considering how

unit of the time one hour, for the quality characteristic being monitored:
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i) If we use the FSI sampling method, the first sample after the mean

shift is drawn, on average, after 30 minutes, and we need 240 minutes,

on average, to detect the shift.

ii) If we use the VSI sampling method:

a) with the sampling pair (d1, d2) = (0.1, 1.9), the first sample after

the mean shift is drawn, on average, after 54 minutes, and we

need 103 minutes, on average, to detect the shift;

b) with the sampling pair (d1, d2) = (0.1, 1.5), the first sample after

the mean shift is drawn, on average, after 44 minutes, and we

need 100 minutes, on average, to detect the shift.

iii) If we use the LSI sampling method: the first sample after the mean

shift is drawn, on average, after 37 minutes, and we need 119 minutes,

on average, to detect the shift.

In this case we can conclude that the use of the LSI method allows us to re-

duce the out-of-control period by 121 minutes, on average, compared to the

FSI method, and increase the out-of-control by either 16 minutes or 19 min-

utes, compared to the VSI method, depending on whether we use the sampling

pair (d1, d2) = (0.1, 1.9) or the sampling pair (d1, d2) = (0.1, 1.5).

On the other hand, if a shift of magnitude is of λ = 1.5, for the quality charac-

teristic being monitored:

i) If we use the FSI sampling method, the first sample after the mean

shift is drawn, on average, after 30 minutes, and we need 64 minutes,

on average, to detect the shift.

ii) If we use the VSI sampling method:

a) with the sampling pair (d1, d2) = (0.1, 1.9), the first sample after

the mean shift is drawn, on average, after 54 minutes, and we

need 58 minutes, on average, to detect the shift;

b) with the sampling pair (d1, d2) = (0.1, 1.5), the first sample after

the mean shift is drawn, on average, after 44 minutes, and we

need 48 minutes, on average, to detect the shift.

iii) If we use the LSI sampling method: the first sample after the mean

shift is drawn, on average, after 37 minutes, and we need 44 minutes,

on average, to detect the shift.

We can conclude that the use of the LSI method allows us to reduce the out-

of-control period by 20 minutes, on average, compared to the FSI method, and

by either 14 minutes or 4 minutes, compared to the VSI method, depending

on whether we use the sampling pair (d1, d2) = (0.1, 1.9) or the sampling pair

(d1, d2) = (0.1, 1.5).

Thus, for this situation and others in which λ > 1.5, the use of the LSI method

makes it possible to reduce the malfunction costs and makes the product more

competitive by reducing its final price.
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The influence of the sampling interval distribution on the standard devia-

tion must be analysed as well. The values of the coefficient of variation of the TS

for the different sampling methods (for the conditions previously described) are

presented in Table 3. The results shown there allow us to conclude that for all

methods and small mean shifts, the coefficients of variation are very close to 1.

Table 3: Values of the coefficient of variation of TS

for the FSI, VSI and LSI methods.

CV
λ

0.00 0.50 1.00 1.50 1.75 2.00 2.50 3.00

FSI d = 1 1.0000 1.0000 0.9998 0.9996 0.9989 0.9977 0.9798 0.9633

VSI
(0.1, 1.9) 1.0000 0.9968 0.8022 0.6143 0.6211 0.6261 0.6221 0.6112
(0.1, 1.5) 1.0000 0.9981 0.8609 0.6071 0.6031 0.6087 0.6130 0.6133

LSI 0.9986 0.9818 0.7915 0.6357 0.6715 0.6943 0.7060 0.7067

For moderate mean shifts, the coefficient of variation for the LSI method is

the smallest, although it is similar to the one of the VSI method when d2 = 1.9.

For λ ≥ 1.5, the LSI method has a slightly larger coefficient of variation than the

VSI method for all sampling pairs (due to greater dispersion in the sampling in-

tervals underlying the Laplace distribution), but a smaller coefficient of variation

than the FSI method.

4. SENSITIVITY ANALYSIS

To evaluate the consistency of the LSI method, a sensitivity analysis was

performed. In this section the lower sampling interval is truncated, as it results in

a situation similar to the VSI method. On the other hand, the concern in practical

applications in certain industrial contexts in which one may be physically or

administratively unable to take and analyse samples at very short time intervals

justifies this type of study.

D is the random variable that represents the time interval between consec-

utive inspections, and d1 is the smallest sampling interval possible. Hence, we

have:

(4.1) D ≤ d1 ⇐⇒ k

2
.e−|u| ≤ d1 ⇐⇒ u ≥− ln

(

2×d1

k

)

∨ u ≤ ln

(

2×d1

k

)

,

where L∗
=− ln

(

2×d1

k

)

is a multiple of the standard deviation that can be inter-

preted as W in the VSI method. Let us consider D∗
as the time interval between
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consecutive samples when the sample mean is between µ0 ±L∗σ0 n−0,5
. The dis-

tribution of D∗
is the conditional distribution of the mean, given that D∗

falls

between the control limits for the given mean shifts. The probability density

function of D∗
is given by

(4.2) f∗∗
(x̄) =

√
n

β∗σ0

√
2π

e
−n(x̄−µ0−λσ0)2

2σ2
0 ,

with

(4.3) β∗
= Φ

(

L∗ − λ
√

n
)

− Φ
(

−L∗ − λ
√

n
)

.

Through reasoning similar to that which has been applied in the statistical

properties of the LSI method, we have

(4.4) E
(

D∗|L∗, λ, n
)

=

√
e k∗

2β∗

[

eλ
√

n×A(L∗, λ, n) + e−λ
√

n×B(L∗, λ, n)

]

,

where

A(L∗, λ, n) = Φ
(

−1 − λ
√

n
)

− Φ
(

−L∗ − 1 − λ
√

n
)

,

(4.5)

B(L∗, λ, n) = Φ
(

L∗
+ 1 − λ

√
n
)

− Φ
(

1 − λ
√

n
)

,

and k∗
depends on the value of L∗

. Thus, the probability of using the sampling

interval d1 is given by

p1 = P
(

D = d1|λ
)

= 1 − P

(

µ0 − L∗ σ0√
n
≤ X̄ ≤ µ0 + L∗ σ0√

n

∣

∣

∣

∣

LCL ≤ X̄ ≤ UCL

)

(4.6)

= 1 − β∗

β
.

Based on the assumptions stated, the average sampling interval is given by

(4.7) E(D) =
β∗

β
×E(D∗

) + d1×
(

1 − β∗

β

)

.

Considering (4.7), “3-sigma” control limits and a unit average sampling interval,

in control, the values of k∗
and L∗

, obtained by simulation are presented in Table 4

for the considered values of d1.
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Table 4: Values of k∗ and L∗
obtained by simulation

for different values of d1.

d1 k
∗

L
∗

0.1 3.8134 2.9480
0.2 3.8099 2.2539
0.3 3.7942 1.8443
0.4 3.7591 1.5473
0.5 3.6976 1.3077

Examining the results in Table 4, we conclude that the value of k∗
gets

smaller as the value of d1 increases, reducing the multiples of the standard devia-

tion. This feature shows how the LSI method can be equated to the VSI method

because when we increase the smaller sampling interval in the VSI method, the

W value decreases.

To assess the impact of truncation of the lower sampling interval in terms

of the AATS values, we rewrite expression (2.14), adapted to the new conditions,

as

(4.8) AATS = E(G) + (ARL − 1)E(D) = E(G) +
E(D∗

)β∗
+ d1 (β − β∗

)

1 − β
,

where E(G) value is obtained by simulation and is used in comparisons between

the LSI method and the remaining methods. Intuitively, an increase in the value

of d1 leads to an increase in its probability of use. To prove that this intuition is

correct, we perform a sensitivity study of the LSI method. We compare the AATS

values obtained using the LSI method in its original form with those obtained

using the LSI method with truncation of the lower sampling interval.

The results are presented in Figure 2, using a measure of relative variation

(sensitive to the lower sampling interval change) and the values of k∗
and L∗

,

expressed in terms of % of the AATS value (being AATSLSI the reference)

(4.9) QLSI∗/LSI =
AATSLSI∗ − AATSLSI

AATSLSI
× 100% .

Analysing this figure, one concludes that the differences in the AATS values in-

crease as the probability of detecting mean shifts increases, reaching its maximum

for shifts of magnitudes of λ = 1.25. From this point onward, the effectiveness

of the methods tends to converge, becoming identical for large magnitudes of

mean shifts. However, for d1 = 0.4 and d1 = 0.5, there are strong increases in the

AATS for some mean shifts. Even when d1 is three times greater than the initial

value, the maximum relative reduction in the AATS using the non-truncated LSI

method is only 12.7%.
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Figure 2: QLSI∗/LSI(%), as a function of λ for different values of d1,

with n = 5.

Comparison between the LSI
∗ and FSI

∗ sampling methods

For the conditions mentioned in the previous section, the AATS values for

the truncated LSI method and the FSI method for a sample size of five were

compared. The assessment measures the effect that the change in the lower

sampling interval can have on the performance of the LSI method, compared to

what occurs in the FSI method. Thus, one considers the measure of performance

presented in (3.2), taking into consideration the new values of the AATS in LSI

(AATSLSI∗). From the results of QLSI∗/FSI, only for mean shifts, we can conclude

the following: when the lower sampling interval is truncated, the LSI
∗

method

is more effective than the FSI
∗

method for the same mean shifts; the increase in

the sampling interval is not proportional to the reduction in effectiveness of the

method; the FSI
∗

method detects large mean shifts more quickly than does the

LSI
∗

method, maintaining the effectiveness presented previously.

Comparison between the LSI
∗ and VSI

∗ sampling methods

Using a similar methodology, the LSI
∗

and VSI
∗

methods were compared

for the same and for new conditions. Considering a sample size of 5 units and

the same number of false alarms, we truncate the lower sampling interval in both

methods to the same values. To compare the effectiveness of the two methods, the

performance measure defined in (3.9) is used, replacing AATSLSI with AATSLSI∗

and AATSVSI with AATSVSI∗ . From the results presented in Table 5, for mean

shifts, we can draw the following conclusions:

i) In general, the performance of the LSI
∗

method improves when the

lower sampling interval gets larger for small shifts. In particular, when

λ = 1 and d1 ≥ 0.3, LSI
∗

is more effective than VSI
∗
.

ii) For moderate to large shifts, the performance of LSI
∗

is better than

VSI
∗
, except when the lower sampling interval increases.
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iii) When we use the VSI
∗

method, the increases obtained are significantly

greater than the reductions for the different sampling pairs.

Table 5: QLSI∗/VSI∗ (%), as a function of λ, for different values of d1

equal to the smaller sampling interval in VSI.

d1 (d1, d2)
λ

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 3.00

0.1
(0.1, 1.9) 0.1 −3.7 −14.6 −25.7 −15.4 9.3 23.9 29.6 31.5 32.1 32.2 32.3
(0.1, 1.5) 0.0 −2.3 −9.5 −19.4 −19.4 −4.9 7.3 12.8 14.7 15.3 15.4 15.5

0.2
(0.2, 1.9) 0.1 −2.7 −9.7 −14.5 −4.9 12.0 22.3 26.5 28.0 28.4 28.6 28.6
(0.2, 1.5) 0.0 −1.5 −5.9 −10.5 −8.3 0.7 7.6 10.8 11.8 12.2 12.3 12.3

0.3
(0.3, 1.9) 0.1 −1.8 −6.3 −8.0 −0.6 11.0 18.6 22.2 23.6 24.1 24.3 24.3
(0.3, 1.5) 0.0 −1.0 −3.5 −5.6 −3.6 1.6 5.6 7.5 8.3 8.6 8.6 8.6

0.4
(0.4, 1.9) 0.0 −1.3 −4.0 −4.4 0.8 8.5 14.2 17.3 18.7 19.3 19.4 19.5
(0.4, 1.5) 0.0 −0.6 −2.1 −3.0 −1.8 0.8 2.8 3.9 4.4 4.6 4.6 4.6

0.5
(0.5, 1.9) 0.0 −0.8 −2.5 −2.5 0.9 5.7 9.7 12.1 13.3 13.9 14.0 14.1
(0.5, 1.5) 0.0 −0.4 −1.2 −1.8 −1.4 −0.6 0.0 0.2 0.3 0.3 0.3 0.3

For the purpose of illustration, consider the case of the lower sampling

interval for the LSI
∗

method being truncated to d1 = 0.2. For the example given

at the end of section 3.2 and for a mean shift of magnitude λ = 1.5, we conclude

that the use of the LSI
∗

method allows us to reduce the malfunction period by

18 minutes, on average, compared to the FSI
∗

method, and by either 13 minutes

or 4 minutes, compared to the VSI
∗

method, depending on whether we use the

sampling pair (d1, d2) = (0.2, 1.9) or the sampling pair (d1, d2) = (0.2, 1.5). These

results demonstrate the good performance and sensitivity of the LSI
∗

method.

Results concerning the robustness of the method have been obtained by

Carmo et al. (2013) for a case in which the distribution of quality has a t-Student

distribution and another case in which the distribution of quality is a mixture of

two normal distributions with different standard deviations. In both cases the

performance of the LSI method is better than the performance of FSI and VSI

methods, and there are situations in which the LSI method detects mean shifts

more quickly than the VSI method.
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5. CONCLUSIONS

The LSI method detects small and moderate mean shifts in quality more

quickly than the FSI method. For large mean shifts, FSI is more efficient. How-

ever, the gains achieved with the use of LSI are greater. In a production system

in which the sampling costs are very significant (for example, in the production

of a touchscreen display for the iPhone 5; 44 U.S. dollars per unit), and in which

the quality changes are small or moderate, the use of LSI offers a competitive

advantage in reducing sampling and malfunction costs.

When we use the sample pair (d1, d2) = (0.1, 1.9) in VSI, the adaptive meth-

ods are subject to the same conditions. In other words, the smallest and largest

sampling intervals in the LSI method are approximately the same. In LSI, the

smallest interval is 0.095 and the largest interval is 1.907. For the sampling pairs

considered, LSI detects moderate and large mean shifts more quickly.

We consider the LSI method to be not very sensitive because it has a

similar performance to that of the non-truncated method for several mean shifts,

particularly when the smallest sample interval is smaller than three times the

original smallest interval.

For the reasons explained, and for simplicity, the use of the LSI method

can offer a competitive advantage in automating tasks and using nano-scale mea-

surement instruments.

Future research will involve a different approach to the calculation of E(G),

using different distributions for the lifetime of the system and assessing its impact.

We will extend the study of the statistical properties and performance to the use

of joint control charts (X̄-chart and S-chart or X̄-chart and R-chart) and special

control charts (CUSUM and EWMA charts) to compare the LSI method with

other adaptive methods (for example, VSS, VSSI, and VP).

Finally, it is our intention to conduct a study to determine the k value that

minimizes a cost function by production cycle.
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Técnica de Lisboa, Lisboa.

[13] Morais, M.C. and Pacheco, A. (2001). Ordenação Estocástica na Análise
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Abstract:

• The accuracy of a binary diagnostic test can easily be assessed by comparing the

sensitivity and specificity with the status of respondents. When the result of a diag-

nostic test is continuous, the assessment of accuracy depends on a specified threshold.

The receiver operating characteristic (ROC) curve, which includes all possible combi-

nations of sensitivity and specificity, provides an appropriate measure for evaluating

the overall accuracy of the diagnostic test. Nevertheless, in practice, a cutoff value is

still required to make easier its clinical usage easier. The determination of a proper

cutoff value depends on how important the practitioner views the specificity and sen-

sitivity. Given particular values of specificity and sensitivity, this paper derives the

optimal cutoff value under two parametric assumptions on the outcomes of the di-

agnostic test. Because the optimal cutoff value does not have a closed form, the

numerical results are tabulated for some parameter settings to find the optimal cutoff

value. Finally, real data are employed to illustrate the use of the proposed method.
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1. INTRODUCTION

A diagnostic test that results in a continuous value is often evaluated using

the receiver operating characteristic (ROC) curve. Let TP, FP, FN and TN

denote the true positive decision, false positive decision, false negative decision

and true negative decision, respectively. The following table provides 4 possible

diagnostic test decisions:

True status
Test result

Positive Negative

Case TP FN

Normal FP TN

Let P [TP] be the probability that a true positive decision is made, and let P [TN],

P [FP] and P [FN] be defined similarly. The true positive rate (TPR) and the true

negative rate (TNR) can be derived from P [TP], P [TN], P [FP] and P [FN] as

TPR =
P [TP]

P [D+]
,(1.1)

TNR =
P [TN]

P [D−]
,(1.2)

where P [D+] = P [TP] + P [FN] denotes the prevalence of a disease and P [D−] =

P [TN] + P [FP] = 1 − P [D+].

A ROC curve is constructed from different values for the TPR and FPR.

The determination of the TPR and FPR requires a cutoff value to classify the

normal and diseased populations when the outcome is continuous. The ROC

curve is then formed using TPRs and FPRs derived from all possible cutoff values.

However, for practical use, the continuous outcome has to be dichotomized such

that the investigator or practitioner can easily use it to discriminate the disease

status. Nevertheless, the ROC curve does not provide direct information on how

to determine such a cutoff value. It is thus important to find an optimal cutoff

value (OCV) such that the probabilities of correct decisions are maximized.

Let SD and SN denote the outcome of the diagnostic measure for the dis-

ease group and the normal group, respectively, and let FD and FN denote the

corresponding distribution functions. The ROC curve can be represented as

ROC(t) = F̄D(F̄−1
N (t)),

where t ∈ (0, 1), F̄D(t) = 1− FD(t) is the survival function of FD(t) and F̄N (t) is
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defined similarly. Because the FPR and TPR are functions of F̄D and F̄N as

FPR(c) = P [SN > c|N ] = 1 − FN (c) = F̄N (c),

TPR(c) = P [SD > c|D] = 1 − FD(c) = F̄D(c),

for a given cutoff c ∈ (−∞,∞), the ROC curve can be represented in terms of

the TPR and FPR.

To derive the OCV, an additional objective function is required. Three

objectives have been discussed in the literature to find the OCV (Akobeng [1];

Kumar [5]). The first objective function is defined as the distance from the ROC

curve to the point (0,1), that is,

C1(c) =

√

(1 − TPR(c))2 + (FPR(c))2(1.3)

and the OCV is the point at which C1(c) has the minimum. The second objective

function proposed by Youden [9] is the vertical distance from the line of equality

to the point on the ROC curve, which is

C2(c) = TPR(c) + TNR(c) − 1,(1.4)

and the OCV is the point that maximizes C2. C2(c) is known as the Youden

index. An alternative and equivalent representation of C2(c) is

|TPR(c) − (1 − TNR(c))|

expressed by Lee [6] and Krzanowski and Hand [4]. The third objective function

is a weighted function of the probability of four diagnostic decisions, defined by

Metz [8] as

(1.5) C3(c) = C0 + CTPP [TP] + CTNP [TN] + CFPP [FP] + CFNP [FN],

where C0 is the overhead cost, CTP represents the average cost of the medical

consequences of a true positive decision, and the remainder of the costs are defined

similarly. Based on (1.1) and (1.2), expression (1.5) can be rewritten as

C3(c) ={C0 + CFP × P [D−] + CFN × P [D+]}(1.6)

+ {[CFN − CTP] × P [D+]} × TPR(c)

+ {[CTN − CFP] × P [D−]} × TNR(c)

In particular, the first term on the right-hand side of (1.6) includes only the three

costs and the prevalence, which do not depend on the decision of a diagnostic test.

Because the determination of the OCV is not related to this term, it is neglected

in the following discussion. Thus, in terms of (1.6), the best cutoff value is the

one that minimizes C3. The critical value occurs at

∂TPR(c)

∂TNR(c)
= −(CTN − CFP) × P [D−]

(CFN − CTP) × P [D+]
,
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which is the slope of a line of isoutility or the tangent line in the ROC space.

Metz [8] concluded that the OCV on a ROC curve must be tangent to the highest

line of isoutility that intersects with the ROC curve.

The OCV derived from the first and second objective functions is deter-

mined empirically (Kumar [5]). Under the binormal model and assuming that

the slope of the tangent line to the ROC curve equals η, an explicit form for

the OCV under C3(c) is derived and is referred to as P252 in Halperm et al. [3].

However, the third objective function uses not only the cost for each decision but

also the prevalence of the disease. The latter can possibly be obtained empirically

using the existing data, whereas the cost of the medical consequences is difficult

to obtain. Thus, it is rarely used in the medical literature (Kumar [5]).

For a practitioner, sensitivity and specificity, which correspond to the TPR

and TNR, are commonly used measures, and the importance of these two mea-

sures depends on the purpose of the diagnostic test. Thus, rather than the equal

weight setting for the TPR and TNR as in (1.3) and (1.4), in this paper, we

suggest using a more general objective function,

C(c) =α × TPR(c) + β × TNR(c),(1.7)

where 0 < α, β < 1 and α + β = 1, to derive the OCV. The weight α can be

regarded as the relative cost for an additional cost of classifying a TP compared to

an additional cost of classifying a TN. Assuming the location and scale parametric

assumption, the OCV can be then obtained under C(c). In particular, when

α = 0, the objective function in (1.7) is the usual criterion for finding the OCV

by minimizing the FPR or maximizing the specificity. Conversely, when β = 0,

the objective function is the usual criterion for finding the OCV by maximizing

the sensitivity. Section 2 describes the basic definition of the ROC curve and

the derivation for the OCV. Section 3 presents the numerical results. Sections 4

and 5 provide a real application and discussions, respectively.

2. METHOD

Assume that FD and FN belong to a location and scale family. In other

words, both distributions can be expressed by a standard form, say F , with

different location and scale parameters. Let (µD, γD) and (µN , γN ) denote the

parameters for FD and FN , respectively. The FPR and TPR can be represented

in terms of F as

TPR(c) = P
[SD − µD

γD
>

c − µD

γD

]

= F
(µD − c

γD

)

(2.1)

FPR(c) = P
[SN − µN

γN
>

c − µN

γN

]

= F
(µN − c

γN

)

.(2.2)
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Let tp denote the critical value of F , i.e., 1 − F (tp) = p. Given FPR(c), the

following relationship is obtained:

tFPR = F−1
N (FPR(c)) = −c − µN

γN
,

and

(2.3) c = µN − γN × tFPR.

Additionally, given TPR(c), we have

tTPR = F−1
D (TPR(c)) = −c − µD

γD
,

and

(2.4) c = µD − γD × tTPR.

Given FPR and TPR, (2.3) and (2.4) provide the relationship between two critical

values as

tTPR =
µD − µN

γD
+

γN

γD
tFPR = a + btFPR,(2.5)

where a = (µD −µN )/γD and b = γN/γD. From (2.5), a linear relationship exists

between two critical values of FD and FN , where a is the intercept and b is the

slope. Given FPR(c), the ROC curve can be represented as

ROC(c) = P [SD > c] = F
(µD − c

γD

)

.(2.6)

Substituting the value of c defined in (2.3) into (2.6) yields

ROC(c) = P [SD > c] = F
(µD − µN + γN × tFPR

γD

)

= F (a + btFPR).

Under the location and scale family as defined in (2.1), (2.2) and (2.5),

(1.7) becomes

C(c) = αF
(

a + b
(µN − c

γN

))

+ βF
(c − µN

γN

)

.

The OCV can then be determined by finding the critical value of
dC
dc = 0, where

dC(c)

dc
= αf

(

a + b
(µN − c

γN

))

×
(

− b

γN

)

+ βf
(c − µN

γN

)

×
(

1

γN

)

(2.7)

and f(·) is the density function of F (·). The following theorem discusses two lo-

cation and scale families. The proof for Theorem 2.1 is provided in the Appendix,

and the proof for Theorem 2.2 is similar.
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Theorem 2.1. Assume that F (·) = Φ(·) is a standard normal distribution

function. To be consistent with the conventional notation, the scale parameters

are denoted by σD and σN . Then,

1. When b = 1, we obtain

OCV = µN +
a

2
σN − σN

a
log

(

1 − β

β

)

.(2.8)

2. When b 6= 1, we obtain

OCV =

T ±
√

T 2 − 2(1 − b2)R/σ2
N

(1 − b2)/σ2
N

,(2.9)

where

R =
µ2

N − (aσN + bµN )
2

2σ2
N

+ log(
αb

β
),(2.10)

T =
µN − abσN − b2µN

σ2
N

,(2.11)

and R and T have to satisfy the condition T 2 − 2(1 − b2
)R/σ2

N > 0.

Theorem 2.2. Assume that F (·) is a standard logistic distribution func-

tion, i.e.,

F (x) = [1 + exp(−x)]
−1 .

Then,

1. When b = 1, we obtain a closed form for the OCV as

OCV = −σD log(q),(2.12)

where

q =
(α − β) ±

√

αβ(exp(a) + exp(−a) − 2)
[

β exp

(

− µN

γN

)

− α exp

(

− µD

γN

)]

exp

(

µD+µN

γN

) .(2.13)

2. When b 6= 1, the OCV is found numerically by solving the following

nonlinear equation

β

γN
exp

(µN

γN

)

k
− 1

γN

(

exp

(bµN + aγN

γN

)

k
− 1

γD + 1

)2

=
αb

γN
exp

(

(bµN + aγN

σN

)

k
− 1

γD

(

exp

(µN

γN

)

k
− 1

γN + 1

)2
,(2.14)

where k = ec.
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2.1. Relationship between the objective function and cutoff values

As c increases, the TPR decreases and the TNR increases. Because we

assume that a case has a higher test value, the relative change in the TPR with

respect to c is more rapid than that in the TNR. Furthermore, as expected,

increasing µD means a smaller overlapping area in the densities for the normal

and diseased populations and results in an increase in the TPR. When µD is

fixed, the influence of σD on the TPR depends on c. When c is closer to µD,

increasing σD reduces the TPR.

To understand how the parametric assumption influences the relationship

between the objective function and the OCV, the basic features for the binormal

and bilogistic models are discussed in the following. The common feature is that

both distributions are symmetric about the location parameter. Nevertheless,

the scale parameter in the normal distribution is the standard deviation, whereas

the scale parameter in the logistic distribution is equal to the standard deviation

times
√

3/π. Finally, the kurtosis of the normal distribution equals 3, whereas

that of the logistic distribution equals 4.2.

Assuming that µN = 0 and σN = 1, Figures 1(a)–1(b) display the normal

and logistic density functions for the normal and diseased populations when b = 1,

and Figures 2(a)–2(d) display the situations when b 6= 1, where the solid line

represents the normal distribution and the dashed line represents the logistic

distribution and the left curve is for the control population and the right curve

is for the diseased population. Under the same settings of µD and σD, the tail

probability for the logistic distribution is slightly larger than that for the normal

distribution. Furthermore, the mode of the logistic distribution is higher than

that of the normal distribution because it has a larger kurtosis. These distinct

features influence the TPR and TNR as shown in Table 1. Furthermore, due to

a more concentrated feature for the logistic distribution, under the considered

situation, the TNR of the logistic distribution is slightly larger than that of the

normal distribution when c is closer to the µN , whereas for larger c, the TNR

of the logistic distribution is slightly smaller. Thus, under the assumption that

µN < µD, to have a higher TPR, the cutoff value for the logistic distribution is

smaller than that for the normal distribution. In contrast, when investigating the

TNR, the cutoff values for the logistic distribution might not be smaller.

The proposed objective function is a weighted function of the TPR and TNR.

Figures 3(a)–3(b) show the relationship between the objective function C and the

cutoff value c for various βs assuming that µN = 0, σN = 1 and µD = 1, σD = 1.

For the binormal assumption, Figure 3(a) shows that when β = 0.5 and OCV=0.5,

we obtain C(OCV) = 0.6915. When β = 0.7, that is, the specificity is more

important than the sensitivity, we obtain OCV=1.3473 and C(OCV) = 0.7470.
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(a) µD = 0.5 and σD = 1. (b) µD = 1 and σD = 1.

Figure 1: The probability density functions for normal distribution and logistic dis-

tributions for µN = 0, σN = 1 and b = 1, where the solid line represents

the normal curve and the dashed line represents the logistic curve.

(a) µD = 0.5 and σD = 1.5. (b) µD = 1.3 and σD = 1.5.

(c) µD = 0.5 and σD = 0.3. (d) µD = 1 and σD = 0.3.

Figure 2: The probability density functions for the normal distribution and logistic

distribution for µN = 0, σN = 1 and b 6= 1, where the solid line represents

the normal curve and the dashed line represents the logistic curve.
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Table 1: TPR and TNR under c = 0.5, 1.5, 2 for the binormal model

and bilogistic model assuming µN = 0 and σN = 1.

µD σD c
Normal distribution Logistic distribution

TPR TNR TPR TNR

0.5 1
0.5 0.5000 0.6915 0.5000 0.7124
2 0.0668 0.9772 0.0618 0.9741

1 1
0.5 0.6915 0.6915 0.7124 0.7124
2 0.1587 0.9772 0.1402 0.9741

0.5 1.5
0.5 0.5000 0.6915 0.5000 0.7124
1.5 0.2525 0.9331 0.2298 0.9382

1 1.5
0.5 0.6306 0.6915 0.6467 0.7124
1.5 0.3694 0.9332 0.3533 0.9382

0.5 0.3
0.5 0.5000 0.6915 0.5000 0.7124
1.5 0.0004 0.9332 0.0024 0.9382

1 0.3
0.5 0.9522 0.6915 0.9536 0.7124
1.5 0.0478 0.9332 0.0464 0.9382

Conversely, when β = 0.3, that is, the sensitivity is more important than the

specificity, we obtain OCV=-0.3473 and C(OCV) = 0.7470. Figure 3(b) shows

a similar pattern for when the bilogistic model is considered, but C(OCV) is

slightly larger and the OCV is moving towards small values. This result arises

from a larger kurtosis for the logistic distribution.

(a) Binormal model. (b) Bilogistic model.

Figure 3: Relationship between cutoff values and C under the binormal

model and bilogistic model under various combinations of (α, β),

where ◦ indicates the point at (OCV, C(OCV)).
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2.2. Special cases

Depending on the purpose of the test, the investigator might be more in-

terested in the specificity as long as the sensitivity reaches a specific limit, or

vice versa. That is, an investigator might want to have a diagnostic test in which

the sensitivity is at least larger than a pre-specified value L, where 0 < L < 1.

Then, the OCV is obtained by maximizing the specificity under the constraint

that the sensitivity is larger than L, i.e., TPR ≥ L. Likewise, the OCV can be

obtained by maximizing the sensitivity under the constraint that the specificity

is larger than L, i.e., TNR ≥ L. The following derives the boundary for the TPR

and TNR under the binormal and bilogistic models. The following proofs can be

obtained in a straightforward manner.

Theorem 2.3. Assume that F (·) is a standard normal distribution func-

tion and that L > 0 is a pre-specified constant. Then,

1. When L ≤ TPR, upper bounds of c and the TNR are

c ≤ µD − σNΦ
−1

(L),

TNR ≤ Φ

(µD − µN − σNΦ
−1

(L)

σN

)

.

Thus, the OCV equals µD − σNΦ
−1

(L).

2. When L ≤ TNR, a lower bound of c and an upper bound of the TNR

are given as

c ≥ µN − σNΦ
−1

(1 − L),

TNR ≤ Φ

(µD − µN + σNΦ
−1

(1 − L)

σN

)

.

Thus, the OCV equals µN − σNΦ
−1

(1 − L).

Theorem 2.4. Assume that F (·) is a bilogistic distribution function and

that L > 0 is a pre-specified constant. Then,

1. When L ≤ TPR, upper bounds of c and the TNR are

c ≤ µD − γN log(
L

1 − L
),

TNR ≤ 1

1 + exp
(

µN−µD+γN log
(

L
1−L

)

γN

)

.

Thus, the OCV equals µD − γN log(
L

1−L).
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2. When L ≤ TNR, a lower bound of c and an upper bound of the TNR

are given as

c ≥ µN − γN log

(

1 − L

L

)

,

TNR ≤
exp(

µD−µN+γN log( 1−L
L

)

γN
)

1 + exp

(

µD−µN+γN log( 1−L
L

)

σN

)
.

Thus, the OCV equals µN − γN log

(

1−L
L

)

.

3. NUMERICAL RESULTS

Based on the objective function defined in (1.6), Section 2 derives the OCV

under the binormal and bilogistic models. When the binormal model is assumed,

the OCV can be obtained explicitly, whereas under the bilogistic model, the OCV

can be obtained explicitly only when b=1. The following discusses the OCV, TPR,

and TNR under various settings for β and the location and scale parameters.

For simplicity, the standard normal distribution is assumed for the control

population, i.e., µN = 0 and σN = 1. Because the formula for determining the

OCV varies with b, the following discussion considers b = 1 and b 6= 1 separately.

For each scenario, the parameter setting is classified into two situations. The first

scenario considers different values of µD given σD. The second scenario considers

different values of σD given µD. Furthermore, the settings for µD and σD are

discussed according to the effect size ES = µD/σD. Additionally, µD is assumed

to be larger than µN . Moreover, because β = 0 and β = 1 correspond to special

cases discussed in Section 2.2, the numerical results only consider 0.1 ≤ β ≤ 0.9.

Similar results for the bilogistic model are given in the Supplement.

3.1. Situation I when σD is fixed and µD is varied

The first situation discusses the numerical results when σD is fixed and

ES is varied. For ES < 1, µD equals 0.5, 0.7 and 0.9, whereas for 1 < ES, µD

equals 1.5, 2 and 2.5. Figures 4(a)–4(b) display the relationship between TPR

and TNR with respect to β when µD is varied and σD = 1. When β increases,

the investigator is more interested in the TNR. As expected, the TNR increases

while the TPR decreases. Increasing µD means that the difference in the testing

result between two groups becomes more evident. Furthermore, for a fixed β
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and σD, the OCV is a function of µD, as given in (2.8). Thus, as µD increases,

the OCV increases, which corresponds to an increase in the TNR and a decrease

in the TPR. Furthermore, due to a symmetric property, the OCV is located at

TPR=TNR when β = 0.5. Table 2 presents the OCV, TPR and TPR for each

scenario.

(a) ES < 1. (b) 1 < ES.

Figure 4: TNR and TPR at the OCV for various combinations of µD,

β and ES under the binormal model and b = 1.

Table 2: Numerical results for TNR, TPR and OCV under the binormal model

with various µDs and σD = 1.

ES µD σD Measures
β

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

OCV −4.1444 −2.5226 −1.4446 −0.5609 0.2500 1.0609 1.9446 3.0226 4.6444
0.5 0.5 1 TPR 1.0000 0.9987 0.9741 0.8556 0.5987 0.2874 0.0743 0.0058 0.0000

TNR 0.0000 0.0058 0.0743 0.2874 0.5987 0.8556 0.9741 0.9987 1.0000

OCV −2.7889 −1.6304 −0.8604 −0.2292 0.3500 0.9292 1.5604 2.3304 3.4889
0.7 0.7 1 TPR 0.9998 0.9901 0.9407 0.8236 0.6368 0.4093 0.1948 0.0515 0.0026

TNR 0.0026 0.0515 0.1948 0.4093 0.6368 0.8236 0.9407 0.9901 0.9998

OCV −1.9914 −1.0903 −0.4914 −0.0005 0.4500 0.9005 1.3914 1.9903 2.8914
0.9 0.9 1 TPR 0.9981 0.9767 0.9180 0.8161 0.6736 0.4998 0.3116 0.1378 0.0232

TNR 0.0232 0.1378 0.3116 0.4998 0.6736 0.8161 0.9180 0.9767 0.9981

OCV −0.7148 −0.1742 0.1851 0.4797 0.7500 1.0203 1.3149 1.6742 2.2148
1.5 1.5 1 TPR 0.9866 0.9530 0.9057 0.8462 0.7734 0.6843 0.5734 0.4309 0.2374

TNR 0.2374 0.4309 0.5734 0.6843 0.7734 0.8462 0.9057 0.9530 0.9866

OCV −0.0986 0.3069 0.5764 0.7973 1.0000 1.2027 1.4236 1.6931 2.0986
2 2 1 TPR 0.9821 0.9548 0.9227 0.8855 0.8413 0.7874 0.7178 0.6205 0.4607

TNR 0.4607 0.6205 0.7178 0.7874 0.8413 0.8855 0.9227 0.9548 0.9821

OCV 0.3711 0.6955 0.9111 1.0878 1.2500 1.4122 1.5889 1.8045 2.1289
2.5 2.5 1 TPR 0.9834 0.9644 0.9440 0.9211 0.8944 0.8617 0.8189 0.7566 0.6447

TNR 0.6447 0.7566 0.8189 0.8617 0.8944 0.9211 0.9440 0.9644 0.9834
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Figures 5(a)–5(d) display the TPR and TNR at the OCV when β is varied

and σD 6= 1. The pattern for the TPR and TNR with respect to β is no longer

symmetric. Similar to σD = 1, as β increases, the TPR decreases and the TNR

increases. However, the relationship between the TPR and TNR depends on σD,

ES and β. When ES < 1 and σD = 0.5, the TPR is always larger than the TNR

regardless of β. This is because σD = 0.5 means that the result obtained from the

diseased group is more homogeneous, and the diagnostic test has a higher ability

to detect a case even if ES < 1. However, when ES < 1 and σD = 1.5, the TPR

is larger than the TNR only if β < 0.4. Furthermore, when ES > 1, the TPR is

larger than the TNR only for some βs.

(a) ES < 1 & σD = 0.5. (b) 1 < ES & σD = 0.5.

(c) ES < 1 & σD = 1.5. (d) 1 < ES & σD = 1.5.

Figure 5: TNR and TPR at the OCV when µD, σD, β and ES are varied,

b 6= 1 and the binormal model are assumed.
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3.2. Situation II when σD is varied and µD is fixed

Situation II provides numerical results for OCV, TPR and TNR when µD =

0.5 and σD is varied. When µD = 0.5, ES < 1 means that σD is larger than

σN = 1, which means that it is easier to conclude a FN. Figure 6(a) shows the

relationship between the TPR and TNR at the OCV with respect to β when σD

is varied and ES < 1. The pattern of change for the TPR with respect to σD

is related to β. When β increases, TPR expectedly decreases because β is the

weight for the TNR. Nevertheless, when 0.5 < β, the TPR becomes very small

and slightly increases as σD increases. In addition, the TNR is large as long as

0.6 < β, as listed in Figure 6(a).

When µD = 0.5, 1 < ES means that σD is smaller than σN = 1, which

indicates that it is easier to conclude a TP. Figure 6(b) displays the relationship

between the TPR and TNR with respect to β when σD is varied and 1 < ES.

Expectedly, as σD increases, the TPR decreases regardless of β. Unlike ES < 1,

the relationship between the TNR and σD depends on β. When β < 0.6, the

TNR decreases as σD increases, whereas when 0.6 < β, the TNR increases as σD

increases.

(a) ES < 1. (b) 1 < ES.

Figure 6: TNR and TPR at the OCV for various combinations of σD,

β and ES under the binormal model and µD = 0.5.

As β increases, the TNR is more important and results in a larger OCV.

Table 3 demonstrates this trend. The impact of σD on the OCV is related to ES.

When ES < 1, as σD increases, the OCV increases. Nevertheless, when ES > 1,

the trend reverses.
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Table 3: The relationship among OCV, TNR and TPR when the binormal

model is assumed, µD = 0.5 and σD is varied.

ES µD σD Measures
β

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

OCV — — — −0.5684 0.4400 1.1730 1.8288 2.5112 3.3878
0.45 0.5 1.1 TPR — — — 0.8343 0.5218 0.2703 0.1135 0.0337 0.0043

TNR — — — 0.2849 0.6700 0.8796 0.9663 0.9940 0.9996

OCV — — — −0.2929 0.7493 1.3147 1.7900 2.2693 2.8720
0.38 0.5 1.3 TPR — — — 0.7290 0.4239 0.2654 0.1605 0.0868 0.0340

TNR — — — 0.3848 0.7732 0.9057 0.9633 0.9884 0.9980

OCV — — — 0.2000 0.9490 1.4109 1.8068 2.2097 2.7192
0.33 0.5 1.5 TPR — — — 0.5793 0.3824 0.2718 0.1918 0.1272 0.0695

TNR — — — 0.5793 0.8287 0.9209 0.9646 0.9864 0.9967

OCV −0.2872 −0.1851 −0.1085 −0.0384 0.0344 0.1192 0.2368 — —
1.67 0.5 0.3 TPR 0.9957 0.9888 0.9787 0.9636 0.9397 0.8978 0.8098 — —

TNR 0.3870 0.4266 0.4568 0.4847 0.5137 0.5474 0.5936 — —

OCV −0.5196 −0.3711 −0.2583 −0.1532 −0.0417 0.0940 0.3072 — —
1.25 0.5 0.4 TPR 0.9946 0.9853 0.9710 0.9488 0.9122 0.8450 0.6851 — —

TNR 0.3017 0.3553 0.3981 0.4391 0.4833 0.5374 0.6207 — —

OCV −0.7609 −0.5570 −0.4001 −0.2518 −0.0904 0.1163 0.5753 — —
1 0.5 0.5 TPR 0.9942 0.9827 0.9641 0.9336 0.8812 0.7786 0.4401 — —

TNR 0.2234 0.2888 0.3445 0.4006 0.4640 0.5463 0.7175 — —

— Numerical data are not available.

4. CASE STUDY

Early detection may improve the survival of patients with lung cancer.

Chian et al. (2015) investigated peripheral blood mononuclear cell (PBMC)-

derived gene expression signatures for their potential in the early detection of

non-small cell lung cancer (NSCLC). PBMCs were obtained from 187 patients

with NSCLC and from 310 non-cancer controls based on an age- and gender-

matched case-control study. Controlling for gender, age and smoking status,

15 NSCLC-associated molecular markers were used to construct a risk score to

distinguish subjects with lung cancer from controls. Detailed markers and the

model construction are presented in Chian et al. (2016).

From the preventive perspective in health management, a higher sensitivity

is preferred such that the disease can be detected earlier. Thus, β might be

set to be smaller than 0.5. Nonetheless, cancer-specific clinicians often examine

highly suspicious subjects. Thus, they may wish to have a higher specificity

test. Figure 7 presents the histograms of the risk scores for the case and control

groups for the PBMC data. The bilogistic model appears to be appropriate for

these data. The maximum likelihood estimators of µ and γ are obtained for

each group. The corresponding estimates of µ and γ for the case are 1.9911 and

1.5782 and those for the control are −2.3620 and 0.9739. Based on these es-

timates, the logistic density curves are plotted on top of the histogram in Figure 7.
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(a) Case. (b) Control.

Figure 7: Histograms for risk scores for case and control groups for PBMC data,

where the solid curve is the logistic density curve.

Under the bilogistic assumption, Table 4 lists the OCVs for β ranging from 0.1

to 0.9 for the risk score derived from the PBMC data. Figure 8 presents the cor-

responding TPR and TNR. For instance, when β = 0.4, the OCV equals −0.634.

The test would expect to have equal chances at approximately 0.85 to identify a

true positive or a true negative. Nevertheless, when β = 0.6, the test would have

a higher chance to find a true negative.

Table 4: OCV for the PBMC data.

β 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

OCV −2.864 −1.565 −1.027 −0.634 −0.291 0.044 0.409 0.861 1.581

Figure 8: TPR and TNR under various βs for the PBMC data.
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5. DISCUSSION AND CONCLUSION

The determination of the cutoff value is practically important. Because the

ROC curve includes two important measures, TPR and TNR, to obtain the opti-

mal operating point (OOP) or OCV, an additional objective function is required.

One of two existing criteria can be regarded as the special case of the proposed

criterion. The objective function C3 requires information about the cost for the

incorrect decision, which cannot be easily obtained. Furthermore, the OCV for

this criterion is determined by setting the slope of the tangent line to the ROC

curve to a pre-specified value (Halperm [3]). Because the slope is a function of

the prevalence of the disease and costs, it is difficult to explain clinically (Kumar

[5]).

The OCV is often obtained empirically (Kumar [5]). This paper derives

the closed form for the OCV under the location and scale family. The binormal

model is the most commonly used parametric assumption for the ROC curve.

Under such an assumption, this paper provides exact formulas for the OCV.

Furthermore, numerical results are presented under various scenarios. When

b = 1, the TPR and TNR are related to the weight (β). In particular, increasing

β means increasing the TNR. Nevertheless, when b 6= 1, regardless of β, the TNR

might not be higher than 0.5. In particular, when the binomial model is violated,

this paper provides another parametric choice, the bilogistic model. However,

there is no closed form for the OCV. This paper provides a nonlinear equation

for determining the OCV. In addition to discussing the OCV for the bilogistic

model, the difference between these two parametric models is also addressed. The

result of this paper can provide guidance for practitioners to choose the OCV.

Rather than choosing the OCV based on the sensitivity and specificity,

Linnet et al. [7] suggested using the likelihood ratio

LR(c) =
f(

µD−c
γD

)

f(
µN−c

γN
)

(5.1)

as an alternative for interpreting the test result. If (5.1) exceeds 1, then the

relative frequency of the distribution of diseased individuals exceeds that of the

normal individuals. In other words, given the index test result c, a respondent is

more likely to have the disease. Their result can also be extended to the location

and scale family.
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APPENDIX: Proof of Theorem 2.1

Assume that F is the standard normal distribution function. To be con-

sistent with the conventional notation, γD and γN are replaced by σD and σN ,

respectively. Therefore, (2.7) becomes

∂C(c)

∂c
=

−αb√
2πσN

exp

(

−
[a +

b(µN−c)
σN

]
2

2

)

+
β√

2πbσN

exp

(

− b2
(

c − µN

)2

2σ2
N

)

(A.1)

and set
∂C(c)

∂c = 0 to obtain the OCV. An explicit formula for OCV can be deter-

mined and is dependent on b.

When b = 1, i.e., σ2
N = σ2

D, the objective function and the corresponding

derivative with respect to c are

C = αΦ

(

a +
µN − c

σD

)

+ βΦ(
c − µN

σD
)(A.2)

and

∂C

∂c
=

−α√
2πσD

exp

(

−1

2

[

a +
µN − c

σD

]2
)

+
β√

2πσD

exp

(

−1

2

(c − µN

σD

)2
)

.(A.3)

Let
∂C
∂c = 0. We have

−αb exp

(

− [aσD + µN − c]2

2σ2
N

)

+ β exp

(

−(c − µN )
2

2σ2
D

)

= 0,

which implies

log

(α

β

)

− [aσD + (µN − c)]2

2σ2
D

+
(c − µN )

2

2σ2
D

= 0.(A.4)

After simplifying the preceding equation, we obtain

2(µD − µN )c + µ2
N − µ2

D

2σ2
D

+ log(
α

β
) = 0

and the OCV as given in (2.8).

When b 6= 1, the objective function and the corresponding derivative with

respect to c are

C = αΦ

(

a + b(
µN − c

σN
)

)

+ βΦ

(c − µN

σN

)

and

∂C

∂c
=

−αb√
2πσN

exp

(

−1

2

[

a + b

(

µN − c

σN

)]2
)

+
β√

2πσN

exp

(

−1

2

[

c − µN

σN

]2
)

.
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Let
∂C
∂c = 0. We obtain

−αb exp

(

− [aσN + b(µN − c)]2

2σ2
N

)

+ β exp

[

−(c − µN )
2

2σ2
N

]

= 0,

which implies

log(
αb

β
) − [aσN + b(µN − c)]2

2σ2
N

+
(c − µN )

2

2σ2
N

= 0.(A.5)

Rearranging (A.5), we obtain

(1 − b2
)

2σ2
N

c2 − (µN − abσN − b2µN )

σ2
N

c +
µ2

N − (aσN + bµN )
2

2σ2
N

+ log(
αb

β
) = 0

and the OCV is equal to

c =

T ±
√

T 2 − 2(1 − b2)R/σ2
N

(1 − b2)/σ2
N

(A.6)

where R and T are defined in (2.10) and (2.11), respectively.
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1. INTRODUCTION

Extreme value theory deals with the asymptotic behavior of extreme ob-

servations in a sample of realizations of a random variable. This theory can be

applied to the prediction of the occurrence of rare events such as high flood levels,

large jumps in the stock markets and sizeable insurance claims. It is based on

the extremal types theorem which states that exactly three types of distributions,

namely the Gumbel, Fréchet and Weibull models, referred to as types I, II and

III extreme value distributions, can model the limiting distribution of properly

normalized maxima (or minima) of sequences of independent and identically dis-

tributed random variables. As the generalized extreme value (GEV) distribution,

also called the Fisher–Tippett [10] distribution, encompasses all three types, it can

be utilized as an approximation to model the maxima of long (finite) sequences

of random variables. The GEV and Gumbel distributions are widely utilized in

finance, actuarial science, hydrology, economics, material sciences, telecommuni-

cations, engineering, time series modelling, risk management, reliability analysis

as well as several other fields of scientific investigation involving extreme events.

For informative scholarly works on extreme value distributions and related results,

the reader is referred to [5], [12], [15] and [7].

Being a limiting distribution, the GEV model may prove somewhat inad-

equate in practice, and generalizations thereof ought to provide greater flexibil-

ity for modeling purposes.The extended models being proposed in this paper,

namely, the q-generalized extreme value and q-Gumbel distributions, are in fact

q-analogues of the distributions of origin which are re-expressed in terms of an

additional parameter denoted by q.

Mathai [17] developed a pathway model involving superstatistics, which

arise in statistical mechanics in connection with the study of nonlinear and non-

equilibrium systems. As explained for example in [8, 28], such systems exhibit

spatio-temporal dynamics that are inhomogeneous and can be described by a“su-

perposition of several statistics on different scales”. The non-equilibrium steady-

state macroscopic systems being considered are assumed to be made up of a large

number of smaller cells that are temporarily in local equilibrium; moreover, each

of these cells can take on a given value x of the variable of interest with probability

density function g(x) wherefrom one can determine the generalized Boltzmann

factor, B(ǫ) =
∫∞
0 e

−ǫxg(x) dx, ǫ denoting the energy of a microstate occurring

within each cell. Such distributions are related to Tsallis statistics [27] which find

applications in statistical mechanics, turbulence studies and Monte Carlo com-

putational methods. Recently, several q-type superstatistical distributions such

as the q-exponential, q-Weibull and q-logistic were developed in the context of

statistical mechanics, information theory and reliability modelling, as discussed

for instance in [30, 31, 20, 18, 14] and [21].
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The cumulative distribution function (cdf) and probability density function

(pdf) of the GEV distribution, including the Gumbel distribution as a limiting

case wherein ξ → 0, are respectively given by

(1.1) F1(x) = F1(x;µ, σ, ξ) =



























exp

[

−
(

1 + ξ

(

x− µ

σ

))−1/ξ
]

, ξ 6= 0 ,

exp

[

− exp

(

−
(

x− µ

σ

))]

, ξ → 0 ,

and

f1(x) = f1(x;µ, σ, ξ) =



























































1

σ

(

1 + ξ

(

x− µ

σ

))(−1/ξ)−1

× exp

[

−
(

1 + ξ

(

x− µ

σ

))−1/ξ
]

, ξ 6= 0 ,

1

σ
exp

[

− exp

(

−
(

x− µ

σ

))]

× exp

(

−
(

x− µ

σ

))

, ξ → 0 ,

where µ is a location parameter, σ is a positive scale parameter and ξ is the shape

parameter. The support of the distribution is

(1.2) x ∈























(µ− σ/ξ,∞) , ξ > 0 ,

(−∞,∞) , ξ → 0 ,

(−∞, µ− σ/ξ) , ξ < 0 .

On reparameterizing the GEV distribution by setting m = µ/σ and s = σ−1

in (1.1) and (1.2), one has the following representations of the cdf and pdf:

(1.3) F2(x; s,m, ξ) =















exp

[

−
(

1 + ξ(sx−m)
)−1/ξ

]

, ξ 6= 0 ,

exp

[

− exp
(

−(sx−m)
)

]

, ξ → 0 ,

and

f2(x; s,m, ξ) =



































s
(

1 + ξ(sx−m)
)(−1/ξ)−1

× exp

[

−
(

1 + ξ(sx−m)
)−1/ξ

]

, ξ 6= 0 ,

s exp

[

− exp
(

−(sx−m)
)

]

× exp
(

−(sx−m)
)

, ξ → 0 .
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The support then becomes

(1.4) x ∈



































(

m

s
− 1

ξ s
,∞
)

, ξ > 0 ,

(−∞,∞) , ξ → 0 ,

(

−∞,
m

s
− 1

ξ s

)

, ξ < 0 .

Paralleling the pathway approach advocated by Mathai [17], we now in-

troduce the q-analogues of the GEV and Weibull distributions, namely, the q-

generalized extreme value (q-GEV) and q-Gumbel distributions. The cdf and pdf

of the q-GEV and q-Gumbel (obtained by letting ξ → 0 in the q-GEV model)

distributions are respectively given by

(1.5)

F (x) = F (x; s,m, ξ, q) =



















[

1 + q
(

ξ(sx−m) + 1
)− 1

ξ

]− 1

q

, ξ 6= 0 , q 6= 0 ,

[

1 + q e
−(sx−m)

]− 1

q
, ξ → 0 , q 6= 0 ,

and

f(x) = f(x; s,m, ξ, q) =































s
(

1 + ξ(sx−m)
)− 1

ξ
−1

×
[

1 + q
(

ξ(sx−m) + 1
)− 1

ξ

]− 1

q
−1

, ξ 6=0 , q 6=0 ,

sem−sx
[

1 + q e
m−sx

]− 1

q
−1
, ξ→0 , q 6=0 ,

where the support of the distributions is as follows:

(1.6) x ∈



































































































(

m

s
− 1

ξ s
,∞
)

, q > 0 , ξ > 0 ,

(

−∞,
m

s
− 1

ξ s

)

, q > 0 , ξ < 0 ,

(

(−q)ξ − 1

ξ s
+
m

s
,∞
)

, q < 0 , ξ > 0 ,

(

(−q)ξ − 1

ξ s
+
m

s
,
m

s
− 1

ξ s

)

, q < 0 , ξ < 0 ,

(−∞,∞) , ξ → 0 , q > 0 ,

(

m+ ln(−q)
s

,∞
)

, ξ → 0 , q < 0 .

The intervals specifying the supports of these distributions are such that the terms

being raised to non-integer powers remain positive for the respective domains of

q and ξ.
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The effects of the parameters q and ξ on the shape of the distributions

are illustrated graphically in Figures 1 to 5. Plots of the hazard rates of X are

displayed in Figures 6 and 7 for certain parameter values. These plots illustrate

the impressive versatility of the proposed models.

Figure 1: Plots of the q-GEV density function for certain parameter values

(q > 0, ξ > 0).

Figure 2: Plots of the q-GEV density function for certain parameter values

(q > 0, ξ < 0).

Figure 3: Plots of the q-GEV density function for certain parameter values

(q < 0, ξ > 0).
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Figure 4: Plots of the q-GEV density function for certain parameter values

(q < 0, ξ < 0).

Figure 5: Plots of the q-Gumbel density function for certain parameter values.

Right panel: q > 0; Left panel: q < 0.

Figure 6: Plots of the q-GEV hazard rates for certain parameter values.

Right panel: ξ < 0, q > 0; Left panel: ξ > 0, q > 0.
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Figure 7: Plots of the q-GEV (left panel) and q-Gumbel (right panel)

hazard rates for certain parameter values.

Remark 1.1. The GEV and Gumbel distributions are respectively obtained

as limiting cases of the q-GEV and q-Gumbel distributionsby letting q approach zero.

The paper is organized as follows. Section 2 contains computable represen-

tations of certain statistical functions of the q-GEV and q-Gumbel distributions.

Section 3 explains how to determine the maximum likelihood estimators of the

model parameters. In Section 4, the proposed distributions as well as three re-

lated models are fitted to an actual data set, and several statistics are utilized

to assess goodness of fit. A Monte Carlo simulation study is carried out in Sec-

tion 5 to verify the accuracy of the maximum likelihood estimates. Finally, some

concluding remarks are included in the last section.

2. CERTAIN STATISTICAL FUNCTIONS

This section includes certain computable representations of the ordinary

moments and the L-moments of the q-Gumbel (s,m, q) and q-GEV(s,m, ξ, q) ran-

dom variables, which were obtained by making use of the symbolic computation

package Mathematica. Closed form representations of their quantile functions

as well as the moment-generating function of the q-Gumbel distribution are also

provided. Whenever such closed form representations could be determined, the

numerical results were found to agree to at least five decimals with those eval-

uated by numerical integration. Thus, numerical integration can arguably be

employed to evaluate any required statistical function with great accuracy.The

following identity can be particularly useful for evaluating the expected value of

an integrable function of a continuous random variable denoted by W (X):

E[W (X)] =

∫ ∞

−∞
W (x) f(x) dx =

∫ 1

0
W (QX(p)) dp ,

where f(x) is the pdf of X and QX(p) denotes the quantile function of X as

defined in Section 2.1.
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2.1. The quantile function

The quantile function is frequently utilized for determining confidence in-

tervals or eliciting certain properties of a distribution. In order to obtain the

quantile function of a random variable X, that is,

QX(p) = inf

{

x ∈ R : p ≤ F (x)
}

, p ∈ (0, 1) ,

one has to solve the equation F (x) = p with respect to x for some fixed p ∈ (0, 1),

where F (x) denotes the cdf of X.

The following quantile functions of the q-GEV (ξ 6= 0) and q-Gumbel (ξ→ 0)

can be readily obtained from their cdf’s as specified by Equation (1.5):

xp ≡ QX(p) = F−1
(p) =



























m

s
+

1

sξ

[

(

p−q − 1

q

)−ξ

− 1

]

, ξ 6= 0 ,

m

s
− 1

s
ln

(

p−q − 1

q

)

, ξ → 0 .

(2.1)

2.2. Moments

Many key characteristics of a distribution can be inferred from its central

moments. We first determine conditions under which the integer moments of the

q-GEV distribution are finite. In light of the relationship given in the introduction

of this section and the representation of quantile function of the q-GEV distri-

bution specified by Equation (2.1), the kth
moment of this distribution can be

evaluated as
∫ 1

0

(

1

ξ

)k
(

(

p−q − 1

q

)−ξ

− 1

)k

dp .

It is assumed without any loss of generality that m = 0 and s = 1. On applying

the binomial expansion to
((p−q−1

q

)−ξ − 1
)k

, the kth
moment is expressible as a

linear combination of the integrals

∫ 1

0

(

p−q − 1

q

)j(−ξ)

dp , j = 0, 1, ..., k .

Letting τ = ξ j and integrating, Mathematica provides the following condition

for the existence of the integral when q is positive: −1
q < τ < 1 or ξ j < 1 and

ξ j > −1/q.

If q is negative, the condition for the existence of the kth
moment is τ < 1, that is,

ξ j < 1, j = 1, ..., k. Thus the conditions for the existence of the positive integer
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moments of the q-GEV distribution are as follows: ξ < 1
k whenever q > 0 and

ξ > 0; ξ > −1/(kq) whenever q > 0 and ξ < 0; ξ < 1/k whenever q < 0 and ξ > 0;

no requirement being necessary when q and ξ are both negative.

Moreover, as in the case of the Gumbel distribution, the positive integer moments

of the q-Gumbel distribution are finite whether q is positive or negative.

As determined by symbolic computations, the nth
ordinary moment of the q-GEV

distribution can be expressed as follows:

E(Xn
) =

(−1)
n

ξn
−
∑n−1

i=0 (−1)
i+1
(

n
i

)

Γ
(

1 − (n− i) ξ
)

(

1
q

)1−ξ(n−i)

ξn Γ

(

1 +
1
q

)

× Γ

(

(n− i) ξ +
1

q

)

, q > 0 ,

=
1

sn

[

(mξ − 1)
n

ξn
− Γ

(

q − 1

q

) n−1
∑

i=0

ci (mξ − 1)
i
(−q)ξ(n−i)

ξn−1 Γ
(

−(n− i)ξ − 1
q + 1

)

×
(

Ii6=0 − (1/ξ) Ii=0

)

Γ
(

Ii=0 − (n− i) ξ
)

]

, q < 0 ,

where I denotes the indicator function and the ci’s are such that ci = 1 if i = 0,

ci = n!/(i! (n− i− 1)!) if 1 ≤ i ≤ (n− 1)/2 and ci = n!/i! if i > (n− 1)/2.

A necessary condition for the existence of the nth
moment of X is ξ < 1/n.

The representation obtained for q < 0 also requires that qξ be greater than −(1/n).

As previously pointed out, numerical integration will provide accurate results

when a closed form representation is unavailable.

It should be noted that, for instance, letting Y have a q-Gumbel distribution

with pdf f(y; 1, 0, q), is straightforward to determine the hth
moment of X =

(m+ Y )/s — whose pdf is f(x; s,m, q) — in terms of the first h moments of Y

since

E(Xh
) =

1

sh

h
∑

j=0

(

h

j

)

mh−j E(Y j
) .

When q is positive, the hth
moment of the q-Gumbel distribution whose

parameters m and s are respectively 0 and 1, is given by

E(Xh
) = h!

[

h+2Fh+1

(

1, ..., 1,
1

q
+ 1; 2, ..., 2; −q

)

+ (−1)
h q

h− 1

q

h+1 Fh

(

1

q
, ...,

1

q
;
1

q
+ 1, ...,

1

q
+ 1; −1

q

)

]

,

(2.2)

where the generalized hypergeometric function pFq(a; b; z) admits the power series
∑∞

k=0
(a1)k···(ap)k

(b1)k···(bq)k k! z
k
.
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The following closed form representation of the moment-generating function

of the q-Gumbel distribution wherein m = 0, s = 1 was obtained assuming that

q < 0:

M(t) =

Γ

(

q−1
q

)

Γ(1 − t) (−q)t

Γ

(

−t− 1
q + 1

) .

The hth
moment of this distribution when its parameter q is negative can then be

obtained by differentiating M(t). For instance when q < 0, the first and second

moments of the q-Gumbel distribution are

E(X) = H− 1

q
+ log(−q)

and

E(X2
) =

(

H− 1

q
+ log(−q)

)2
− ψ(1)

(

q − 1

q

)

+
π2

6
,

where Hδ denotes the Harmonic function
∫ 1
0

1−xδ

1−x dx and ψ(1)
(·) is the digamma

function.

2.3. L-Moments

Unlike the conventional moments, the L-moments of a random variable

whose mean is finite always exist, which explains their frequent use in extreme

value theory. Since L-moments can be evaluated as linear combinations of proba-

bility weighted moments, which are defined for instance in [4], we first determine

the latter.

The mth
order probability weighted moment of the q-Gumbel distribution

is given by

βm =

∫ ∞

−∞
y F (y)r

dF (y)

=
1

s

[

e
m

3F2

(

1, 1,
k

q
+

1

q
+ 1; 2, 2; −qem

)

− q (q + e
−m

)
k+1

q
(

q (em q + 1)
)− k+1

q

(k + 1)2

× 2F1

(

k + 1

q
,
k + 1

q
;
k + q + 1

q
; −e

−m

q

)

]

, q > 0 ,(2.3)

= ℜ









e
i(k+1)π

q (k + 1)π csc

(

(k+1)π
q

)

−
(

1
q

)
k−q+1

q

2F1

(

k+1
q , k+1

q ;
k+q+1

q ; −1
q

)

(k + 1)2

+ 3F2

(

1, 1,
k

q
+

1

q
+ 1; 2, 2; −q

)









, q < 0 ,
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where m is a nonnegative integer, i=
√
−1 and ℜ(s) denotes the real part of s.

The first four L-moments of the q-Gumbel distribution are then obtained as

follows: λ1 = β0, λ2 = 2β1 − β0, λ3 = 6β2 − 6β1 + β0 and λ4 = 20β3 − 30β2 +

12β1 − β0.

The L-moments of the q-GEV distribution, as well as other statistical func-

tions of either of the newly introduced distributions, such as incomplete moments

and mean deviations, can readily and accurately be evaluated by numerical inte-

gration. All the expressions included in this section were verified numerically for

several values of the parameters, the code being available upon request.

3. MAXIMUM LIKELIHOOD ESTIMATION AND GOODNESS-

OF-FIT STATISTICS

The parameters of the q-GEV and q-Gumbel distributions are estimated by

making use of the maximum likelihood method. As well, several goodness-of-fit

statistics to be utilized in Section 4 are defined in this section.

3.1. Maximum Likelihood Estimation

In order to estimate the parameters of the q-GEV and q-Gumbel distri-

butions whose density functions are as specified in Equation (1.6), one has to

maximize their respective log-likelihood functions with respect to the model pa-

rameters. Given the observations xi, i = 1, ..., n, the log-likelihood functions of

the q-GEV and q-Gumbel models are respectively given by

ℓ(s,m, ξ, q) = n log(s) +

(

−1

q
− 1

) n
∑

i=1

log

(

q
(

ξ (sxi −m) + 1
)−1/ξ

+ 1

)

+

(

−1

ξ
− 1

) n
∑

i=1

log
(

ξ (sxi −m) + 1
)

,

(3.1)

whenever ξ 6= 0 and

ℓ(s,m, q) = n log(s) +

n
∑

i=1

log(sxi −m) +

(

−1

q
− 1

) n
∑

i=1

log(1 + qem−sxi)

as ξ → 0.
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The associated log-likelihood system of equations are respectively

∂ℓ(s,m, ξ, q)

∂s
=

(

−1

q
− 1

) n
∑

i=1

−qxi

(

ξ (sxi −m) + 1
)− 1

ξ
−1

q
(

ξ (sxi −m) + 1
)− 1

ξ + 1

+

(

−1

ξ
− 1

) n
∑

i=1

ξxi

ξ (sxi −m) + 1
+
n

s
= 0 ,

∂ℓ(s,m, ξ, q)

∂m
=

(

−1

q
− 1

) n
∑

i=1

q
(

ξ (sxi −m) + 1
)− 1

ξ
−1

q
(

ξ (sxi −m) + 1
)− 1

ξ + 1

+

(

−1

ξ
− 1

) n
∑

i=1

− ξ

ξ (sxi −m) + 1
= 0 ,

∂ℓ(s,m, ξ, q)

∂ξ
=

(

−1

q
− 1

) n
∑

i=1

q
(

ξ (sxi −m) + 1
)− 1

ξ

q
(

ξ (sxi −m) + 1
)− 1

ξ + 1

(3.2)

×
(

log
(

ξ (sxi −m) + 1
)

ξ2
− sxi −m

ξ
(

ξ (sxi −m) + 1
)

)

+

∑n
i=1 log

(

ξ (sxi −m) + 1
)

ξ2

+

(

−1

ξ
− 1

) n
∑

i=1

sxi −m

ξ (sxi −m) + 1
= 0 ,

∂ℓ(s,m, ξ, q)

∂q
=

∑n
i=1 log

(

q
(

ξ (sxi −m) + 1
)− 1

ξ + 1

)

q2

+

(

−1

q
− 1

) n
∑

i=1

(

ξ (sxi −m) + 1
)− 1

ξ

q
(

ξ (sxi −m) + 1
)− 1

ξ + 1

= 0

and

∂ℓ(s,m, q)

∂s
=

(

−1

q
− 1

) n
∑

i=1

− qxi e
m−sxi

q em−sxi + 1
−

n
∑

i=1

xi +
n

s
= 0 ,

∂ℓ(s,m, q)

∂m
=

(

−1

q
− 1

) n
∑

i=1

q e
m−sxi

q em−sxi + 1
+ n ,(3.3)

∂ℓ(s,m, q)

∂q
=

∑n
i=1 log(q e

m−sxi + 1)

q2
+

(

−1

q
− 1

) n
∑

i=1

e
m−sxi

q em−sxi + 1
.

Solving the nonlinear systems specified by the sets of equations (3.2) and

(3.3) respectively yields the maximum likelihood estimates (MLE ’s) of the pa-

rameters of the q-GEV and q-Gumbel distributions. Since these equations cannot
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be solved analytically, iterative methods such as the Newton–Raphson technique

are required. For both distributions, all the second order log-likelihood derivatives

exist. In order to determine approximate confidence intervals for the parameters

of the q-GEV and q-Gumbel distributions, one needs the 4×4 and 3×3 observed

information matrices which are obtained by taking the opposite of the matrices

of the second derivatives of the loglikelihood functions wherein the parameters

are replaced by the MLE ’s, these matrices being denoted by J(υ1) = {J(υ1)rt}
for r, t = s,m, ξ, q, where υ1 denotes the vector of the parameters s,m, ξ, q, and

J(υ2) = {J(υ2)rt} for r, t = s,m, q, where υ2 is a vector whose components are

s,m, q. Under standard regularity conditions, (υ1 − υ̂1) asymptotically follows

the multivariate normal distribution N4(O,−J(υ̂1)
−1

) and the asymptotic dis-

tribution of (υ2 − υ̂2) is N3(O,−J(υ̂2)
−1

). These distributions can be utilized

to construct approximate confidence intervals for the model parameters. Thus,

denoting for example the total observed information matrix evaluated at υ̂1, that

is, −J(υ̂1), by − ̂J , one would have the following approximate 100(1 − α)% con-

fidence intervals for the parameters of the q-GEV distribution

ŝ ± zφ/2

√

(− ̂J−1)ss , m̂ ± zφ/2

√

(− ̂J−1)mm ,

̂ξ ± zφ/2

√

(− ̂J−1)ξξ , q̂ ± zφ/2

√

(− ̂J−1)qq ,

where zα/2 denotes the 100(1 − α/2)
th

percentile of the standard normal distri-

bution. The observed information matrices for the q-GEV and q-Gumbel models

are provided in Appendices A and B.

One can determine the global maximum of the log-likelihood functions by

setting certain initial values for the parameters in the maximizing routine being

used. To that end, one could for instance make use of estimates of the parameters

obtained for a sub-model such as those of the GEV distribution when assigning

initial values to the parameters s,m, ξ of the q-GEV distribution. While Park and

Sohn [23] obtained parameter estimates for the GEV distribution by making use

of generalized weighted least squares and estimates of the three parameters are

given in Chapter 30 of [4] in terms of probability weighted moments, Prescott and

Walden [24] advocated the use of the maximum likelihood approach. It should be

noted that, for both distributions under consideration, the MLE ’s do not appear

to be particularly sensitive to the initial parameter values.

3.2. Goodness-of-fit statistics

In order to assess the relative adequacy of competing models, one has to rely

on certain goodness-of-fit statistics. These may include the log-likelihood function

evaluated at the MLE ’s denoted by ̂ℓ, Akaike’s information criterion (AIC), the
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corrected Akaike information criterion (CAIC), as well as the modified Anderson–

Darling (A∗
), the modified Cramér–von Mises (W ∗

) and the Kolmogrov–Smirnov

(K–S) statistics. The smaller these statistics are, the better the fit. The AIC and

AICC statistics are respectively given by

AIC = −2ℓ(̂θ) + 2p and AICC = AIC +
2p (p+ 1)

n− p− 1
,

where ℓ(̂θ) denotes the log-likelihood function evaluated at the MLE ’s, p is the

number of estimated parameters and n, the sample size.

The Anderson–Darling and Cramér–von Mises statistics can be evaluated

by means of the following formulae:

A∗
=

(

2.25

n2
+

0.75

n
+ 1

)

[

−n− 1

n

n
∑

i=1

(2i− 1) log
(

zi (1 − zn−i+1)
)

]

,

and

W ∗
=

(

0.5

n
+ 1

)

[

n
∑

i=1

(

zi −
2i− 1

2n

)2

+
1

12n

]

,

where zi = cdf(yi), the yi’s denoting the ordered observations.

As for the Kolmogrov–Smirnov statistic, it is defined by

K–S = Max

[

i

n
− zi, zi −

i− 1

n

]

.

As is explained in [2], unlike the asymptotic distributions of the AIC and AICC

statistics, those of the A∗
and W ∗

statistics have complicated forms requiring

numerical techniques for determining specific percentiles.

4. APPLICATIONS

4.1. A hydrological data set

In this section, we fit five models to a rainfall precipitation data set which

is freely available on the Korea Meteorological Administration (KMA) website

http://www.kma.go.kr and represent the annual maximum daily rainfall amounts

in millimeters in Seoul, Korea during the period 1961–2002. The selected mod-

els are the three-parameter GEV, the Kumaraswamy generalized extreme value

(KumGEV) [9], the exponentiated generalized Gumbel (EGGu) [3], and the newly

introduced q-GEV and q-Gumbel distributions. Then, five statistics are employed
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in order to assess goodness of fit. Table 1 displays certain descriptive statistics

associated with the set of observations under consideration.

Table 1: Descriptive statistics for the Seoul rainfall data.

Mean Median SD Kurtosis Skewness MD – mean MD – median Entropy

144.599 131.6 66.1781 3.80435 0.940673 48.7761 33.2 4.61435

MD := Mean deviation

The KumGEV and EGGu density functions are respectively given by

f(x; a, b, ξ, σ, µ) =
1

σ
abu exp(−au)

[

1 − exp(−au)
]b−1

,

where u = {1 + ξ(x− µ)/σ}−1/ξ
with x such that (1 + ξ(x− µ)/σ) > 0; a > 0,

b > 0, ξ ∈ R, σ > 0 and µ ∈ R, and

f(x;σ, µ, α, β) =
αβ

σ
e
−
(

x−µ

σ
+e

µ−x
σ

)

(

1 − e
−e

µ−x
σ

)α−1
[

1 −
(

1 − e
−e

µ−x
σ

)α
]β−1

,

where x ∈ R, ξ ∈ R, σ > 0, µ ∈ R, α > 0 and β > 0.

The MLE ’s of the parameters are included in Table 2 for each of the fitted

distributions. It can be seen from the values of the goodness–of–fit statistics

appearing Table 3 that the two proposed distributions provide the most adequate

models. The plots of the cdf’s that are superimposed on the empirical cdf in the

right panel of Figure 8 also suggest that they better fit the data. Additionally,

asymptotic confidence intervals for the model parameters are included in Table 4.

Table 2: MLE ’s of the parameters (standard errors in parentheses)

for the Seoul rainfall data.

Distribution Estimates

GEV(s, m, ξ)
0.0212 2.3781 0.0028

(0.0015) (0.1666) (0.0570)

KumGEV(a, b, ξ, σ, µ)
18.289 15.412 21.175 1.1934 2.1339
(5.652) (13.558) (9.868) (0.440) (11.002)

EGGu(σ, µ, α, β)
85.686 −18.428 1.7687 18.593

(206.89) (509.13) (4.4618) (201.49)

q-GEV(s, m, ξ, q)
0.0303 4.1082 0.1973 1.1225

(0.0085) (1.6329) (0.0922) (1.266)

q-Gumbel(s, m, q)
0.02045 2.4323 0.1129
(0.0026) (0.4135) (0.1746)
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Table 3: Goodness-of-fit statistics for the Seoul rainfall data.

Distribution AIC AICC A∗ W ∗ K–S p-value (K–S)

GEV(s, m, ξ) 1169.63 1169.87 0.9583 0.1325 0.0892 0.3725
KumGEV(a, b, ξ, σ, µ) 1174.726 1175.33 0.8566 0.1505 0.0889 0.3767
EGGu(σ, µ, α, β) 1169.16 1169.56 0.6566 0.1099 0.0872 0.4007
q-GEV(s, m, ξ, q) 1168.64 1169.04 0.4638 0.0678 0.0716 0.6535
q-Gumbel(s, m, q) 1166.94 1167.18 0.6279 0.1021 0.0862 0.4157

Table 4: Confidence intervals for the parameters of the q-Gumbel

and q-GEV models (Seoul rainfall data).

CI (q-Gumbel) s m q

95% [0, 0.025546] [2.4272, 2.4373] [−0.229316, 0.4551]
99% [0.01374, 0.027158] [2.4255, 2.4390] [−0.337568, 0.5633]

CI (q-GEV) s m ξ q

95% [0, 0.04096] [0.9078, 7.3086] [0.01698, 0.3776] [−1.257536, 3.7075]
99% [0, 0.02496] [−0.1046, 8.3210] [−0.040576, 0.43517] [−2.042828, 4.4928]

Figure 8: The GEV, KumGEV, EGGu, q-Gumbel and q-GEV estimated

pdf’s superimposed on the histogram of the data (left panel);

the estimated cdf’s and empirical cdf (right panel).

4.2. Return level

A return period (sometimes referred to as recurrence interval) is an estimate

of the likelihood of an event, such as a certain rainfall precipitation level or a given

river discharge flow level. It is a statistical measure that is based on historical

data, which proves especially useful in risk analysis as it represents the average
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recurrence interval over an extended period of time. In fact, the return period

is the inverse of the probability that the level will be exceeded in any one year

— or, equivalently, the expected waiting time or mean number of years it will

take for an exceeding level to occur. For example, a rainfall precipitation return

level x5 has a 20% (or one fifth) probability of being exceeded in any one year,

which of course, does not mean that such a rainfall level will happen regularly

every 5 years or only once in a five-year period, despite what the phrase “return

period” might suggest.

Based on these considerations and assuming that the event components

are independently distributed, the probability that an exceeding event will occur

for the first time in t years is p(1 − p)t−1
, t = 1, 2, ..., which is the geometric

probability mass function ([25]) whose mean is equal to T = 1/p, when the yearly

exceedance probability p = P (X≥xT ) is assumed to remain constant throughout

the future years of interest ([1] and [22]) . The probability of exceeding xT can be

estimated by the survival probability, 1− F (xT ), the return period T then being

equal to 1/P (X≥xT ). Thus, for a given return period T , the corresponding

return level can be obtained as follows:

xT = F−1
(1 − 1/T ) ,

which yields

xT =
1

s

{

m− log

(

−1 − (1 − 1/t)−q

q

)}

for the q-Gumbel model and

xT = − 1

ξ s

{

(

−1 − (1 − 1/t)−q

q

)−ξ
(

−mξ
(

−1 − (1 − 1/t)−q

q

)ξ

− 1

)}

for the q-GEV model, where xT > 0 and T > 1. When unknown, the parameters are

replaced by their MLE ’s. The estimates of the return levels xT obtained from the

q-GEV distribution for the return periods, T=2,5,10,20,50,100 years, which appear

in Table 5, apply to the previously analyzed Seoul rainfall precipitation data.

Table 5: Return level estimates x̂T for given values of T
(Seoul rainfall data).

T bxT (q-GEV model)

2 133.964
5 187.515

10 225.94
20 267.07
30 293.139
50 328.625

100 382.323
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5. SIMULATION STUDY

The suitability of the maximum likelihood approach for estimating the pa-

rameters of the q-Gumbel and q-GEV distributions is assessed in this section.

Samples of sizes 50, 100, 300 and 500 were generated from the quantile functions

of these distributions by Monte Carlo simulations for several values of the param-

eters. The biases and mean squared errors (MSE’s) of the resulting MLE ’s were

determined for each combination of sample sizes and assumed parameter values

on the basis of 5,000 replications.

The simulations results that were obtained for the q-Gumbel and q-GEV
are respectively reported in Tables 6 and 7. As expected, the biases and MSE’s

generally decrease as the sample sizes increase. It should be noted that the

MLE ’s remain fairly accurate even for moderately sized samples. Those results

corroborate the appropriateness of the maximum likelihood methodology — as

described in Section 3.1 — for estimating the parameters of the proposed models.

Table 6: Monte Carlo simulation results: biases and MSE’s

for the q-Gumbel model.

Actual values Bias MSE
n

q s m bq bs bm bq bs bm
50

0.5 1.0 0.0 −0.0015 0.0424 0.0109 0.2461 0.0749 0.1535
1.5 2.0 1.0 0.1779 0.1933 0.2060 1.1077 0.5524 0.9587
3.0 2.0 1.0 0.3521 0.1904 0.2552 2.3258 1.1566 1.7621

−0.5 1.0 0.0 −0.1432 −0.0315 −0.0965 0.0863 0.0434 0.0698
−1.5 2.0 1.0 0.0121 −0.0007 0.0114 0.0008 0.0013 0.0004
−3.0 2.0 1.0 0.0109 −0.0036 −0.0001 0.0006 0.0001 0.0000

100

0.5 1.0 0.0 −0.0104 0.0160 −0.0008 0.0808 0.0240 0.0507
1.5 2.0 1.0 0.0644 0.0775 0.0791 0.3300 0.1625 0.2677
3.0 2.0 1.0 0.2278 0.1351 0.1708 1.5085 0.3438 0.7338

−0.5 1.0 0.0 −0.0704 −0.0196 −0.0495 0.0282 0.0183 0.0258
−1.5 2.0 1.0 0.0075 0.0053 0.0101 0.0002 0.0004 0.0002
−3.0 2.0 1.0 0.0031 −0.001 0.0000 0.0001 0.0000 0.0000

300

0.5 1.0 0.0 −0.0020 0.0052 −0.0003 0.0243 0.0072 0.0148
1.5 2.0 1.0 0.0192 0.0246 0.0246 0.0851 0.0411 0.0684
3.0 2.0 1.0 0.0715 0.0404 0.0516 0.3001 0.0617 0.1298

−0.5 1.0 0.0 −0.0275 −0.0099 −0.0201 0.0058 0.0052 0.0065
−1.5 2.0 1.0 0.0039 0.0059 0.0070 0.0000 0.0001 0.0001
−3.0 2.0 1.0 −0.0003 0.0001 0.0000 0.0000 0.0000 0.0000

500

0.5 1.0 0.0 −0.0013 0.0032 0.0002 0.0142 0.0041 0.0089
1.5 2.0 1.0 0.0148 0.0175 0.0169 0.0483 0.0236 0.0384
3.0 2.0 1.0 0.0421 0.0243 0.0322 0.1764 0.0355 0.0742

−0.5 1.0 0.0 −0.0180 −0.0066 −0.0141 0.0030 0.0031 0.0036
−1.5 2.0 1.0 0.0035 0.0057 0.0065 0.0000 0.0001 0.0001
−3.0 2.0 1.0 −0.0002 0.0001 0.0000 0.0000 0.0000 0.0000
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Table 7: Monte Carlo simulation results: biases and MSE’s

for the q-GEV model.

Actual values Bias MSE
n

q s m ξ bq bs bm bξ bq bs bm bξ
50

0.5 1.0 0.0 0.5 0.9087 0.0420 0.3640 −0.0684 1.9675 0.0743 0.3694 0.0412
1.5 1.0 1.0 0.5 0.5282 0.0210 0.1514 0.0031 0.7358 0.0522 0.2084 0.0096
1.5 2.0 1.0 0.5 0.5474 0.0369 0.1576 0.0027 0.7963 0.2146 0.2457 0.0089
1.5 2.0 1.0 1.5 0.1072 0.0004 0.0007 −0.0005 0.0271 0.0001 0.0000 0.0000

−0.5 1.0 0.0 −0.5 −0.2784 −0.2644 −0.1517 −0.2271 0.1553 0.1932 0.0781 0.0966
−1.5 2.0 1.0 −0.5 0.0026 0.0086 0.0115 −0.0164 0.0012 0.0012 0.0005 0.0027
−1.5 2.0 1.0 −1.5 −0.0025 0.0023 0.0019 −0.0023 0.0000 0.0000 0.0000 0.0001

100

0.5 1.0 0.0 0.5 0.6083 0.0439 0.2602 −0.0343 0.9423 0.0289 0.1939 0.0115
1.5 1.0 1.0 0.5 0.3917 0.0092 0.1279 −0.0088 0.4535 0.0223 0.1105 0.0056
1.5 2.0 1.0 0.5 0.4033 0.0071 0.1314 −0.0084 0.4327 0.0902 0.1029 0.0053
1.5 2.0 1.0 1.5 0.0827 −0.0002 0.0001 0.0000 0.0223 0.0000 0.0000 0.0000

−0.5 1.0 0.0 −0.5 −0.1429 −0.1471 −0.0842 −0.1121 0.0514 0.0725 0.0291 0.0312
−1.5 2.0 1.0 −0.5 −0.0003 0.0118 0.0096 −0.0076 0.0005 0.0004 0.0003 0.0008
−1.5 2.0 1.0 −1.5 −0.0009 0.0009 0.0007 −0.0008 0.0000 0.0000 0.0000 0.0000

300

0.5 1.0 0.0 0.5 0.2501 0.0220 0.1144 −0.0132 0.2391 0.0087 0.0578 0.0026
1.5 1.0 1.0 0.5 0.1988 0.0088 0.0822 −0.0118 0.1599 0.0066 0.0403 0.0024
1.5 2.0 1.0 0.5 0.1974 0.0180 0.0801 −0.0117 0.1590 0.0252 0.0396 0.0023
1.5 2.0 1.0 1.5 0.0352 0.0000 0.0000 0.0000 0.0133 0.0000 0.0000 0.0000

−0.5 1.0 0.0 −0.5 −0.0491 −0.0539 −0.0320 −0.0363 0.0090 0.0163 0.0073 0.0050
−1.5 2.0 1.0 −0.5 0.0005 0.0092 0.0069 −0.0019 0.0001 0.0002 0.0001 0.0001
−1.5 2.0 1.0 −1.5 −0.0002 0.0002 0.0001 −0.0002 0.0000 0.0000 0.0000 0.0000

500

0.5 1.0 0.0 0.5 0.1581 0.0136 0.0734 0.0010 0.1418 0.0015 0.0347 0.0011
1.5 1.0 1.0 0.5 0.1289 0.0051 0.0558 0.0005 0.0853 0.0015 0.0227 0.0005
1.5 2.0 1.0 0.5 0.1330 0.0127 0.0566 0.0002 0.0873 0.0015 0.0227 0.0000
1.5 2.0 1.0 1.5 0.0199 0.0000 0.0000 0.0000 0.0100 0.0000 0.0000 0.0000

−0.5 1.0 0.0 −0.5 −0.0334 −0.0378 −0.0229 0.0025 0.0047 0.0025 0.0041 0.0025
−1.5 2.0 1.0 −0.5 0.0011 0.0072 0.0057 0.0001 0.0000 0.0001 0.0001 0.0001
−1.5 2.0 1.0 −1.5 −0.0001 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

6. CONCLUDING REMARKS

The q-generalized extreme value and the q-Gumbel distributions introduced

herein are truly versatile: they can be positively or negatively skewed; they can

give rise to increasing, decreasing and upside-down bathtub shaped hazard rate

functions, and their supports can be finite, bounded above or below, or infinite.

The flexibility of these models was further confirmed by applying them to fit a cer-

tain data set consisting of annual maximum daily precipitations, and comparing

them to three other models by means of several goodness-of-fit statistics. As well,

the model parameters were successfully estimated by the method of maximum

likelihood, the suitability of this approach having been supported by a simulation

study. Moreover, we observed that numerical integration produces highly accu-

rate results when evaluating various statistical functions of the q-analogues of the

GEV and Gumbel random variables. In practice, the q-generalized extreme value
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model ought to be more realistic and useful than its original counterpart, which

is actually a limiting distribution, and the proposed extended models should lead

to further advances in risk theory, biostatistics, hydrology, meteorology, survival

analysis and engineering, among several other fields of research that have already

benefited from the utilization of existing related models.

APPENDIX A

The 4×4 total observed information matrix associated with the q-GEV dis-

tribution is given by −J(υ1) wherein the parameters are replaced by their MLE ’s

where

J(υ1) =


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
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APPENDIX B

The 3×3 total observed information matrix associated with the q-Gumbel

distribution is given by −J(υ2) wherein the parameters are replaced by their

MLE ’s where

J(υ2) =


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C/ Varadero 1, San Pedro del Pinatar, 30740, Murcia, Spain

josem.bellido@mu.ieo.es

David Conesa

– Departament d’Estad́ıstica i Investigació Operativa, Universitat
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Abstract:

• Many ecological processes are measured as proportions and are spatially sampled.

In all these cases the standard procedure has long been the transformation of propor-

tional data with the arcsine square root or logit transformation, without considering

the spatial correlation in any way. This paper presents a robust regression model to

analyse this kind of data using a beta regression and including a spatially correlated

term within the Bayesian framework. As a practical example, we apply the proposed

approach to a spatio-temporally sampled fishery discard dataset.
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1. INTRODUCTION

Many ecological processes are spatially sampled and measured as propor-

tions; one example is, sea-grass coverage in a area. The traditional approach in

ecology has been to, first transform proportional data to approximate normality,

and then analyse them using Gaussian linear models, such as analysis of variance

or linear regression.

A very common transformation is the arcsine square root transformation.

This transformation can be useful to stabilise variances and normalise the data

but there are several reasons why it should be avoided. Firstly, model parameters

cannot be easily interpreted in terms of the original response [Warton and Hui,

2011, Ferrari and Cribari-Neto, 2004]. Secondly, the efficacy of the arcsine trans-

formation in normalising proportional data is heavily dependent on the sample

size, and does not perform well at extreme ends of the distribution [Warton and

Hui, 2011, Wilson and Hardy, 2002]. Thirdly, measures of proportions typically

display asymmetry, and hence inference based on the normality assumption can

be misleading [Ferrari and Cribari-Neto, 2004].

An alternative that is becoming more prevalent in ecological analyses is the

logistic regression, an analytical method designed to deal with binomial propor-

tional data [Steel et al., 1997, Wilson and Hardy, 2002, Warton and Hui, 2011],

i.e. proportions measured as x out of n. The logistic regression provides a more

biologically and ecologically interpretative analysis and is not sensitive to sample

size. Nonetheless, such binomial data is prone to overdispersion, resulting in an

incorrect quantification of the uncertainty when applying the proposed binomial

generalised linear model (GLM). In these cases, the inclusion of a random in-

tercept term using generalised linear mixed models (GLMMs) may improve the

assessment of uncertainty [Wilson and Hardy, 2002].

When data are non-binomial, that is, observations do not follow the x

out of n pattern, the logistic regression is no longer applicable. As an alterna-

tive approach, Warton and Hui [2011] suggested the logit transformation of the

data, which overcomes the problems of interpretability and range of the confi-

dence/credible intervals using the arcsine square root transformation. However,

any transformation of the data (yt) implies that regression parameters are only

interpretable in terms of the transformed mean of yt and not the mean of the

original data.

The beta distribution is a well known distribution that satisfies the char-

acteristics of proportions, bounded to the [0, 1] interval with asymmetric shapes.

It has long been used in a wide range of applications involving proportions and

probabilities [Gupta and Nadarajah, 2004]. However, only recently has it been
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applied to linear regression modelling [Ferrari and Cribari-Neto, 2004, Smithson

and Verkuilen, 2006, Liu and Kong, 2015] and time-series analysis [Da-Silva and

Migon, 2016], allowing bounded estimates and intervals with model parameters

that are directly interpretable in terms of the mean of the response.

Aside from the likelihood function, it is well known that changes in ecologi-

cal processes in time and space are driven by a set of factors and interactions. Un-

derstanding these drivers is very often the ultimate goal among scientists seeking

to manage natural resources effectively. However, the immeasurable complexity

of ecological spatial processes often means that the spatial variability of the data

exceed the variability explained by the explanatory variables. This phenomenon

usually results in spatially autocorrelated model residuals that can yield incorrect

results and a restricted predictive capacity of the models [Fortin and Dale, 2009,

Legendre et al., 2002].

A good solution to improve model fit and prediction is to introduce spatial

terms in our models. Spatial terms are based on the principle that close obser-

vations have more in common than distant observations [Tobler, 1970]. Conse-

quently, by applying a distance-based function, these terms are capable of improv-

ing fine scale predictions and identifying hidden spatial hot and/or cold spots that

may be important for management purposes. In addition, from a management

perspective it is crucial to address the uncertainty associated with our predic-

tions and estimates. In this respect, the Bayesian hierarchical approach is able

to accommodate complex systems and obtain a proper uncertainty assessment by

relying on quite straightforward probability rules [Clark, 2005].

The reminder of this article goes as follows. First, we summarise the charac-

teristics of the hierarchical spatial beta regression. Then, we introduce the princi-

ples of the Integrated Nested Laplace Approximation (INLA from now on) using

the Stochastic Partial Differential Equations (SPDE) approach (http://www.r-

inla.org) [Rue et al., 2009] as an effective way to deal with spatially sampled

proportional data. As an example, we apply this approach to a fishery dis-

cards database to identify discard proportion high-density areas in the Western

Mediterranean Sea. Finally, we end up with some conclusions.

2. HIERARCHICAL SPATIAL BETA REGRESSION

Traditionally the beta distribution is denoted by two scaling parameters

Be(a, b). In order to apply regression it is necessary to reparametrize its density

distribution in terms of its mean µ =
a

a+b and a dispersion φ = a + b, so that:

π(y) =
Γ(φ)

γ(µφ)γ(φ(1 − µ))
yµφ−1

(1 − y)
(1−µ)φ−1 , 0 < y < 1 ,(2.1)
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where Γ is the gamma function, E(y) = µ and V ar(y) =
µ(1−µ)

1+φ . Note that here,

as opposed to the Gaussian distribution, the variance depends on the mean, which

translates into maximum variance at the centre of the distribution and minimum

at the edges, to support the truncated nature of the beta distribution.

It is also important to note that the probability density (2.1) does not

provide a satisfactory description of the data at both ends of the distribution,

zero and one. An ad hoc solution may be to add a small error value to the

observations to satisfy this criterion [Warton and Hui, 2011]; otherwise zero and

one inflated models are required [Liu and Kong, 2015].

Following the Be(µ, φ) reparametrisation, a given set of observations

y1, ..., yn, that represent proportions, can be related to a set of covariates and

functions using a similar approach to the generalised linear model:

Logit(µi) = ηi(2.2)

ηi = α +

nβ
∑

j=1

βjzji +

nk
∑

k=1

fk(uki) + vi

where ηi enters the likelihood through a logit link, α is the intercept of the model,

βj are the fixed effects of the model, fk() denote any smooth effects (including

spatial dependence effects) and vi are unstructured error terms (random vari-

ables).

At the time of writing, a handful of R packages allow beta regression:

betareg [Grün et al., 2011], mgcv [Wood, 2011] and gamlss [Stasinopoulos and

Rigby, 2007] in the frequentist field and Bayesianbetareg [Marin et al., 2014],

zoib Liu and Kong [2015] and R-INLA (the implementation of INLA in R [Martins

et al., 2013]) in the Bayesian counterpart. zoib allows zero/one inflated beta

regression but only R-INLA allows a wide range of flexible hierarchical models to

be fitted at a user-friendly and computationally efficient environment, as we will

show in the following Section.

Indeed, Bayesian hierarchical methods are becoming very popular in many

fields due to the complexity of the relationships involved in natural systems

[Clark, 2005]. Modelling these relationships often requires specifying sub-models

inside the additive predictor that allow a suspected hidden or latent effect to be

inferred that characterise these relationships.

A good example may be the use of spatial latent fields that apply distance-

based functions to model the spatial dependence of the data. In these cases, the

main intensity of the process is driven by a set of covariates Xβ, also called large-

scale variation, to which a spatial term is added based on a correlation function

fw() that describe the unobserved small-scale variation. Consequently, we end up

with a spatial correlation model, which depends on its own hyperparameters, as
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part of a broader model that characterises the intensity of the process; in other

words, we have a hierarchical model with a spatial latent variable.

A popular point-referenced spatial model, the geostatistical model, has the

characteristic that the spatial covariance function fw() is continuous over the

range of the spatial effect. Based on this function, it is customary to assume a

Gaussian latent field W ∼ N(0, Q(κτ)) with covariance matrix Q that depends

on two hyperparameters, in the case of R-INLA, κ and τ . These hyperparame-

ters determine the range and the variance of the spatial latent field. When we

include this in the additive predictor of a beta distributed process Y , we obtain

a hierarchical model with at least three stages:

• First stage: Y |β, W ∼ Be(Xβ + W, ρ)

where Y are conditionally independent given W .

• Second stage: W |κ, τ ∼ N(0, Q(κτ))

where W is a Gaussian latent spatial model.

• Third stage: priors on (β, ρ, κ, τ).

A common problem with this kind of hierarchical model is that there is no

closed expression for the marginal posterior distributions of the parameters and

hyperparameters, so numerical approximations are needed. The typical approach

to approximate these posteriors is to use MCMC simulation methods. Unfortu-

nately, MCMC can get very computationally inefficient when applied to complex

models such as spatial models.

3. THE INLA APPROACH FOR GEOSTATISTICAL MODELS

Performing inference and prediction under a geostatistical Gaussian field

W entail the so-called “big n problem” [Banerjee et al., 2003]. This problem is

related to the dense covariance matrix Q, which traduces into very high MCMC

computational costs. In this vein, the stochastic partial differential equations

(SPDE) approach in R-INLA allows reducing the required number of computations

from O(n3
) [Stein et al., 2004] to O(n3/2

) [Cameletti et al., 2013] in the two

dimensional spatial domain. In what follows, we first present the INLA method

followed by the SPDE approach.

The INLA algorithm, proposed by Rue et al. [2009], is a numerical approx-

imation method to perform Bayesian inference. The most remarkable feature of

INLA, as opposed to MCMC, is that it allows the posterior distributions of latent

Gaussian models to be accurately approximated through Laplace approximations

[Laplace, 1986, Tierney and Kadane, 1986], even for complex models without be-

coming computationally prohibitive. INLA exploits the fact that latent Gaussian
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models admit conditional independence properties [Rue and Held, 2005], which

allows expressing them as computationally efficient Gaussian Markov random

fields (GMRFs) with a sparse precision matrix [Rue and Held, 2005].

The estimation of the latent components, collected in a set of parameters

θ = {β, W } and hyperparameters Ω = {ρ, κ, τ} in R-INLA, is computed in three

steps. First, the posterior marginal distribution of the hyperparameters is ap-

proximated by using the Laplace integration method

p(Ω|Y ) ≈ p(Y |θ,Ω)p(θ|Ω)p(Ω)

p̃(θ|Ω, Y )

∣

∣

∣

∣

θ=θ
∗(Ω)

= p̃(Ω|Y ),(3.1)

where p̃(θ|Ω, Y ) is the Gaussian approximation, given by the Laplace method, of

p(θ|Ω, Y ) and θ∗
(Ω) is the mode for a given Ω.

Then, R-INLA approximates p(θi|Ω, Y ) by using again the Laplace integra-

tion method

p(θi|Ω, Y ) ≈ p(θ|Ω, Y )

p̃(θ−i|θi,Ω, Y )

∣

∣

∣

∣

θ−i=θ
∗

−i(θi,Ω)

= p̃(θi|Ω, Y ),(3.2)

where p̃(θ−i|θi,Ω, Y ) is the Laplace Gaussian approximation to p(θ−i|θi,Ω, Y )

and θ∗
−i(θi,Ω) is its mode. This strategy can be very computationally expensive

since p̃(θ−i|θi,Ω, Y ) has to be recomputed for each value of θ and Ω. See section

3.2 in Rue et al. [2009] for a more detailed text on the different approximation

approaches available in R-INLA.

Finally, R-INLA approximates the marginal posterior distributions based on

the previous two steps

p(θi|Y ) ≈
∫

p̃(θi|Ω, Y )p̃(Ω|Y )dΩ,(3.3)

where the integral can be numerically solved through a finite weighted sum ap-

plied in certain integration points and then interpolating in between. For a more

detailed text on the selection of integration points see section 3.1(c) in Rue et al.

[2009].

As mentioned above, INLA exploits the good computational properties of

GMRFs to perform fast Bayesian inference. Nevertheless, continuous GFs (like

the ones involved in geostatistical models) are continuously indexed, thus, in

principle, not applicable in INLA. In this regard, Lindgren et al. [2011] provided

a clever approximation of a GF with Matérn covariance function (3.4) to a GMRF

using a fractional stochastic partial differential equation.

Lindgren et al. [2011]’s approximation of a GF requires that its covariance

function is of the Matérn family. Following Lindgren et al. [2011]’s notation, the

Matérn covariance function for an stationary and isotropic GF is

C(d) =
σ2

2ν−1Γ(ν)
(κ||si − sj ||)νKν(κ||si − sj ||),(3.4)
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where κ is a scaling parameter that determines the effective range r of the spatial

effect.

The approximation by Lindgren et al. [2011] fall on the fact that a GF z(s)

with Matérn covariance function is a solution to the linear fractional SPDE

(κ2 − ∆)
α/2z(τs) = W(s), s ∈ R

d, α = ν + d/2, κ > 0, ν > 0,(3.5)

where ∆ is the Laplacian, d is the dimension of the GF z(s), ν is the smoothness

parameter of the Matérn function and W is the Gaussian spatial white noise

process.

Finally, the solution to the SPDE can be approximated using the Finite

Element Method [Zienkiewicz et al., 1977] through a deterministic basis function

representation defined on a triangulation of the domain D (see Figure 1 for the

triangulation used in the case study of the following Section). The triangulation,

so-called mesh, of the study area is based on Delaunay triangulations [Delaunay,

1934], which, as opposed to a regular grid, allows a flexible partition of the region

into triangles that can satisfy different types of constraints to better accommodate

different characteristics of the study area.

Figure 1: Triangulation of the study area. The outer ring of

sparse triangles allows us avoid having a border

effect inside the study area.

4. APPLICATION TO TRAWL DISCARD PROPORTIONS

The modelling approach proposed to tackle spatially sampled proportions

was applied to a trawl fishery discard database in the Spanish Mediterranean.

Fishery discards, i.e. the part of the catch that is thrown back to the sea dead,
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constitute an unnecessary biomass loss from the marine systems. A repeatedly

proposed discard mitigation measure is the spatial management of fishery re-

sources [Kelleher, 2005, Bellido et al., 2011, Pennino et al., 2014]. In this regard,

spatial beta regression is specially important to the fishery discards framework

since it allows the spatial assessment of discard proportions, which allows assess-

ing the economic benefit of a fishing operation against its ecological impact due

to the discard portion of the catch.

4.1. Data

Trawl discard data were collected according to European Comission [2009]

regulation, which establishes a métier-based discard sampling programme. Specif-

ically this study was based on bottom trawl data for the south-eastern part of

the Spanish Mediterranean Sea (Figure 2) [see Pennino et al., 2014, for a more

detailed description of the métiers].

Figure 2: Map of the study area with bathymetric contours in meters.

Black dots represent the centroids of the 391 sampled hauls

and size plotted according to the observed discard proportion.

The database, provided by the Instituto Español de Oceanograf́ıa (IEO,

Spanish Oceanographic Institute), contains a total of 391 hauls collected between

2009 and 2012, including catch and discard data disaggregated by species. The

characteristics of each fishing operation (date, geolocation and depth) were also

extracted directly from this database.
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A discard proportion response variable of regulated species was created as

the fraction of discarded biomass of the total catch. Unlike total discards, discard

proportions represent benefit versus loss, and are therefore a better indicator to

assess whether or not discards are disproportionate to the catch.

4.2. Modelling trawl discard proportions

The analysis of trawl discard proportions included the total catch of each

fishing haul, the mean bathymetry of the haul, a geostatistical term and a vessel

effect as predictors (Table 1). Therefore, assuming that the discard proportion

Yi at location i follows a beta distribution, the final model can be expressed as:

Yi ∼ Be(µi, φi), i = 1, ..., n

logit(µi) = βcci + di + Wi

βc ∼ N(0, 0.001)

∆
2dj = dj − 2dj+1 + dj+2 ∼ N(0, ρd), j = 1, ..., m

logρD ∼ LogGamma(0.5, 0.00005)(4.1)

W ∼ N(0,Q(κ, τ))

2logκ ∼ N(µκ, ρκ)

logτ ∼ N(µτ , ρτ )

where the mean of discard proportions enters the model through the logit link, i

indexes the location of each haul and j indexes different depths (dj , representing

the different values of bathimetry starting at d1 = 40 metres till dm=30 = 720

metres). In the last two rows µ stands for the mean of the normal distributions

while ρ denotes its corresponding precision.

Table 1: List of covariates included in the analysis and the effect assigned to them.

Variable Description Unit Effect

Total catch Total catch of the haul Kilograms Linear

Location Geolocation UTM Geostatistical

Depth Mean depth of the haul Meters Non-linear effect

Vessel Sampled vessel ID — Random noise effect

Based on the work by Rochet and Trenkel [2005], who found that discard

proportions are not fully proportional to the catch, the total catch of each haul

C = (c1, ..., cn) was introduced as a linear effect with vague normal prior distri-

butions as implemented by default in R-INLA. The exploratory analysis revealed

non-linear relationships between depth and the discard proportion, so a second

order random walk (RW2) latent model was applied based on constant depth
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increments dj . These RW2 models, which perform as Bayesian smoothing splines

[Fahrmeir and Lang, 2001], can be expressed as a computationally efficient GMRF

[Rue and Held, 2005], and are therefore applicable in INLA. The smoothing of

the bathymetric effect was selected visually by subsequently changing its prior

distribution while models were scaled to have a generalized variance equal to one

[Sørbye and Rue, 2014].

The two dimensional geostatistical latent model W , introduced to identify

fine-scale hot-spots, depends on two hyperparameters κ and τ that define the

variance and the range of the spatial effect. Specifically, and with the smoothing

parameter of the Matérn (3.4) fixed (ν = 1), the range of the spatial terms is

approximately
√

8/κ and the variance 1/(4πκ2τ2
). The priors for κ and τ are

specified over the logτ and 2logκ. Default R-INLA prior distributions were used,

where µκ is specified so that the range of the field is 20% of the longest distance

in the field and µτ is chosen so that the mean variance of the field is one. The

rest of the prior distributions in use are described in (4.1).

4.3. Results

Figure 3 shows the posterior mean and the standard deviation of the spatial

component, which represents the intrinsic spatial variability of the data without

the rest of the independent variables. This effect highlights (in blue), high discard

proportion areas or hot-spots. Similarly, two cold-spots were found (in red), one in

the coastal shallow waters in front of the lagoon and another in the mid-northern

part of the 150–300 meter strata. These hot-spots characterise the areas where

more discards are expected as compared to other areas with similar environmental

conditions. As a consequence, a marine spatial planning framework could consider

these areas for protection so that discarded/wasted biomass is minimised.

(a) Mean (b) Standard deviation

Figure 3: Posterior predictive mean and standard deviation maps of the

spatial component of discard proportions.
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As expected, the total catch of the haul had a positive effect on the expected

discard proportions (posterior mean = 0.038; 95% CI = [0.0027, 0.0049]), i.e. the

discard proportion increases with total catch increments. The bathymetric effect

showed a negative relationship of discard proportions to depth, suggesting that

the highest discard proportions are located in shallow waters and decrease with

depth (Figure 4).

Figure 4: Marginal effect of the bathymetry in the linear predictor.

The continuous line represents the mean effect and dashed

lines their 95% credible intervals.

Finally, no vessel effects was identified in the study area suggesting that

discard proportions are reasonably homogeneous across vessels.

5. CONCLUSIONS

In this paper, we use a Bayesian hierarchical spatial beta model to analyse

spatially sampled proportion data. To this end, we use a simple reparametrisation

of the beta distribution to apply regression on the mean of the process. The

Bayesian approach allows a straightforward quantification of uncertainty, which

is important for decision making, while the hierarchical structure allows a more

natural model specification, especially when including complex latent models such

as geostatistical terms.
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Beta regression overcomes all the drawbacks of the traditional data trans-

formations [Warton and Hui, 2011, Ferrari and Cribari-Neto, 2004]. First, it

allows a direct interpretation of model parameters in terms of the original data;

second, the analysis is not sensitive to the sample size; and lastly, posterior distri-

butions are expected to concentrate well within the bounded range of proportions.

It is only when observations on the extremes of the distribution are present, i.e.

0 and 1, that the beta distribution does not provide a satisfactory description of

the data. A possible solution to this problem is to add some small value to the

proportion, which introduces minimal bias while still satisfying the above crite-

ria [Warton and Hui, 2011]; otherwise, zero and/or one inflated models may be

required [Ospina and Ferrari, 2012], now available in the zoib package [Liu and

Kong, 2015] for R.

The incorporation of spatial random effects in beta regression models can

be very useful in a wide range of disciplines. For example mapping plant coverage

in ecology; mapping budget allocation in econometrics; mapping the percentage

of retirees in sociology, mapping sex-ratios in species, etc. Furthermore, combin-

ing the Bayesian spatial hierarchical modelling approach [Banerjee et al., 2003]

and the temporal extension of Da-Silva and Migon [2016], the beta regression

framework can be extended to the spatio-temporal domain. Consequently, it is

possible to tackle problems such as the evolution of plant epidemics [Stein et al.,

1994], the spatio-temporal evolution of temperature [Hengl et al., 2012] or the

understanding of the spatial dynamism of species over time, as in Paradinas et

al. [2015]. It must be taken into account that the computational burden of these

models can be even more demanding than in the purely spatial domain, making

R-INLA and its SPDE module two almost necessary tools to deal with them.

The Bayesian analysis of fisheries distribution is a very important field of

research in marine ecology [Muñoz et al., 2013, Quiroz et al., 2015]. The case

study presented here applies spatial beta regression to identify fishery discard

hot-spots based on discard proportions, which, as opposed to total discard units,

assess the biomass benefit against the amount of wasted biomass that constitute

discards. Our results have identified at least one high discard proportion hot-

spot in the study area. Under a marine spatial planning framework that seeks

to minimise the ecological impact of the fishing activity, the characterisation of

hot-spots could be specially useful for policy makers, as it would allow them to

protect those hot-spots as areas of special interest.

To conclude, we would like to mention that the geostatistical beta regres-

sion approach proposed here to analyse proportions is not only applicable to

non-binomial proportional data but also to binomial proportional data, i.e. pro-

portions measured as x out of n. In fact, applying beta regression in these cases

may be an easier and more natural approach to avoid the usual problem of overdis-

persion in logistic regression than that proposed in Wilson and Hardy [2002] using

GLMMs.
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1. INTRODUCTION

The Lindley distribution was first proposed by Lindley [20] in the context of

fiducial and Bayesian inference. In recent years, this distribution has been studied

and generalized by several authors, see Ghitany et al. [15], Zalerzadeh and Dolati

[29], Ghitany et al. [14], Bakouch et al. [4], Barreto-Souza and Bakouch [5] and

Ghitany et al. [13].

In this paper, we introduce a new generalization of the Lindley distribution

referred to as the Weibull Lindley (WL) distribution by compounding Lindley

and Weibull distributions. The compounding approach gives new distributions

that extend well-known families of distributions and at the same time offer more

flexibility for modeling lifetime data. The flexibility of such compound distribu-

tions comes in terms of one or more hazard rate shapes, that may be decreasing

or increasing or bathtub shaped or upside down bathtub shaped or unimodal.

Many recent distributions have been introduced by using a compounding

approach. For example, Adamidis and Loukas [1] proposed a distribution by tak-

ing the minimum of N independent and identical exponential random variables,

where N is a geometric random variable. But this distribution allows for only

decreasing hazard rates. Kus [18] proposed a distribution by taking the minimum

of N independent and identical exponential random variables, where N is a Pois-

son random variable. But this distribution also allows for only decreasing hazard

rates. Barreto-Souza et al. [6] proposed a distribution by taking the minimum of

N independent and identical Weibull random variables, where N is a geometric

random variable. But this distribution does not allow for bathtub shaped hazard

rates, the most realistic hazard rates. Morais and Barreto-Souza [22] proposed

a distribution by taking the minimum of N independent and identical Weibull

random variables, where N is a power series random variable. But this distribu-

tion also does not allow for bathtub shaped hazard rates. Asgharzadeh et al. [3]

proposed a distribution by taking the minimum of N independent and identical

Pareto type II random variables, where N is a Poisson random variable. But this

distribution allows for only decreasing hazard rates. Silva et al. [27] proposed

a distribution by taking the minimum of N independent and identical extended

Weibull random variables, where N is a power series random variable. This distri-

bution does allow for bathtub shaped hazard rates, but that is expected since the

extended Weibull distribution contains as particular cases many generalizations

of the Weibull distribution. Bourguignon et al. [7] proposed a distribution by

taking the minimum of N independent and identical Birnbaum–Saunders random

variables, where N is a power series random variable. But this distribution does

not allow for bathtub shaped hazard rates.

The WL distribution introduced here is obtained by compounding just two

random variables (Lindley and Weibull random variables). Besides the WL dis-
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tribution has just three parameters, less than several of the distributions cited

above.

Let Y denote a Lindley random variable with parameter λ > 0 and survival

function G(y) =
1+λ+λy

1+λ e−λy
, y > 0. Let Z denote a Weibull random variable

with parameters α > 0 and β > 0, and survival function Q(z) = e−(βz)α

, z > 0.

Assume Y and Z are independent random variables. We define X = min(Y, Z)

as a WL random variable and write X ∼ WL(α, β, λ). The survival function of

X is

F (x) = G(x)Q(x).

The cumulative distribution function (cdf) of X can be written as

F (x) = 1 − 1 + λ + λx

1 + λ
e−λx−(βx)α

(1.1)

for x > 0, α > 0, β ≥ 0 and λ ≥ 0. The probability density function (pdf) of X

is

f(x) =
1

1 + λ

[

αλ(βx)
α

+ αβ(1 + λ)(βx)
α−1

+ λ2
(1 + x)

]

e−λx−(βx)α

(1.2)

for x > 0, α > 0, β ≥ 0 and λ ≥ 0.

Some special cases of the WL distribution are: the Weibull distribution

with parameters α and β for λ = 0; the Rayleigh distribution with parameter α

for λ = 0 and β = 2; the exponential distribution with parameter β for λ = 0 and

α = 1; the Lindley distribution with parameter λ for β = 0.

The WL distribution can be used very effectively for analyzing lifetime

data. Some possible motivations for the WL distribution are:

• The WL distribution accommodates different hazard rate shapes, that

may be decreasing or increasing or bathtub shaped, see Figure 2. Bath-

tub shaped hazard rates are very important in practice. None of the

known generalizations of the Lindley distribution accommodate a bath-

tub shaped hazard rate function.

• The WL distribution has closed form expressions for survival and hazard

rate functions, which is not the case for some generalizations of the Lind-

ley distribution. Hence, the likelihood function for the WL distribution

takes explicit forms for ordinary type-II censored data and progressively

type-II censored data. Hence, the WL distribution could be a suitable

model to analyse ordinary type-II censored data and progressively type-

II censored data.

• The Lindley and Weibull distributions are special cases of the WL dis-

tribution.
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• Suppose a system is composed of two independent components in series;

let Y and Z denote their lifetimes; suppose Y is a Lindley random

variable and Z is a Weibull random variable; then the lifetime of the

system is a WL random variable.

• Suppose a system is composed of n independent components in series;

let Y, Z1, Z2, ..., Zn−1 denote their lifetimes; suppose Y is a Lindley ran-

dom variable and Z1, Z2, ..., Zn−1 are identical Weibull random variables;

then the lifetime of the system is also a WL random variable.

• The pdf of the WL distribution can be bimodal, see Figure 1. This

is not the case for the Weibull distribution or any generalization of the

Lindley distribution. So, any bimodal data set (see Figure 8 for example)

cannot be adequately modeled by any of the known generalizations of

the Lindley distribution.

• Additive hazard rates arise in many practical situations, for example,

event-history analysis (Yamaguchi [28]), modeling of excess mortalities

(Gail and Benichou [12], page 391), modeling of breast cancer data

(Cadarso-Suarez et al. [8]), modelling of hazard rate influenced by

periodic fluctuations of temperature (Nair et al. [24], page 268), and

“biologic” and “statistical” interactions in epidemiology (Andersen and

Skrondal [2]). Hence, it is import to have distributions based on addi-

tive hazard rates. The WEL distribution is the first generalization of

the Lindley distribution based on additive hazard rates.

The rest of this paper is organized as follows: various mathematical prop-

erties of the WL distribution are derived in Sections 2 to 4; estimation and

simulation procedures for the WL distribution are derived in Section 5; three real

data applications are illustrated in Section 6.

Some of the mathematical properties derived in Sections 2 to 4 involve in-

finite series: namely, (3.1), (3.2) and (4.1). Extensive computations not reported

here showed that the relative errors between (3.1), (3.2) and (4.1) and their ver-

sions with the infinite series in each truncated at twenty did not exceed 10
−20

.

This shows that (3.1), (3.2) and (4.1) can be computed for most practical uses

with their infinite sums truncated at twenty. The computations were performed

using Maple. Maple took only a fraction of a second to compute the truncated

versions of (3.1), (3.2) and (4.1). The computational times for the truncated

versions were significantly smaller than those for the untruncated versions and

those based on numerical integration.

Throughout this paper, we report conclusions on various properties of the

WL distribution: the last four paragraphs of Section 2.1 reporting conclusions

on the shape of the pdf of the WL distribution; the last paragraph of Section 2.2

reporting conclusions on the shape of the hazard rate function of the WL dis-
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tribution; Section 2.3 reporting conclusions on the shape of the quartiles of the

WL distribution; the last paragraph of Section 3 reporting conclusions on the

mean, variance, skewness and kurtosis of the WL distribution; the last paragraph

of Section 4 reporting conclusions on the Lorenz curve of the WL distribution.

These conclusions are the result of extensive graphical analyses based on a wide

range of parameter values (although the graphics presented here are based on a

few choices of parameter values). However, we have no analytical proofs for these

conclusions.

2. SHAPES

Here, we study the shapes of the pdf, (1.2), the corresponding hazard rate

function and the corresponding quartiles. Shape properties are important because

they allow the practitioner to see if the distribution can be fitted to a given data

set (this can be seen, for example, by comparing the shape of the histogram of

the data with possible shapes of the pdf). Shape properties of the hazard rate

function are useful to see if the distribution can model increasing failure rates,

decreasing failure rates or bathtub shaped failure rates. Shape properties of the

hazard rate function has implications, for example, to the design of safe systems

in a wide variety of applications. Quartiles are fundamental for estimation (for

example, quartile estimators) and simulation.

2.1. Shape of probability density function

We can see from (1.2) that

lim
x→0

f(x) =



















∞, α < 1,
β(1 + λ) + λ2

1 + λ
, α = 1,

λ2

1 + λ
, α > 1

and

f(x) ∼



























λ2

1 + λ
xe−λx−(βx)α

, α < 1,

(β + λ)λ

1 + λ
xe−λx−βx, α = 1,

αβαλ

1 + λ
e−λx−(βx)α

, α > 1

as x → ∞.
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Note also that f(x) can be written as

f(x) = g(x)Q(x) + q(x)G(x),

where

g(x) =
λ2

(1 + x)

1 + λ
e−λx

and

q(x) = αβαxα−1e−(βx)α

.

So, the first derivative of f(x) is

f ′
(x) = g′(x)Q(x) + q′(x)G(x) − 2g(x)q(x).

Therefore, f(x) is decreasing if g′(x) < 0 and q′(x) < 0. This is possible if λ ≥ 1

and α ≤ 1.

The first derivative of f(x) is

f ′
(x) =

e−λx−(βx)α

1 + λ

[

(1 + λ + λx)
[

αβ2
(α − 1)(βx)

α−2 − (αβ)
2
(βx)

2α−2
]

−2αβλ2
(βx)

α−1
+ λ2

(1 − λ − λx)

]

.

So, the modes of f(x) at say x = x0 are the roots of

(1 + λ + λx)
[

αβ2
(α − 1)(βx)

α−2 − (αβ)
2
(βx)

2α−2
]

=(2.1)

= 2αβλ2
(βx)

α−1 − λ2
(1 − λ − λx).

The roots of (2.1) are difficult to find in general. However, if β = 0 then x0 =
1−λ

λ ,

the mode of the Lindley distribution, for 0 < λ < 1.

We now study (2.1) graphically. Figure 1 shows possible shapes of the pdf

of the WL distribution for selected (α, β, λ).

The left plot in Figure 1 shows bimodal shapes of the pdf with a maximum

followed by a minimum. The x coordinates of the (local minimum, local maxi-

mum) are (0.395, 0.933) for λ = 1.2, (0.451, 0.921) for λ = 1.4, (0.500, 0.906) for

λ = 1.6 and (0.547, 0.889) for λ = 1.8. The location of the minimum moves more

to the right with increasing values of λ. The location of the maximum moves

more to the left with increasing values of λ.

The right plot in Figure 1 shows unimodal shapes of the pdf. The x co-

ordinates of the mode are 0.370 for λ = 1.2, 0.298 for λ = 1.4, 0.227 for λ = 1.6

and 0.157 for λ = 1.8. The location of the mode moves more to the left with

increasing values of λ.
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Figure 1: Pdfs of the WL distribution for β = 1.

Monotonically decreasing shapes and monotonically decreasing shapes con-

taining an inflexion point are also possible for the pdf.

In each plot, the upper tails of the pdf become lighter with increasing values

of λ. The lower tails of the pdf become heavier with increasing values of λ.

2.2. Shape of hazard rate function

Using (1.1) and (1.2), the hazard rate function of the WL distribution can

be obtained as

h(x) =
λ2

(1 + x)

1 + λ + λx
+ αβ(βx)

α−1.(2.2)

It is obvious that the hazard rate functions of Lindley and Weibull distributions

are contained as particular cases for β = 0 and λ = 0, respectively. Also, (2.2)

can be expressed as

hX(x) = hY (x) + hZ(x),

i.e., the hazard rate function of the WL distribution is the sum of the hazard rate

functions of Lindley and Weibull distributions. As a result, the hazard rate func-

tion of the WL distribution can exhibit monotonically increasing, monotonically

decreasing and bathtub shapes, see Figure 2.
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We can see from (2.2) that

lim
x→0

h(x) =



















∞, α < 1,
β(1 + λ) + λ2

1 + λ
, α = 1,

λ2

1 + λ
, α > 1

and

lim
x→∞

h(x) =







λ, α < 1,
λ + β, α = 1,
∞, α > 1.

Bathtub shapes of the the hazard rate function appear possible when α is

close enough to 0 or α is close enough to 1, see Figure 2. Monotonically decreasing

shapes are possible for all values of α in between (i.e., in between α being close

enough to 0 and α being close enough to 1). Monotonically increasing shapes are

possible for all other values of α.
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Figure 2: Hazard rate function of the WL distribution for β = 1.

2.3. Shape of quartiles

The p-th quartile say xp of a WL random variable defined by F (xp) = p is

the root of

xp =
1 + λ

λ

[

(1 − p)eλxp+(βxp)α − 1

]

for 0 < p < 1. Numerical investigations showed that xp are monotonic decreasing

functions of λ and monotonic increasing functions of α except for high quartiles.
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3. MOMENT GENERATING FUNCTION AND MOMENTS

The moment generating function is fundamental for computing moments,

factorial moments and cumulants of a random variable. It can also be used for

estimation (for example, estimation methods based on empirical moment gener-

ating functions).

Moments are fundamental for any distribution. For instance, the first four

moments can be used to describe any data fairly well. Moments are also useful

for estimation (for example, the method of moments).

Several interesting characteristics of a distribution can be studied by mo-

ments and moment generating function. Let X ∼ WL(α, β, λ). Then the moment

generating function of X can be expressed as

MX(t) = E
(

etX
)

=

∞
∑

i=0

(−1)
iβiα

i!(λ − t)iα

{

λ2
Γ(iα + 1)

(1 + λ)(λ − t)
+

λ2
Γ(iα + 2)

(1 + λ)(λ − t)2

+
αβα

Γ (α(i + 1))

(λ − t)α
+

αλβα
Γ (α(i + 1) + 1)

(1 + λ)(λ − t)α+1

}

,(3.1)

where Γ(a) =
∫ ∞
0 ta−1e−tdt denotes the gamma function. The r-th raw moment

of X can be expressed as

µ′
r = E (Xr

) =
λ2

1 + λ

∞
∑

i=0

(−1)
iβiα

i!λiα+r+1

[

Γ(iα + r + 1) +
Γ(iα + r + 2)

λ

]

+αβα
∞

∑

i=0

(−1)
iβiα

i!λiα+α+r

[

Γ(iα + α + r) +
Γ(iα + α + r + 1)

1 + λ

]

.(3.2)

The central moments, coefficient of variation, skewness and kurtosis of X

can be readily obtained using the raw moments of X. Numerical investigations of

the behavior of the mean, variance, skewness and kurtosis versus α and λ showed

the following: i) mean is a monotonic decreasing function of λ; ii) mean is either

a monotonic increasing function of α or initially decreases before increasing with

respect to α; iii) variance is either a monotonic decreasing function of λ or initially

increases before decreasing with respect to λ; iv) variance is either a monotonic

decreasing function of α or a monotonic increasing function of α; v) skewness is

either a monotonic decreasing function of λ or initially decreases before increasing

with respect to λ; vi) skewness is either a monotonic decreasing function of α

or initially increases before decreasing with respect to α; vii) kurtosis is either a

monotonic decreasing function of λ, a monotonic increasing function of λ, initially

decreases before increasing with respect to λ, or initially increases, then decreases
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before increasing with respect to λ; viii) kurtosis is either a monotonic decreasing

function of α, initially increases before decreasing with respect to α, initially

decreases before increasing with respect to α, or initially increases, then decreases

before increasing with respect to α.

4. LORENZ CURVE

The Lorenz curve for a positive random variable X is defined as the graph

of the ratio

L (F (x)) =
E(X | X ≤ x)F (x)

E(x)
=

∫ x
0 xf(x)dx

∫ +∞
0 xf(x)dx

against F (x) with the property L(p) ≤ p, L(0) = 0 and L(1) = 1. If X represents

annual income, L(p) is the proportion of total income that accrues to individuals

having the 100p percent lowest incomes. If all individuals earn the same income

then L(p) = p for all p. The area between the line L(p) = p and the Lorenz curve

may be regarded as a measure of inequality of income, or more generally, of the

variability of X.

The Lorenz curve has also received applications in areas other than income

modeling: hierarchy theory for digraphs (Egghe [9]); depression and cognition

(Maldonado et al. [21]); disease risk to optimize health benefits under cost con-

straints (Gail [11]); seasonal variation of environmental radon gas (Groves-Kirkby

et al. [16]); statistical nonuniformity of sediment transport rate (Radice [26]).

For the WL distribution, we have

∫ x

0
xf(x)dx =

1

1 + λ

∞
∑

i=0

(−1)
iβiα

i!λiα
γ(iα + 2, λx)

+
1

1 + λ

∞
∑

i=0

(−1)
iβiα

i!λiα+1
γ(iα + 3, λx)

+αβ

∞
∑

i=0

(−1)
iβiα+α−1

i!λiα+α+1
γ(iα + α + 1, λx)

+
α

1 + λ

∞
∑

i=0

(−1)
iβiα+α

i!λiα+α+1
γ(iα + α + 2, λx),

where γ(a, x) =
∫ x
0 ta−1e−tdt denotes the incomplete gamma function. So, the
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Lorenz curve for the WL distribution is

L(p) =
1

µ

[ ∞
∑

i=0

(−1)
iβiα

i!λiα
γ(iα + 2, λx) +

1

1 + λ

∞
∑

i=0

(−1)
iβiα

i!λiα+1
γ(iα + 3, λx)

+αβ
∞

∑

i=0

(−1)
iβiα+α−1

i!λiα+α+1
γ(iα + α + 1, λx)

+
α

1 + λ

∞
∑

i=0

(−1)
iβiα+α

i!λiα+α+1
γ(iα + α + 2, λx)

]

.(4.1)

Possible shapes of (4.1) versus α and λ are shown in Figure 3. When α = 0.5, the

curves bend further towards the diagonal line as λ increases. When α = 1, the

curves bend further away from the diagonal line as λ increases. For each fixed λ,

the curves bend further towards the diagonal line as α increases.
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Figure 3: Lorenz curve of the WL distribution for β = 1.

5. ESTIMATION AND SIMULATION

Maximum likelihood estimation of the three parameters of the WL distri-

bution is considered in Section 5.1. An assessment of the performance of the

maximum likelihood estimators is performed in Section 5.2. Maximum likelihood

estimation of the three parameters in the presence of censored data is considered

in Section 5.3. A scheme for simulating from the WL distribution is given in

Section 5.4.
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5.1. Maximum likelihood estimation

Suppose x1, ..., xn is a random sample from the WL distribution. The log-

likelihood function is

ℓ(α, β, λ) =

n
∑

i=0

log

[

λ2
(1 + xi) + αλ (βxi)

α
+ αβ(1 + λ) (βxi)

α−1
]

− λ
n

∑

i=0

xi

−
n

∑

i=0

(βxi)
α − n log(1 + λ).(5.1)

The maximum likelihood estimators of (α, β, λ) can be obtained by solving the

likelihood equations

∂ℓ(α, β, λ)

∂α
=

n
∑

i=0

1

W (xj)

{

[β(1 + λ) + αβ(1 + λ) log (βxi)] (βx)
α−1

+ [λ + αλ log (βxi)] (βxi)
α

}

− λ

n
∑

i=0

(βx)
α

log (βxi) = 0,(5.2)

∂ℓ(α, β, λ)

∂β
=

n
∑

i=0

1

βW (xi)

[

αβ (1 + xi) (βxi)
α−1

+ α2λ (βxi)
α
]

− α

β

n
∑

i=0

(βxi)
α

= 0(5.3)

and

∂ℓ(α, β, λ)

∂λ
=

n
∑

i=0

1

W (xi)

[

α (βxi)
α

+ αβ (βxi)
α−1

+ 2λ (1 + xi)

]

−
n

∑

i=0

xi −
n

1 + λ
= 0,(5.4)

where W (x) = λ2
(1+x)+αλ(βx)

α
+αβ(1+λ)(βx)

α−1
. Alternatively, the MLEs

can be obtained by maximizing (5.1) numerically. We shall use the latter approach

in Sections 5.2 and 6. The maximization was performed by using the nlm function

in R (R Development Core Team [25]). In Sections 5.2 and 6, the function nlm

was executed with the initial values taken to be:

(i) The true parameter values (applicable for Section 5.2 only);

(ii) α = 0.01, 0.02, ..., 10, β = 0.01, 0.02, ..., 10 and λ = 0.01, 0.02, ..., 10;

(iii) The moments estimates, i.e., the solutions E(X) = (1/n)

n
∑

i=1

xi,

E
(

X2
)

= (1/n)

n
∑

i=1

x2
i and E

(

X3
)

= (1/n)

n
∑

i=1

x3
i , where E(X),
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E
(

X2
)

and E
(

X3
)

are given by (3.2). These equations do not

give explicit solutions. They were solved numerically using a quasi-

Newton algorithm. Numerical investigations showed that this in-

volved roughly the same amount of time as solving of
∂ℓ(α,β,λ)

∂α = 0,

∂ℓ(α,β,λ)
∂β = 0 and

∂ℓ(α,β,λ)
∂λ = 0 using a quasi-Newton algorithm.

In the cases of i) and iii), the function nlm converged all the time and the MLEs

were unique. In the case of ii), the MLEs were unique whenever the function nlm

converged. In the case of ii), the function nlm did not converge about five percent

of the time.

For interval estimation of (α, β, λ), we consider the observed Fisher infor-

mation matrix given by

IF (α, β, λ) = −





Iαα Iαβ Iαλ

Iβα Iββ Iβλ

Iλα Iλβ Iλλ



 ,

where Iφ1φ2
= ∂2ℓ/∂φ1∂φ2.

Under certain regularity conditions (see, for example, Ferguson [10]) and

Lehmann and Casella [19], pages 461-463) and for large n, the distribution of
√

n
(

α̂ − α, ̂β − β, ̂λ − λ
)

can be approximated by a trivariate normal distribu-

tion with zero means and variance-covariance matrix given by the inverse of

the observed information matrix evaluated at the maximum likelihood estimates.

This approximation can be used to construct approximate confidence intervals,

confidence regions, and testing hypotheses for the parameters. For example,

an asymptotic confidence interval for α with level 1 − γ is

(

α̂ ∓ z1−γ/2

√
I bα,bα)

,

where I bα,bα
is the (1, 1)-th element of the inverse of IF

(

α̂, ̂β, ̂λ
)

and z1−γ/2 is the

(1 − γ/2)-th quartile of the standard normal distribution.

5.2. Simulation study

Here, we assess the performance of the maximum likelihood estimators

given by (5.2)–(5.4) with respect to sample size n. The assessment was based on

a simulation study:

1. Generate ten thousand samples of size n from (1.2). The inversion

method was used to generate samples, i.e., variates of the WL distri-

bution were generated using

U =
1 + λ

λ

[

(1 − p)eλX+(βX)α − 1

]

,

where U ∼ U(0, 1) is a uniform variate on the unit interval.
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2. Compute the maximum likelihood estimates for the ten thousand sam-

ples, say

(

α̂i, ̂βi, ̂λi

)

for i = 1, 2, ..., 10000.

3. Compute the biases and mean squared errors given by

biash(n) =
1

10000

10000
∑

i=1

(

̂hi − h
)

, MSEh(n) =
1

10000

10000
∑

i=1

(

̂hi − h
)2

for h = α, β, λ.

We repeated these steps for n = 10, 11, ..., 100 with α = 1, β = 1 and λ = 1, so

computing biash(n) and MSEh(n) for h = α, β, λ and n = 10, 11, ..., 100.
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Figure 4: Biases of

(

α̂, ̂β, ̂λ
)

versus n.

Figures 4 and 5 show how the three biases and the three mean squared errors

vary with respect to n. The following observations can be made: the biases for

each parameter are negative; the biases appear largest for the parameter, α; the

biases appear smallest for the parameters, β and λ; the biases for each parameter

increase to zero as n → ∞; the mean squared errors for each parameter decrease to

zero as n → ∞; the mean squared errors appear largest for the parameter, α; the

mean squared errors appear smallest for the parameter, λ. These observations

are for only one choice for (α, β, λ), namely that (α, β, λ) = (1, 1, 1). But the

results were similar for a wide range of other values of (α, β, λ). In particular,
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the biases for each parameter always increased to zero as n → ∞ and the mean

squared errors for each parameter always decreased to zero as n → ∞.
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Figure 5: Mean squared errors of

(

α̂, ̂β, ̂λ
)

versus n.

Section 6 presents three real data applications. The sample size for the

first data set is eight hundred and seventy seven. The sample size for the second

data set is twenty six. The sample size for the third data set is two hundred and

ninety five. We shall see later in Section 6 that the WL distribution provides

good fits to the three data sets. Based on this fact, the biases for α̂, ̂β and ̂λ can

be expected to be less than 0.025, 0.007 and 0.0075, respectively, for all of the

data sets. The mean squared errors for α̂, ̂β and ̂λ can be expected to be less

than 0.04, 0.02 and 0.0088, respectively, for all of the data sets. Hence, the point

estimates given in Section 6 for all data sets can be considered accurate enough.

5.3. Censored maximum likelihood estimation

Often with lifetime data, we encounter censored data. There are different

forms of censoring: type I censoring, type II censoring, etc. Here, we consider

the general case of multi-censored data: there are n subjects of which
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• n0 are known to have failed at the times x1, ..., xn0
;

• n1 are known to have failed in the interval [sj−1, sj ], j = 1, ..., n1;

• n2 survived to a time rj , j = 1, ..., n2 but not observed any longer.

Note that n = n0 + n1 + n2 and that type I censoring and type II censoring are

contained as particular cases of multi-censoring. The log-likelihood function of

the model parameters for this multi-censoring data is:

ℓ(α, β, λ) =

n0
∑

i=0

log

[

λ2
(1 + xi) + αλ (βxi)

α
+ αβ(1 + λ) (βxi)

α−1
]

− λ

n0
∑

i=0

xi

−
n0
∑

i=0

(βxi)
α − n0 log(1 + λ)

+

n1
∑

i=1

log {F (si) − F (si−1)}

+

n2
∑

i=1

log {1 − F (ri)} ,(5.5)

where F (·) is given by (1.1). The MLEs can be obtained by maximizing (5.5)

numerically. The maximization can be performed by using the nlm function in

R.

5.4. Generating data

Section 5.2 gave an inversion method for simulating from the WL distribu-

tion. Here, we present an alternative method for simulation.

We know that a WL random variable is the minimum of independent

Weibull and Lindley random variables. So, to generate a random sample from

the WL distribution, the following algorithm can also be used:

1. First generate a random sample v1, ..., vn from Weibull(α, β);

2. Independently, generate a random sample w1, ..., wn from Lindley(λ);

3. Set xi = min (vi, wi) for i = 1, ..., n.

Then x1, x2, ..., xn will be a random sample from WL(α, β, λ).
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6. APPLICATIONS

In this section, we fit the WL distribution to three real data sets. We

compare the fits of the WL distribution to the fits of some related distributions:

the extended Lindley (EL) distribution due to Bakouch et al. [4] with the pdf

f(x) =
λ(1 + λ + λx)

α−1

(1 + λ)α

[

β(1 + λ + λx)(λx)
β−1 − α

]

e−(λx)β

for x > 0, α ∈ (−∞, 0) ∪ {0, 1}, β > 0 and λ > 0; the weighted Lindley (WEL)

distribution due to Ghitany et al. [14] with the pdf

f(x) =
θc+1

(θ + c)Γ(c)
xc−1

(1 + x)e−θx

for x > 0, c > 0 and θ > 0; the exponential Poisson Lindley (EPL) distribution

due to Barreto-Souza and Bakouch [5] with the pdf

f(x) =
βθ2

(1 + θ)2e−βx
(

3 + θ − e−βx
)

(1 + 3θ + θ2) (1 + θ − e−βx)
3

for x > 0, θ > 0 and β > 0; the Lindley distribution with the pdf

f(x) =
λ2

λ + 1
(1 + x)e−λx

for x > 0 and λ > 0; the generalized Lindley (GL1) distribution due to Zalerzadeh

and Dolati [29] with the pdf

f(x) =
θ2

(θx)
α−1

(α + γx)e−θx

(γ + θ)Γ(α + 1)

for x > 0, α > 0, θ > 0 and γ > 0; the power Lindley (PL) distribution due to

Ghitany et al. [13] with the pdf

f(x) =
αβ2

β + 1
(1 + xα

)xα−1e−βxα

for x > 0, α > 0 and β > 0; and, the generalized Lindley (GL2) distribution due

to Nadarajah et al. [23] with the pdf

f(x) =
αλ2

1 + λ
(1 + x)

[

1 − 1 + λ + λx

1 + λ
e−λx

]α−1

e−λx

for x > 0, α > 0 and λ > 0.
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6.1. Data set 1

The first data are times to reinfection of STD for eight hundred and seventy

seven patients. The data were taken from Section 1.12 of Klein and Moeschberger

[17]. We fitted the eight distributions to the data. Table 1 gives the parameter

estimates, standard errors obtained by inverting the observed information ma-

trix, log-likelihood values, values of Akaike information criterion (AIC), values of

Bayesian information criterion (BIC), p values based on the Kolmogorov–Smirnov

(KS) statistic, p values based on the Anderson–Darling (AD) statistic, and p val-

ues based on the Cramér–von Mises (CVM) statistic. The fitted pdfs of the three

best fitting distributions as well as the empirical histogram are shown in Figure 6.

The corresponding probability plots are shown in Figure 7.

Table 1: Parameter estimates, standard errors, log-likelihoods, AICs,

BICs and goodness-of-fit measures for data set 1.

Distribution Parameter estimates (s.e) − log L AIC BIC KS AD CVMbλ = 8.806×10
−1

�
1.302×10

−2
�
,

EL bα = −9.804×10
−1

�
3.034×10

−2
�
, 9203.4 18412.9 18427.2 4.080×10

−4
2.700×10

−5
1.979×10

−4bβ = 9.935×10
−7

�
8.098×10

−3
�

WEL

bθ = 2.878×10
−3

�
1.076×10

−4
�
,

6082.4 12168.7 12178.3 9.474×10
−3

2.879×10
−4

6.021×10
−2bc = 9.359×10

−2
�
1.324×10

−2
�

EPL

bθ = 2.326
�
7.568×10

−1
�
,

6055.1 12114.1 12123.7 8.151×10
−2

1.395×10
−2

1.174×10
−1bβ = 2.190×10

−3
�
1.854×10

−4
�

Lindley bλ = 5.397×10
−3

�
1.313×10

−4
�

6413.0 12828.1 12832.9 1.996×10
−3

1.762×10
−4

5.579×10
−4bθ = 7.872×10

−2
�
4.339×10

−3
�
,

GL1 bα = 1.453×10
−6

�
4.164×10

−2
�
, 27827.1 55660.1 55674.4 1.864×10

−5
2.149×10

−5
1.697×10

−4bγ = 7.595×10
−1

�
6.225×10

−2
�

PL
bα = 5.696×10

−1
�
1.364×10

−2
�
,

6056.3 12116.7 12126.2 6.872×10
−2

1.232×10
−3

7.611×10
−2bβ = 7.671×10

−2
�
6.420×10

−3
�

GL2

bλ = 2.980×10
−3

�
1.391×10

−4
�
,

6031.8 12067.5 12077.1 1.695×10
−1

7.568×10
−2

1.480×10
−1bα = 3.660×10

−1
�
1.509×10

−2
�bλ = 2.331×10

−3
�
2.714×10

−4
�
,

WL bα = 6.435×10
−1

�
3.870×10

−2
�
, 6022.9 12051.7 12066.0 3.131×10

−1
8.243×10

−2
2.735×10

−1bβ = 1.740×10
−3

�
2.792×10

−4
�

We can see that the WL distribution gives the smallest AIC value, the

smallest BIC value, the largest p value based on the KS statistic, the largest

p value based on the AD statistic, and the largest p value based on the CVM

statistic. The second smallest AIC, BIC values and the second largest p values

are given by the GL2 distribution. The third smallest AIC, BIC values and the

third largest p values are given by the EPL distribution. The fourth smallest AIC,

BIC values and the fourth largest p values are given by the PL distribution. The

fifth smallest AIC, BIC values and the fifth largest p values are given by the WEL

distribution. The sixth smallest AIC, BIC values and the sixth largest p values

are given by the Lindley distribution. The seventh smallest AIC, BIC values and

the seventh largest p values are given by the EL distribution. The largest AIC,

BIC values and the smallest p values are given by the GL1 distribution.
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Hence, the WL distribution provides the best fit based on the AIC values,

BIC values, p values based on the KS statistic, p values based on the AD statistic,

and p values based on the CVM statistic. The density and probability plots also

show that the WL distribution provides the best fit.
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Figure 6: Fitted pdfs of the three best fitting distributions for data set 1.
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Figure 7: PP plots of the three best fitting distributions for data set 1

(yellow for the EPL distribution, red for the GL2 distribution

and black for the WL distribution).
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6.2. Data set 2

The second data are times to death of twenty six psychiatric patients. The

data were taken from Section 1.15 of Klein and Moeschberger [17]. The eight

distributions were fitted to this data. The parameter estimates, standard errors

and the various measures are given in Table 2. The corresponding density and

probability plots are shown in Figures 8 and 9, respectively.

Table 2: Parameter estimates, standard errors, log-likelihoods, AICs,

BICs and goodness-of-fit measures for data set 2.

Distribution Parameter estimates (s.e) − log L AIC BIC KS AD CVMbλ = 7.510×10
−1

�
9.604×10

−2
�
,

EL bα = −8.534×10
−1

�
2.414×10

−1
�
, 164.9 335.8 339.5 1.163×10

−3
3.780×10

−5
9.083×10

−5bβ = 2.050×10
−6

�
1.197×10

−1
�

WEL

bθ = 7.727×10
−2

�
2.090×10

−2
�
,

107.7 219.3 221.8 4.691×10
−1

1.392×10
−3

3.064×10
−2bc = 1.107

�
4.659×10

−1
�

EPL

bθ = 1.267×10
4
�
4.662×10

5
�
,

111.1 226.3 228.8 1.840×10
−2

4.964×10
−5

1.024×10
−4bβ = 3.784×10

−2
�
7.442×10

−3
�

Lindley bλ = 7.311×10
−2

�
1.016×10

−2
�

107.7 217.4 218.6 7.924×10
−1

1.126×10
−2

4.895×10
−2bθ = 8.282×10

−2
�
2.152×10

−2
�
,

GL1 bα = 1.420
�
5.569×10

−1
�
, 107.1 220.3 224.0 2.920×10

−2
1.163×10

−4
7.787×10

−4bγ = 2.742×10
−1

�
3.199×10

−1
�

PL
bα = 1.225

�
2.069×10

−1
�
,

106.9 217.8 220.3 6.957×10
−1

8.737×10
−3

3.715×10
−2bβ = 3.452×10

−2
�
2.470×10

−2
�

GL2

bλ = 7.547×10
−2

�
1.398×10

−2
�
,

107.7 219.3 221.8 1.081×10
−1

1.582×10
−4

4.384×10
−3bα = 1.069

�
2.874×10

−1
�bλ = 4.340×10

−2
�
1.051×10

−2
�
,

WL bα = 9.901
�
2.822

�
, 93.4 192.8 196.5 8.998×10

−1
8.372×10

−1
2.849×10

−1bβ = 2.832×10
−2

�
1.014×10

−3
�

We can see again that the WL distribution gives the smallest AIC value,

the smallest BIC value, the largest p value based on the KS statistic, the largest

p value based on the AD statistic, and the largest p value based on the CVM

statistic. The second smallest AIC, BIC values and the second largest p values

are given by the Lindley distribution. The third smallest AIC, BIC values and the

third largest p values are given by the PL distribution. The fourth smallest AIC,

BIC values and the fourth largest p values are given by the WEL distribution.

The fifth smallest AIC, BIC values and the fifth largest p values are given by

the GL2 distribution. The sixth smallest AIC, BIC values and the sixth largest

p values are given by the GL1 distribution. The seventh smallest AIC, BIC values

and the seventh largest p values are given by the EPL distribution. The largest

AIC, BIC values and the smallest p values are given by the EL distribution.

Hence, the WL distribution again provides the best fit based on the AIC

values, BIC values, p values based on the KS statistic, p values based on the AD



108 A. Asgharzadeh, S. Nadarajah and F. Sharafi

statistic, and p values based on the CVM statistic. The density and probability

plots again show that the WL distribution provides the best fit.
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Figure 8: Fitted pdfs of the three best fitting distributions for data set 2.
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Figure 9: PP plots of the three best fitting distributions for data set 2

(brown for the Lindley distribution, blue for the PL distribu-

tion and black for the WL distribution).
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6.3. Data set 3

The third data are times to infection for AIDS for two hundred and ninety

five patients. The data were taken from Section 1.19 of Klein and Moeschberger

[17]. The eight distributions were fitted to this data. The parameter estimates,

standard errors and the various measures are given in Table 3. The corresponding

density and probability plots are shown in Figures 10 and 11, respectively.

Table 3: Parameter estimates, standard errors, log-likelihoods, AICs,

BICs and goodness-of-fit measures for data set 3.

Distribution Parameter estimates (s.e) − log L AIC BIC KS AD CVMbλ = 2.066×10
−1

�
5.340×10

−3
�
,

EL bα = −1.425×10
−1

�
8.097×10

−2
�
, 537.5 1080.9 1092.0 7.775×10

−1
9.719×10

−1
1.866×10

−1bβ = 3.503
�
2.776×10

−1
�

WEL

bθ = 1.396
�
1.130×10

−1
�
,

563.3 1130.6 1138.0 2.072×10
−1

1.269×10
−1

9.133×10
−3bc = 5.025

�
4.472×10

−1
�

EPL

bθ = 1.145×10
4
�
1.091×10

5
�
,

713.2 1430.4 1437.8 6.394×10
−2

2.022×10
−2

7.102×10
−4bβ = 2.403×10

−1
�
1.402×10

−2
�

Lindley bλ = 4.106×10
−1

�
1.731×10

−2
�

659.7 1321.4 1325.1 1.113×10
−1

8.193×10
−2

1.443×10
−3bθ = 1.402

�
1.157×10

−1
�
,

GL1 bα = 5.099
�
5.533×10

−1
�
, 563.3 1132.5 1143.6 1.744×10

−1
9.239×10

−2
3.008×10

−3bγ = 3.872
�
4.373

�
PL

bα = 2.099
�
8.683×10

−2
�
,

544.7 1093.5 1100.9 5.437×10
−1

1.664×10
−1

3.248×10
−2bβ = 8.357×10

−2
�
1.176×10

−2
�

GL2

bλ = 7.544×10
−1

�
3.321×10

−2
�
,

571.4 1146.9 1154.2 1.136×10
−1

9.136×10
−2

1.616×10
−3bα = 4.536

�
4.812×10

−1
�bλ = 1.595×10

−1
�
3.235×10

−2
�
,

WL bα = 4.036
�
4.329×10

−1
�
, 535.7 1077.4 1088.4 8.059×10

−1
9.908×10

−1
8.666×10

−1bβ = 1.949×10
−1

�
6.412×10

−3
�

We can see yet again that the WL distribution gives the smallest AIC value,

the smallest BIC value, the largest p value based on the KS statistic, the largest

p value based on the AD statistic, and the largest p value based on the CVM

statistic. The second smallest AIC, BIC values and the second largest p values

are given by the EL distribution. The third smallest AIC, BIC values and the

third largest p values are given by the PL distribution. The fourth smallest AIC,

BIC values and the fourth largest p values are given by the WEL distribution.

The fifth smallest AIC, BIC values and the fifth largest p values are given by

the GL1 distribution. The sixth smallest AIC, BIC values and the sixth largest

p values are given by the GL2 distribution. The seventh smallest AIC, BIC values

and the seventh largest p values are given by the Lindley distribution. The largest

AIC, BIC values and the smallest p values are given by the EPL distribution.

Hence, the WL distribution yet again provides the best fit based on the AIC

values, BIC values, p values based on the KS statistic, p values based on the AD
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statistic, and p values based on the CVM statistic. The density and probability

plots yet again show that the WL distribution provides the best fit.
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Figure 10: Fitted pdfs of the three best fitting distributions for data set 3.
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Figure 11: PP plots of the three best fitting distributions for data set 3

(pink for the EL distribution, blue for the PL distribution and

black for the WL distribution).
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7. CONCLUSIONS

We have introduced a three-parameter generalization of the Lindley distri-

bution referred to as the Weibull Lindley distribution. We have provided at least

seven possible motivations for this new distribution. We have studied shapes

of probability density and hazard rate functions, moments, moment generating

function, Lorenz curve, maximum likelihood estimators in the presence of com-

plete data and maximum likelihood estimators in the presence of censored data.

We have assessed the finite sample performance of the maximum likelihood esti-

mators by simulation. We have provided three real data applications.

We have seen that the probability density function can be bimodal, uni-

modal, monotonically decreasing or monotonically decreasing with an inflexion

point. The hazard rate function can be monotonically increasing, monotonically

decreasing or bathtub shaped. The maximum likelihood estimators appear to be

regular for sample sizes larger than twenty. The data applications show that the

Weibull Lindley distribution provides better fits than all known generalizations

of the Lindley distribution for at least three data sets.
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1. INTRODUCTION

In many environmental applications, extreme events are the main aspects of

practical concern. Financial time series are increasingly being analyzed to assess

the risk from extreme events. A description of extreme events is usually based

on observations that exceed a high threshold. Serial dependence leads to large

values occurring close in time and thus forming clusters. Clustering of extremes

does not take place in an independent and identically distributed (i.i.d.) setting.

Consider {Xn}n≥1 a stationary sequence with common distribution func-

tion (df) F and {Yn}n≥1 an i.i.d. sequence with the same parent df F . We say

{Xn}n≥1 has extremal index θ (0 < θ ≤ 1) if, for all τ > 0, there is a sequence of

levels un ≡ un(τ), n ≥ 1, such that

P
(

max(Y1, ..., Yn) ≤ un

)

= Fn
(un) −→

n→∞
e−τ

and P
(

max(X1, ..., Xn) ≤ un

)

−→
n→∞

e−θτ
(1.1)

(Leadbetter et al. [20] 1983). The sequence un ≡ un(τ), n≥1, satisfying Fn
(un)→

exp(−τ) or, equivalently, n(1−F (un)) → τ , as n → ∞, is usually denoted as nor-

malized levels.

There are several characterizations of the extremal index bringing out differ-

ent estimators. Many of these estimators can be stated as functions of a number k

of upper order statistics. Analogous to the semiparametric estimation of various

tail measures (e.g., the tail index and tail dependence coefficients in a multivari-

ate framework), there is a proverbial tradeoff between bias and variance. The

first increases with k (large bias for a large amount of top order statistics used in

estimates) and the second increases as k gets smaller (large variability as fewer

top order statistics are considered). A typical path is plotted in Figure 1. After

the great variability in the beginning, there is a stable sample path, as function

of k, around the true value and then the bias starts to stand out and dominate.

Thus k needs to be chosen from the stability zone that mediates the variance

domain and the bias domain. There are several methods developed in literature

towards this choice of k concerning the estimation of tail measures. A survey

within the tail index estimation can be seen in Beirlant et al. ([2] 2004). More

recently, a general procedure was introduced in Gomes et al. ([14] 2013) for the

tail index estimation, which was latter adopted in Neves et al. ([23] 2015) to

estimate the extremal index. This consists of a pure heuristic procedure to find

the “plateau” region of the estimates path from which we may infer the true value

of the parameter. The methodology in Frahm et al. ([12] 2005), developed within

the estimation of the tail dependence coefficient of random pairs, also seeks a

stable region but after a smoothing of the sample path; see Frahm et al. ([12]
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2005) and Ferreira and Silva ([9] 2014). In Ferreira ([5] 2014) and Ferreira ([6]

2015a) it was also adapted to the tail index estimation.
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Figure 1: Runs estimates sample path of a moving maximum process,

Xi = max(a0Zi, a1Zi−1, a2Zi−2), i ≥ 1, where {Zi}i≥−1 is an

i.i.d. unit Fréchet sequence, a0 = 1/3, a1 = 1/6 and a2 = 1/2,

with run length r = 2. The horizontal line corresponds to the

true value.

Here we are going to apply the methodology of Frahm et al. ([12] 2005) to

several estimators of the extremal index. For comparison, we also analyze the

performance of the procedure in Neves et al. ([23] 2015) applied to those esti-

mators. As these are threshold-free methods, we also compare with the blocks

and sliding estimation threshold-free procedure presented in Robert et al. ([25]

2009). The description of the methods is addressed in Section 2. The comparison

of the procedures is assessed through simulation in Section 3 and an illustration

with real data is stated in Section 4. A small discussion is presented in Section 5.

2. ESTIMATION METHODS

The extremal index can be interpreted in different ways, leading to different

estimators. In O’Brien ([24] 1974) it is proved that

(2.1) P
(

max(X2, ..., Xrn ≤ un|X1 > un)
)

−→
n→∞

θ ,

where rn is such that rn → ∞ and rn = o(n). Under a mild mixing condition,

Hsing et al. ([17], 1988) stated that

(2.2) E
[
∑rn

i=1 1{Xj>un}|
∑rn

i=1 1{Xj>un} ≥ 1
]

→ θ−1,
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with 1(·) denoting the indicator function, i.e., the limiting mean number of ex-

ceedances of un in an interval of length rn corresponds to the arithmetic inverse

of the extremal index, given that there are exceedances.

Also under a slight mixing condition, Ferro and Segers ([11] 2003) show

that

(2.3) P
(

F (un)T (un) > t
)

−→
n→∞

θe−θt , t > 0,

where T (un) = min{n ≥ 1 : Xn+1 > un|X1 > un}, i.e., the process of inter-

exceedance times normalized by exceedances of un follows a mixture of a point

mass and an exponential distribution Exp(θ−1
).

Relations (2.1)–(2.3) yield the most common approaches to estimate θ,

respectively, the runs, the blocks and the intervals method.

The blocks and the runs estimators are based on their own clusters identifi-

cation procedure and both correspond to the ratio between the number of clusters

and the number of exceedances of a high threshold un (Hsing [15] 1991; Weissman

and Novak [29] 1998; Nandagopalan [22] 1990; Hsing [16] 1993). The intervals

estimator is based on an inter-exceedance times method (Ferro and Segers [11]

2003).

More precisely, the runs estimator is expressed as

(2.4) ̂θR = (Nn(un))
−1

n−r
∑

i=1

1{Xi>un} 1{Xi+1≤un} ··· 1{Xi+r≤un},

where Nn(un) is the number of exceedances of un. Independent clusters are

identified as runs of observations above un, separated by rn consecutive values

under un.

By considering bn = [n/rn] blocks of length rn ([·] means the integer part),

the simple blocks estimator corresponds to

(2.5) ̂θB =
Cn(un)

Nn(un)

where Cn(u) is the number of clusters, i.e, in this context it corresponds to the

number of blocks in which at least one exceedance of un occurs. The variant

(2.6) ̂θBL =
log(1 − Cn(un)/kn)

rn log(1 − Nn(un)/n)

has been proposed in Smith and Weissman ([27] 1994) as having a better asymp-

totic behavior of second order.
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After some considerations and based on the result in (2.3), the intervals

estimator is stated as

(2.7) ̂θI =



















1 ∧ 2(
PN−1

i=1
Ti)

2

(N−1)
PN−1

i=1
T 2

i

, if max{Ti : 1 ≤ i ≤ N − 1} ≤ 2

1 ∧ 2(
PN−1

i=1
(Ti−1))

2

(N−1)
PN−1

i=1
(Ti−1)(Ti−2)

, if max{Ti : 1 ≤ i ≤ N − 1} > 2,

where Ti denotes the i-th inter-exceedance time, i = 1, ..., N −1 and N ≡ Nn(un).

The analysis of convenient local dependence conditions may eliminate the

need for a cluster identification scheme, such as the local dependence condition

D
(m)

(un) of Chernick et al. ([4] 1991), with m some positive integer. Consider

notation Mi,j = max{Xi+1, ..., Xj}, for i < j, Mi,j = −∞ if i ≥ j and M0,j = Mj .

Under condition D(un) of Leadbetter ([19] 1974) which holds whenever αn, ln → 0,

as n → ∞, for ln = o(n), where

αn, l = sup

{
∣

∣

∣
P

(

Mi1,i1+p ≤ un, Mj1,j1+q ≤ un

)

− P (Mi1,i1+p ≤ un)P (Mj1,j1+q ≤ un)

∣

∣

∣
:

1 ≤ i1 < i1 + p + l ≤ j1 < j1 + q ≤ n
}

,

we say that D
(m)

(un) is satisfied by {Xn}n≥1 if, for some {bn}n≥1 such that, as

n → ∞,

bn → ∞ , bnαn, ln → 0 , bnln/n → 0,

we have

nP
(

X1 > un, M1,m ≤ un < Mm,rn

)

→ 0 , n → ∞,

with {rn = [n/bn]}n≥1. The stronger conditions

n

rn
∑

j=m+1

P
(

X1 > un, M1,m ≤ un < Xj

)

→ 0 , n → ∞,

also stated in Chernick et al. ([4] 1991), lead to D
′
(un) if m =1 and D

′′
(un) if m = 2,

considered in Leadbetter et al. ([20] 1983) and Leadbetter and Nandagopalan ([21]

1989), respectively. Condition D
′
(un) inhibits clustering of exceedances and thus

resembles an i.i.d. behavior and brings out θ = 1, whilst D
′′
(un) allows clustering

but inhibits the occurrence of two or more upcrossings. Moreover, if condition

D
(m0)(un) holds then D

(m)
(un) also holds for all m ≥ m0.

Ferreira and Ferreira ([10] 2015) stated a new estimator that works un-

der D
(m)

(un). More precisely, if {Xn}n≥1 satisfies condition D
(m)

(un), we can

estimate θ by

(2.8) ̂θFF =
UZ

n (un)

Nn(un)
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where UZ
n (un) is the number of upcrossings of un within {Z1, ..., Z[n/(m−1)]} with

Zn = M(n−1)(m−1),n(m−1), n ≥ 1. Other estimators developed in the same context

were also considered in that work whose overall performance did not surpass ̂θFF.

Estimation approaches working only for series that satisfy condition D
(2)

(un) can

also be seen in Süveges ([28] 2007), Ferreira and Ferreira ([8] 2012) and Ferreira

([7] 2015b).

Chernick et al. ([4] 1991) also show that, under D
(m)

(un), the extremal

index exists and can be computed by the limit

(2.9) θ = lim
n→∞

P
(

M1,m ≤ un|X1 > un

)

.

Observe that the runs estimator in (2.4) corresponds to the empirical counterpart

of (2.9) by considering r = m. Diagnostic tools to analyze condition D
(m)

(un) may

be seen in Süveges ([28] 2007) and Ferreira and Ferreira ([10] 2015).

Observe also that taking r = 2 in (2.4) corresponds to the Nandagopalan’s

runs estimator derived in Nandagopalan ([22] 1990) under D
′′
(un).

The disjoint blocks and the sliding blocks estimators presented in Robert

et al. ([25] 2009) are derived from the extremal index definition in (1.1).

Consider, for r positive integer,

Fr(u) := P (Mr ≤ u), τr(u) := r(1 − F (u)) and θr(u) := − log Fr(u)

τr(u)
.

We have θ = limr→∞ θr(ur) for normalized levels ur = ur(τ) according to defini-

tion in (1.1). The estimation of the block maxima df Fr through b = [n/r] disjoint

blocks or n − r + 1 sliding blocks, that is

̂F DJ
n,r(u) :=

1

b

b
∑

i=1

1{M(i−1)r,ir≤u} and ̂F SL
n,r(u) :=

1

n − r + 1

n−r+1
∑

i=1

1{Mi−1,i−1+r≤u}

originates the estimators, respectively,

(2.10) ̂θDJ = −
log ̂F DJ

n,r(un)

τ̂n,r(un)
and ̂θSL = −

log ̂F SL
n,r(un)

τ̂n,r(un)
,

with

τ̂n,r(un) =
rNn(un)

n
.

In order to achieve consistency in the estimators above, τ must be actually taken

as an intermediate sequence τn, n ≥ 1, that is,

τn → ∞ and τn/n → 0.

Gomes et al. ([13] 2008) and Neves et al. ([23] 2015) considered the lev-

els un in the interval between the k + 1 and the k-th upper order statistics,
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[Xn−k:n, Xn−k+1:n), for the Nandagopalan’s runs estimators. The advantage is

to move the framework to a similar context of the semiparametric estimation of

other important tail measures existing in the literature which allows new estima-

tion methods of the extremal index by adapting the existing ones. In this paper

we will consider those levels un ∈ [Xn−k:n, Xn−k+1:n) in the estimators (2.4)–(2.8)

and (2.10) and denote, respectively,

(2.11) ̂θRk,
̂θBk,

̂θBLk , ̂θIk,
̂θFFk , ̂θDJk and ̂θSLk .

Observe that we are replacing τ by k. Indeed, we consider that k ≡ kn, n ≥ 1, is

replacing τn and thus it is also an intermediate sequence on behalf of consistency.

Estimators in (2.11) are functions of k, the number of order statistics higher than

the chosen level, where an increasing/decreasing k increases the bias/variance

(see Figure 1). Thus the choice of k is central in the estimation, not only of the

extremal index, but also of many other tail measures, making this topic largely

addressed in literature (see, e.g., Beirlant et al. [2] 2004).

The “plateau-finding” algorithm of Frahm et al. ([12] 2005), applied to the

estimation of the tail dependence coefficient of random pairs and here adopted to

estimate the extremal index, is based on a smoothing of the estimator’s sample

path by a simple box kernel with integer bandwidth d > 0. The resulting trajec-

tory thus corresponds to the moving average of 2d + 1 successive points of the

initial one and will be used in the rest of the procedure that consists on the ap-

plication of a plateau definition and respective finding criterium. In the following

we detail the method which we denote Algorithm 1.

Algorithm 1:

For a sample (X1, ..., Xn), consider bandwidth d = [wn] ∈ N and compute

the means of 2d + 1 successive points of ̂θk, 1 ≤ k < n, with smoothing degree

w = 0.005 (thus each moving average is about 1% of the data, as suggested in

Frahm et al. [12] 2005). In the resulting smoothed values, ̂θ1, ..., ̂θn−2d, define

the plateaus pk = (̂θk, ..., ̂θk+m−1), k = 1, ..., n − 2d − m + 1, with length m =

[
√

n − 2d]. The algorithm stops at the first plateau satisfying

k+m−1
∑

i=k+1

∣

∣

∣

̂θi − ̂θk

∣

∣

∣
≤ 2s,

where s is the empirical standard deviation of ̂θ1, ..., ̂θn−2d. Estimate θ as the

mean of the values of the chosen plane region (consider the estimate zero if no

stable region fulfills the stopping condition).

For comparison, we also consider another heuristic procedure introduced in

Gomes et al. ([14] 2013), also seeking the plane region that presumably includes
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the“optimal”sample fraction k to be estimated. The algorithm is described below

and denoted Algorithm 2.

Algorithms 2 and 3:

For a sample (X1, ..., Xn), obtain the minimum value j0, such that the

rounded values to j decimal places of ̂θk, 1 ≤ k < n, denoted ̂θk(j) are not all

equal. Identify the set of values of k associated to equal consecutive values of

̂θk(j0). Consider the set with largest range ℓ := kmax−kmin. Take all the estimates

̂θk(j0 + 2) with kmax ≤ k ≤ kmin, i.e., the estimates with two more decimal points

and obtain the mode. Denote K the set of k-values associated with this mode.

Consider ̂θbk, where ̂k is the maximum of K.

We also consider the variant ̂θek by taking ˜k = ℓ as mentioned in Neves et

al. ([23] 2015). This will be denoted Algorithm 3.

Observe that the described methodologies are all threshold-free. Robert

et al. ([25] 2009) also presented a threshold-free procedure based on blocks and

sliding estimators defined in (2.10). It is described downwards and will be called

Algorithm 4:

Algorithm 4:

For a sample (X1, ..., Xn), choose a block size r, take b = [n/r], τ = 1 and

u = Xn−[bτ ]+1:n. Consider Na,b(u) :=
∑

a<i≤b 1{Xi>u}, Nn,r(u) := (1/(n−r+1))×
∑n−r

i=0 Ni,i+r(u), σ̂ 2
n,r(u) :=

∑n−r
i=0 (Ni,i+r(u) − Nn,r(u))

2
and ĉ 2

n,r(u) :=
bθbτn,r(u) ×

σ̂ 2
n,r(u) − 1. Calculate ̂θ = ̂θ Γ

[bτ ], Γ ∈ {SL, DJ} and ĉ = ĉn,r(u). Obtain µ̂ through

µ =







µSL := θα−2
(eα − 1 − α) + α−1θc2

µDJ := θ(2α)
−1

(eα − 1) + α−1θc2,

replacing θ, c and α by, respectively, ̂θ, ĉ and ̂θτ . Obtain the bias-corrected ̂θ− µ̂/b

and estimate the variance by evaluating v = 2(θ2/α3
)(eα −1−α−α2/2)+θ2c2/α

at θ = ̂θ, c = ĉ and α = ̂θτ . Take α̂ as the value that minimizes v when θ = ̂θ

and c = ĉ. Now repeat the procedure for the founded optimal value τ = α̂/̂θ.

In the sequel, we use the abbreviations A1, A2, A3 and A4, respectively,

to refer the algorithms above.
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3. SIMULATION STUDY

We are going to analyze through simulation the performance of the esti-

mators in (2.11) within the methodologies A1–A4 described above. This study is

based on the following models:

• Max-autoregressive process (MAR), Xi = αXi−1 ∨ ǫi, where 0 < α < 1

and {ǫi}i≥1 is an i.i.d. sequence of r.v.’s with d.f. Fǫ(x) = exp(−(1−α)/x),

x > 0. This process has θ = 1 − α. We consider α = 1/2 and hence

θ = 1/2.

• Moving maxima process (MM), Xi =
∨

j=0,...,m αjǫi−j , with
∑m

j=0 αj = 1

and αj ≥ 0, {ǫi}i≥1 is an i.i.d. sequence of unit Féchet distributed r.v.’s.

This process has θ =
∨

j=0,...,m αj . We consider m = 3, α0 = 1/3, α1 = 1/6,

α2 = 1/2 leading to θ = 1/2.

• Autoregressive Gaussian process (AR), Xi = αXi−1 +ǫi, where {ǫi}i≥1 is

an i.i.d. sequence of N(0, 1−α2
) distributed r.v.’s. This process satisfies

condition D
′
(un) and thus θ = 1 (Leadbetter et al. [20] 1983).

• A first order autoregressive process, with Cauchy marginals (ARCauchy)

of Chernick ([3] 1978), Xi = sXi−1 +ǫi, with |s| < 1. The extremal index

is given by 1 − s2
. We take s = −3/5 and thus θ = 0.64.

• A negatively correlated uniform autoregressive process (ARUnif) of

Chernick et al. ([4], 1991), Xi = −(1/s)Xi−1 + ǫi, where {ǫi}i≥1 is an

i.i.d. sequence such that P (ǫ1 = j/s) = 1/s for j = 1, ..., s. We have

θ = 1 − 1/s2
. Here we consider s = 2 and thus θ = 3/4.

• Bivariate extreme value Markov process with standard Gumbel mar-

ginals and logistic dependence function, i.e.,

P
(

Xi ≤ x, Xi+1 ≤ y
)

= exp
(

−(x1/α
+ y1/α

)
α
)

.

We consider the dependence parameter α = 0.5 which gives θ = 0.328

(Smith [26] 1992), and denote the process MCBEV.

• A GARCH(1,1) process, Xi = σiǫi, with σ2
i = α + λX2

i−1 + βσ2
i−1,

α, λ, β > 0, where {ǫi}i≥1 is an i.i.d. sequence of standard Gaussian r.v.’s.

We consider α = 10
−6

, λ = 1/4 and β = 7/10 resulting in θ = 0.447 (see

details in Laurini and Tawn, [18] 2012).

We consider samples of sizes n = 100, 1000, 5000 and generate 100 inde-

pendent replications of each and for each model. We compare the estimation

procedures by computing the absolute mean bias and the root mean square error

(rmse).
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Remark 3.1. Observe that the methods being compared avoid threshold

selection but need a cluster identification parameter, whether be it a block size

or a run length. Recall that the dependence condition D
(m)

(un) of Chernick et

al. ([4], 1991) is a diagnostic tool for cluster identification within the runs estima-

tor ̂θRk and estimator ̂θFFk defined in (2.8). More precisely, we take the run length

r equal to m in the first (see discussion concerning (2.9)) and cycles of size m− 1

in the second as stated in (2.8). The MAR process satisfies condition D
(2)

(un),

whilst the processes MM, ARCauchy and ARUnif satisfy condition D
(3)

(un).

See Ferreira and Ferreira ([10] 2015) and references therein for more details.

In this latter reference, we validated conditions D
(4)

(un) and D
(5)

(un) for the

processes MCBEV and GARCH, respectively. In what concerns the remaining

estimators which are based on blocks schemes, the respective cluster parameters

were chosen according to an overall good performance found on further simula-

tions.

The results are presented in Tables 1–6 (the bold numbers correspond to

the smallest estimates obtained in each model). A high bias is observed in the AR

model and also in models ARCauchy, ARUnif and GARCH concerning the runs,

the intervals and the FF estimator, under algorithms A2 and A3. The lowest val-

ues of rmse rely frequently on blocks ̂θBk and ̂θBLk estimators under algorithms A1,

A2 and A3, followed by estimators ̂θRk and ̂θFFk within algorithm A1. In the AR

process, the results differ from the others where the estimators ̂θDJk and ̂θSLk tend

to behave better over the four algorithms. Observe that in this case we have the

boundary value θ = 1 (as in i.i.d. sequences) where inference is usually problem-

atic (see Ancona-Navarrete and Tawn [1] 2000). The intervals estimator, ̂θIk, is

parameter-free under the methods in study and may be considered within MAR,

AR, MM and MCBEV models. The worst performances concern mainly estima-

tors ̂θFFk and ̂θRk for algorithm A2, where the method is returning a too high k,

corresponding to estimates with very large bias. In Gomes et al. ([13] 2008)

it was presented a reduced-bias version of Nandagopalan’s estimator based on

the Generalized Jackknife (GJ) methodology, which is given by

̂θNGJk = 5̂θR[k/2]+1 − 2

(

̂θR[k/4]+1 + ̂θRk

)

.(3.1)

Notice that Nandagopalan’s estimator corresponds to the runs estimator when-

ever we take the run length 2, which in turn requires D
′′
(un). In our examples,

only models MAR and AR satisfy this condition. We have also applied the es-

timator (3.1) to all models within algorithms A2 and A3. Indeed, except in the

GARCH case, the rmse of ̂θNGJk decreases to about the half of the rmse of the

runs estimator, mostly for larger sample sizes (n ≥ 1000) and with algorithm A2.

In the case of algorithm A3, the rmse of ̂θNGJk is smaller than the runs estimator

only within the largest sample size (n = 5000) of models MAR and ARUnif.
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Table 1: Root mean squared errors obtained for simulated samples of size n = 100.

For estimators ̂θBLk and ̂θBk we considered blocks of length 3 except in

MCBEV and GARCH models where we used blocks of length 4 and 5,

respectively. For estimators ̂θDJk and ̂θSLk we considered blocks of length 5.

For estimator ̂θRk (̂θFFk ) we considered runs (cycles) of length 2 in MAR

and AR, of length 3 in MM, ARCauchy and ARUnif, of length 4 in

MCBEV and length 5 in GARCH. See Remark 3.1.

A1 MAR AR MM ARCauchy ARUnif MCBEV GARCHbθRk 0.1338 0.3603 0.1215 0.1534 0.1528 0.1249 0.1782bθIk 0.2754 0.2899 0.2271 0.3549 0.2487 0.3071 0.5170bθFFk 0.1469 0.5336 0.1488 0.1831 0.1474 0.1352 0.2018bθBLk 0.1467 0.4548 0.1780 0.2869 0.1820 0.1544 0.1626bθBk 0.1233 0.4826 0.1594 0.1948 0.1459 0.1380 0.1539bθDJk 0.2971 0.5041 0.2803 0.3296 0.3406 0.2909 0.5316bθSLk 0.2583 0.2327 0.2474 0.2907 0.3419 0.3052 0.5185

A2 MAR AR MM ARCauchy ARUnif MCBEV GARCHbθRk 0.3183 0.7928 0.4133 0.6283 0.7399 0.2663 0.4366bθNGJk 0.3003 0.5448 0.5071 0.3925 0.2500 0.3404 0.5569bθIk 0.2621 0.5387 0.3032 0.2500 0.2500 0.2133 0.5511bθFFk 0.4353 0.9410 0.4627 0.6400 0.7500 0.4447 0.2910bθBLk 0.0996 0.5217 0.0948 0.2176 0.1079 0.0734 0.1793bθBk 0.1216 0.6186 0.1162 0.2118 0.3018 0.0495 0.2108bθDJk 0.2646 0.4831 0.2146 0.2801 0.3010 0.2405 0.3230bθSLk 0.3035 0.4431 0.2110 0.3158 0.4289 0.2457 0.4511

A3 MAR AR MM ARCauchy ARUnif MCBEV GARCHbθRk 0.1199 0.4192 0.1746 0.3026 0.2923 0.1158 0.3151bθNGJk 0.6235 0.5285 0.5323 0.3673 0.2505 0.6538 0.6584bθIk 0.2770 0.2846 0.2527 0.2500 0.2500 0.3095 0.4959bθFFk 0.1801 0.6620 0.2295 0.4697 0.4486 0.3133 0.1766bθBLk 0.1663 0.4521 0.1890 0.2587 0.2051 0.1517 0.1580bθBk 0.0967 0.5245 0.0775 0.1105 0.1179 0.0570 0.1439bθDJk 0.4813 0.2996 0.4017 0.4394 0.3769 0.4782 0.5875bθSLk 0.4802 0.4092 0.4041 0.4609 0.4946 0.5056 0.6435

A4 MAR AR MM ARCauchy ARUnif MCBEV GARCHbθDJk 0.3001 0.2423 0.2748 0.2888 0.3457 0.3496 0.4886bθSLk 0.2482 0.2445 0.2302 0.2644 0.3279 0.3562 0.4811
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Table 2: Absolute bias obtained for simulated samples of size n = 100.

For estimators ̂θBLk and ̂θBk we considered blocks of length 3

except in MCBEV and GARCH models where we used blocks

of length 4 and 5, respectively. For estimators ̂θDJk and ̂θSLk we

considered blocks of length 5. For estimator ̂θRk (̂θFFk ) we con-

sidered runs (cycles) of length 2 in MAR and AR, of length 3

in MM, ARCauchy and ARUnif, of length 4 in MCBEV and

length 5 in GARCH. See Remark 3.1.

A1 MAR AR MM ARCauchy ARUnif MCBEV GARCHbθRk 0.0152 0.3280 0.0833 0.0618 0.0569 0.0076 0.0303bθIk 0.1577 0.2040 0.1234 0.3545 0.2487 0.1875 0.5006bθFFk 0.0780 0.5172 0.1243 0.1276 0.0003 0.1070 0.1841bθBLk 0.0063 0.4319 0.0709 0.0307 0.0321 0.0439 0.0771bθBk 0.0120 0.4657 0.0432 0.0350 0.0756 0.0265 0.1071bθDJk 0.0454 0.3721 0.1328 0.2646 0.2934 0.2091 0.4143bθSLk 0.2050 0.1729 0.2186 0.2519 0.2993 0.2797 0.4928

A2 MAR AR MM ARCauchy ARUnif MCBEV GARCHbθRk 0.2971 0.7778 0.4045 0.6283 0.7399 0.2586 0.4366bθNGJk 0.0057 0.4671 0.3341 0.3714 0.2500 0.0889 0.5222bθIk 0.0031 0.4575 0.0879 0.2500 0.2500 0.0017 0.5505bθFFk 0.4294 0.9393 0.4599 0.6400 0.7500 0.4445 0.2861bθBLk 0.0371 0.5127 0.0113 0.1278 0.0389 0.0097 0.1673bθBk 0.1135 0.6172 0.1051 0.1628 0.2906 0.0311 0.2047bθDJk 0.0107 0.3768 0.0187 0.0198 0.1110 0.0554 0.1470bθSLk 0.1030 0.2913 0.0594 0.0748 0.1952 0.1127 0.2979

A3 MAR AR MM ARCauchy ARUnif MCBEV GARCHbθRk 0.0488 0.4056 0.1598 0.2875 0.2800 0.0937 0.3110bθNGJk 0.0057 0.4671 0.3341 0.3714 0.2500 0.0889 0.5222bθIk 0.1607 0.2045 0.1672 0.2500 0.2500 0.2044 0.4792bθFFk 0.1593 0.6558 0.2182 0.4652 0.4444 0.3097 0.1711bθBLk 0.0275 0.4163 0.0766 0.0566 0.0702 0.0565 0.0561bθBk 0.0547 0.5184 0.0120 0.0179 0.1023 0.0025 0.1280bθDJk 0.3553 0.0206 0.2558 0.3441 0.3146 0.3330 0.4882bθSLk 0.2852 0.0424 0.2375 0.2385 0.2952 0.3101 0.4835

A4 MAR AR MM ARCauchy ARUnif MCBEV GARCHbθDJk 0.2433 0.1865 0.2096 0.2462 0.3059 0.3099 0.4571bθSLk 0.2110 0.2031 0.1921 0.2238 0.2821 0.3219 0.4544
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Table 3: Root mean squared errors obtained for simulated samples of size n = 1000.

For estimators ̂θBLk and ̂θBk we considered blocks of length 3 except in

MCBEV and GARCH models where we used blocks of length 4 and 5,

respectively. For estimators ̂θDJk and ̂θSLk we considered blocks of length 20.

For estimator ̂θRk (̂θFFk ) we considered runs (cycles) of length 2 in MAR and

AR, of length 3 in MM, ARCauchy and ARUnif, of length 4 in MCBEV

and length 5 in GARCH. See Remark 3.1.

A1 MAR AR MM ARCauchy ARUnif MCBEV GARCHbθRk 0.0666 0.2877 0.0645 0.0874 0.0583 0.0508 0.1059bθIk 0.0795 0.3243 0.0658 0.2312 0.2498 0.0670 0.2217bθFFk 0.0853 0.4148 0.0744 0.1014 0.0566 0.0809 0.1295bθBLk 0.0467 0.4381 0.0767 0.0882 0.0944 0.0836 0.0845bθBk 0.0532 0.4499 0.0680 0.0624 0.1022 0.0675 0.0993bθDJk 0.2161 0.4323 0.2225 0.1859 0.3059 0.1351 0.2101bθSLk 0.1342 0.3379 0.1101 0.1303 0.1563 0.1057 0.1877

A2 MAR AR MM ARCauchy ARUnif MCBEV GARCHbθRk 0.1915 0.7503 0.4357 0.6388 0.7489 0.2656 0.4457bθNGJk 0.3003 0.5448 0.5071 0.3925 0.2500 0.3404 0.5569bθIk 0.1227 0.5738 0.0688 0.3600 0.2500 0.0565 0.5202bθFFk 0.4435 0.9582 0.4794 0.6397 0.7500 0.2768 0.4458bθBLk 0.0283 0.4765 0.0647 0.2051 0.0631 0.0680 0.0615bθBk 0.0926 0.5931 0.0803 0.1206 0.2387 0.0188 0.1398bθDJk 0.0932 0.3744 0.3845 0.1216 0.2352 0.1007 0.2247bθSLk 0.1211 0.3330 0.1085 0.1636 0.2534 0.1402 0.2763

A3 MAR AR MM ARCauchy ARUnif MCBEV GARCHbθRk 0.0950 0.4033 0.1573 0.3373 0.3289 0.1097 0.3671bθNGJk 0.1910 0.2989 0.3553 0.3774 0.2954 0.2495 0.4270bθIk 0.0781 0.3848 0.0640 0.3600 0.4290 0.0573 0.3668bθFFk 0.1726 0.6209 0.1978 0.4741 0.4548 0.1633 0.2951bθBLk 0.0321 0.4584 0.0641 0.0948 0.0562 0.0728 0.0657bθBk 0.0839 0.5430 0.0385 0.0320 0.0868 0.0298 0.1542bθDJk 0.1130 0.2348 0.1095 0.1169 0.1568 0.0986 0.1913bθSLk 0.0992 0.2507 0.0937 0.1143 0.1497 0.1013 0.1851

A4 MAR AR MM ARCauchy ARUnif MCBEV GARCHbθDJk 0.1203 0.2496 0.1350 0.1409 0.1757 0.1336 0.2330bθSLk 0.1054 0.2313 0.0931 0.1300 0.1753 0.1279 0.2279
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Table 4: Absolute bias obtained for simulated samples of size n = 1000.

For estimators ̂θBLk and ̂θBk we considered blocks of length 3

except in MCBEV and GARCH models where we used blocks

of length 4 and 5, respectively. For estimators ̂θDJk and ̂θSLk we

considered blocks of length 20. For estimator ̂θRk (̂θFFk ) we con-

sidered runs (cycles) of length 2 in MAR and AR, of length 3

in MM, ARCauchy and ARUnif, of length 4 in MCBEV and

length 5 in GARCH. See Remark 3.1.

A1 MAR AR MM ARCauchy ARUnif MCBEV GARCHbθRk 0.0301 0.2748 0.0481 0.0607 0.0128 0.0134 0.0608bθIk 0.0007 0.2901 0.0016 0.1815 0.2498 0.0107 0.1523bθFFk 0.0604 0.4010 0.0593 0.0780 0.0074 0.0707 0.1184bθBLk 0.0032 0.4350 0.0595 0.0400 0.0625 0.0683 0.0703bθBk 0.0146 0.4461 0.0420 0.0174 0.0881 0.0494 0.0886bθDJk 0.0368 0.3275 0.0347 0.0332 0.0237 0.0260 0.0934bθSLk 0.0417 0.2780 0.0459 0.0562 0.1221 0.0800 0.1571

A2 MAR AR MM ARCauchy ARUnif MCBEV GARCHbθRk 0.1768 0.7390 0.4300 0.6388 0.7489 0.2584 0.4457bθNGJk 0.0437 0.3963 0.2290 0.6301 0.2500 0.1622 0.6187bθIk 0.1075 0.5675 0.0368 0.3600 0.2500 0.0334 0.5136bθFFk 0.4389 0.9578 0.4783 0.6397 0.7500 0.2700 0.4458bθBLk 0.0029 0.4747 0.0533 0.1550 0.0156 0.0629 0.0570bθBk 0.0894 0.5922 0.0650 0.0608 0.2316 0.0041 0.1370bθDJk 0.0283 0.3423 0.3701 0.0453 0.1888 0.0847 0.1956bθSLk 0.0872 0.3160 0.0839 0.1281 0.2122 0.1176 0.2455

A3 MAR AR MM ARCauchy ARUnif MCBEV GARCHbθRk 0.0853 0.4012 0.1554 0.3363 0.3278 0.1070 0.3667bθNGJk 0.0031 0.2511 0.1745 0.3805 0.2954 0.0456 0.3930bθIk 0.0231 0.3732 0.0015 0.3373 0.2490 0.0106 0.3145bθFFk 0.1703 0.6203 0.1965 0.4735 0.4545 0.1620 0.2945bθBLk 0.0006 0.4565 0.0550 0.0677 0.0254 0.0660 0.0597bθBk 0.0775 0.5422 0.0314 0.0017 0.0855 0.0124 0.1522bθDJk 0.0597 0.2013 0.0679 0.0519 0.0959 0.0792 0.1490bθSLk 0.0647 0.2340 0.0673 0.0700 0.1147 0.0848 0.1533

A4 MAR AR MM ARCauchy ARUnif MCBEV GARCHbθDJk 0.0658 0.2172 0.0699 0.0860 0.1134 0.1104 0.2088bθSLk 0.0668 0.1988 0.0460 0.0833 0.1302 0.1106 0.2057
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Table 5: Root mean squared errors obtained for simulated samples of size n = 5000.

For estimators ̂θBLk and ̂θBk we considered blocks of length 3 except in

MCBEV and GARCH models where we used blocks of length 4 and 5,

respectively. For estimators ̂θDJk and ̂θSLk we considered blocks of length 20.

For estimator ̂θRk (̂θFFk ) we considered runs (cycles) of length 2 in MAR and

AR, of length 3 in MM, ARCauchy and ARUnif, of length 4 in MCBEV

and length 5 in GARCH. See Remark 3.1.

A1 MAR AR MM ARCauchy ARUnif MCBEV GARCHbθRk 0.0434 0.2504 0.0395 0.0518 0.0314 0.0409 0.1257bθIk 0.0460 0.2904 0.0327 0.0799 0.2499 0.0387 0.1004bθFFk 0.0541 0.4309 0.0423 0.0558 0.0303 0.0608 0.1072bθBLk 0.0231 0.4234 0.0554 0.0585 0.0803 0.0715 0.0683bθBk 0.0290 0.4272 0.0572 0.0457 0.0865 0.0656 0.0823bθDJk 0.0587 0.2439 0.0755 0.0895 0.1030 0.0789 0.1415bθSLk 0.0592 0.2317 0.0557 0.0796 0.0954 0.0781 0.1407

A2 MAR AR MM ARCauchy ARUnif MCBEV GARCHbθRk 0.1500 0.7498 0.4382 0.6396 0.7498 0.2648 0.4464bθNGJk 0.0700 0.3918 0.2273 0.4596 0.2500 0.1532 0.6150bθIk 0.0940 0.5357 0.0446 0.3600 0.2500 0.0370 0.5351bθFFk 0.4416 0.9505 0.4915 0.6398 0.7500 0.2749 0.4456bθBLk 0.0113 0.4786 0.0606 0.2282 0.0510 0.0688 0.0547bθBk 0.0838 0.5925 0.0502 0.0505 0.1818 0.0189 0.1308bθDJk 0.0862 0.3085 0.0942 0.1364 0.2416 0.1171 0.2121bθSLk 0.1056 0.2843 0.1056 0.1595 0.2502 0.1350 0.2456

A3 MAR AR MM ARCauchy ARUnif MCBEV GARCHbθRk 0.0970 0.2576 0.1530 0.3369 0.3316 0.1063 0.3688bθNGJk 0.0700 0.3918 0.2273 0.4596 0.2500 0.1532 0.6150bθIk 0.0611 0.4150 0.0300 0.3600 0.2499 0.0378 0.3648bθFFk 0.1663 0.6147 0.1941 0.4709 0.4544 0.1587 0.2940bθBLk 0.0190 0.4818 0.0606 0.1082 0.0253 0.0728 0.0777bθBk 0.0787 0.5461 0.0366 0.0308 0.0858 0.0164 0.1553bθDJk 0.0716 0.2528 0.0777 0.0992 0.1202 0.1035 0.1692bθSLk 0.0842 0.2695 0.0908 0.1062 0.1312 0.1152 0.1769

A4 MAR AR MM ARCauchy ARUnif MCBEV GARCHbθDJk 0.0664 0.2149 0.0561 0.0989 0.1147 0.1259 0.2109bθSLk 0.0644 0.2155 0.0523 0.0916 0.1066 0.1224 0.2100
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Table 6: Absolute bias obtained for simulated samples of size n = 5000.

For estimators ̂θBLk and ̂θBk we considered blocks of length 3

except in MCBEV and GARCH models where we used blocks

of length 4 and 5, respectively. For estimators ̂θDJk and ̂θSLk we

considered blocks of length 20. For estimator ̂θRk (̂θFFk ) we con-

sidered runs (cycles) of length 2 in MAR and AR, of length 3

in MM, ARCauchy and ARUnif, of length 4 in MCBEV and

length 5 in GARCH. See Remark 3.1.

A1 MAR AR MM ARCauchy ARUnif MCBEV GARCHbθRk 0.0180 0.2431 0.0293 0.0273 0.0035 0.0015 0.1093bθIk 0.0065 0.2784 0.0024 0.0522 0.2499 0.0118 0.0482bθFFk 0.0360 0.4132 0.0321 0.0343 0.0015 0.0500 0.1023bθBLk 0.0044 0.4223 0.0050 0.0363 0.0660 0.0669 0.0638bθBk 0.0015 0.4258 0.0462 0.0238 0.0774 0.0586 0.0779bθDJk 0.0372 0.2241 0.0383 0.0640 0.0752 0.0613 0.1229bθSLk 0.0379 0.2251 0.0469 0.0570 0.0711 0.0648 0.1202

A2 MAR AR MM ARCauchy ARUnif MCBEV GARCHbθRk 0.1394 0.7498 0.4374 0.6396 0.7498 0.2612 0.4464bθNGJk 0.0475 0.3896 0.2176 0.4050 0.2500 0.1428 0.6102bθIk 0.0852 0.5310 0.0280 0.3600 0.2500 0.0267 0.5330bθFFk 0.4406 0.9501 0.4908 0.6398 0.7500 0.2688 0.4456bθBLk 0.0009 0.4783 0.0580 0.2202 0.0349 0.0680 0.0532bθBk 0.0814 0.5919 0.0308 0.0040 0.1602 0.0048 0.1284bθDJk 0.0747 0.3002 0.0856 0.1167 0.2156 0.1073 0.1987bθSLk 0.0959 0.2793 0.0976 0.1393 0.2163 0.1240 0.2304

A3 MAR AR MM ARCauchy ARUnif MCBEV GARCHbθRk 0.0947 0.2573 0.1526 0.3367 0.3314 0.1055 0.3687bθNGJk 0.0107 0.2890 0.1773 0.3896 0.2990 0.0859 0.4441bθIk 0.0546 0.4124 0.0164 0.3600 0.2499 0.0210 0.3389bθFFk 0.1657 0.6146 0.1939 0.4708 0.4544 0.1584 0.2939bθBLk 0.0011 0.4813 0.0580 0.1006 0.0152 0.0701 0.0765bθBk 0.0777 0.5460 0.0346 0.0064 0.0856 0.0114 0.1545bθDJk 0.0609 0.2470 0.0692 0.0857 0.1075 0.0990 0.1592bθSLk 0.0758 0.2660 0.0854 0.0988 0.1217 0.1121 0.1688

A4 MAR AR MM ARCauchy ARUnif MCBEV GARCHbθDJk 0.0562 0.2079 0.0451 0.0835 0.0853 0.1212 0.2049bθSLk 0.0570 0.2097 0.0449 0.0812 0.0778 0.1190 0.2065
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4. APPLICATION TO REAL DATA

We consider the daily maximum temperatures (in degrees Celsius) at Uccle

(Belgium), from 1901 to 1999, on the warmest month of July (thus station-

arity is assumed), consisting in n = 3051 observations. The data is available

at “http://lstat.kuleuven.be/Wiley/Data/ecad00045TX.txt” and is plotted in

Figure 2. The extremal index of this series was analyzed in Beirlant et al. ([2]

2004), where the respective estimates, obtained through parametric modeling,

ranged between 0.49 and 0.56.
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Figure 2: July daily maximum temperatures (in degrees Celsius) at Uccle,

over the years 1901–1999.

We start by checking if we can validate some condition D
(k)

(un). To this

end, we use the empirical methodology of Ferreira and Ferreira ([10], 2015) by

calculating the proportion of anti-D
(m)

(un) events among the exceedances for

several pairs of normalized levels un and block sizes rn:

p(un, rn) =

∑n−rn+1
j=1 1{

Xj>un,Xj+1≤un,...,Xj+m−1≤un,Mj+m−1,rn+j−1>un

}

∑n
j=1 1{Xj>un}

.

More precisely, for each fixed τ > 0, we take un as the empirical (1 − τ/n)-th

quantile for increasing sample sizes n and choose the sequence {bn = [n/rn]}n

growing at a slower rate than n, e.g., bn = [(log n)
a
], for some a > 0. If D

(m)
(un)

holds with bn, the points (n, p(un, rn)) approach zero as n → ∞. Based on the
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suggested declustering parameter r = 4 in Beirlant et al. ([2] 2004), we have ana-

lyzed the proportions of anti-D
(4)

(un), plotted in Figure 3 (right panel) for τ = 15

(full line) and τ = 20 (dashed line), with kn = [(log n)
2.5

]. Observe that the val-

ues are small and almost indistinguishable from the proportions of anti-D
(3)

(un)

(left panel). We have also taken kn = [(log n)
3
] which led to null proportions in

both cases. Therefore, we assume the validity of the D
(3)

(un) local condition and

consider run length 3 for the runs estimator and cycles of length 2 for the FF

estimator in (2.8); see Remark 3.1. We also take block-length 3 in the blocks esti-

mators. The disjoint and slides methods were implemented with block-length 15.
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Figure 3: Observed proportions of anti-D
(3)

(un) (left) and anti-D
(4)

(un)

conditions for Uccle data, for τ = 15 (full line) and τ = 20

(dashed line), with kn = [(log n)
2.5

].

The sample paths of the considered estimators in (2.11) and (3.1) are in Figure 4.

Under algorithm A4, we obtained the estimate 0.51 for both disjoint and slide

estimators. We have also applied the bias-reduced GJ Nandagopalan’s runs esti-

mator in (3.1) from which the values 0.41 and 0.57 were derived under A2 and A3,

respectively. The remaining estimates are summarized in Table 7. The results

are mostly in agreement with the simulation study.

Table 7: Extremal index estimates for Uccle data.

̂θRk
̂θIk

̂θFFk
̂θBk

̂θBLk
̂θDJk

̂θSLk

A1 0.49 0.47 0.46 0.50 0.51 0.53 0.57

A2 0.10 0.33 0.05 0.39 0.50 0.52 0.53

A3 0.32 0.30 0.28 0.42 0.50 0.49 0.53
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Figure 4: Sample paths of estimators in (2.11) and estimator (3.1)

for Uccle data.

5. DISCUSSION

We have analyzed several estimators of the extremal index under different

methodologies. The procedure based in Frahm et al. ([12] 2005) revealed an over-

all satisfactory performance. The best results were mostly observed within the

blocks estimators, ̂θBk and ̂θBLk , under the methodology of Neves et al. ([23] 2015).

The large biases observed in the AR process makes inference within weak depen-

dence, i.e., θ = 1, an open topic to explore in this framework. Other methods to

analyze the local dependence D-conditions are also welcome. The bias-reduced

GJ Nandagopalan’s estimator is sensitive to the restricted condition D
′′

and a

generalization of the method to the broader runs estimator may be more advan-

tageous. These points will be addressed in a future work.
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1. INTRODUCTION

Let (X,Y ) be a bivariate random vector satisfying the general nonpara-

metric regression model

(1.1) Y = m(X) + σ(X)ε,

where m(x) = E(Y |X= x) is the regression function, σ2
(x) = Var(Y |X= x)

is the conditional variance function and ε is the regression error, which is assumed

to be independent of X. Note that, by construction, E(ε) = 0 and Var(ε) = 1.

The covariate X is continuous with density function fX . The regression func-

tion, the variance function, the error distribution and that of the covariate are

unknown and no parametric models are assumed for them.

Because the knowledge of the error distribution will improve the statistical

analysis of model (1.1), several authors have proposed tests for such distribution,

that is, tests of the null hypothesis

H0 : F ∈ F ,

versus the alternative

H1 : F /∈ F ,
where F stands for the cumulative distribution function (CDF) of ε and F is a

parametric family,

F =
{

F (·; θ), θ ∈ Θ
}

, Θ ⊆ R
p.

Examples are the tests in Neumeyer et al. [17] and Heuchenne and Van Keilegom

[6], which are based on comparing the empirical CDF of the residuals to a para-

metric estimator of the CDF under the null hypothesis. Since the equality of the

CFDs can be also interpreted in terms of the associated characteristic functions

(CFs), Hušková and Meintanis [11] have proposed a test for H0 that is based on

comparing the empirical CF of the residuals to a parametric estimator of the CF

under the null hypothesis. As commented in Jiménez-Gamero [13], it is interes-

ting to observe that the last paper requires weaker conditions for the validity of

the procedures than the ones based on the CDF. Nevertheless, in all cases the

limit distribution of the proposed test statistics is unknown, even under the null

distribution, because it depends on the unknown value of the parameter θ. To

overcome this difficulty, these papers propose to use a parametric bootstrap (PB)

for approximating the null distribution of the test statistic. Although very easy

to implement, the PB can become very computationally expensive as the sample

size and/or the number of unknown parameters increase.

This paper studies another method for estimating the null distribution of

the test statistic Tn,w(θ̂) in [11]. Specifically, a weighted bootstrap (WB) appro-

ximation in the sense of Burke [2] is considered (see also Zhu [23]). This method
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has been previously suggested in Kojadinovic and Yan [15], to approximate the

null distribution of goodness-of-fit (GOF) tests based on the empirical CDF, and

in Jiménez-Gamero and Kim [14], to approximate the null distribution of GOF

tests based on the empirical CF (ECF), among others. Both papers assume ob-

servable independent and identically distributed (IID) data. They show that the

properties of the WB are quite similar to those of the PB (it provides a con-

sistent estimator of the null distribution and the resulting test is able to detect

any alternative) but, from a computational point of view, it is more efficient.

In view of the good properties of the WB in these and other papers, it is also

expected to work satisfactorily for estimating the null distribution of the test

statistic considered in this paper. The purpose of the current study is to investi-

gate, both theoretically and empirically, the use of the WB for approximating the

null distribution of Tn,w(θ̂). A main difference between the setting in this paper

and the one in [14, 15] is that in our case the errors are not observable. So we

replace the errors by the residuals, but the residuals are not independent.

The paper is organized as follows. Section 2 describes the test statistic and

explains some problems with the WB approximation. Section 3 gives a solution

to the problems described in the previous section and proves the consistency

of the proposed WB approximation. It also shows that the resulting test is

consistent, in the sense of being able to detect any alternative. The application

of the proposed WB approximation requires the estimation of certain functions

appearing in the linear expansion of the parameter estimators. The estimation

of such functions is dealt with in Section 4. Section 5 reports the results of

some simulation experiments designed to study the finite sample performance of

the proposed approximation and to compare it to the PB. From this numerical

study it is concluded that both approximations behave quite closely but, from a

computational point of view, the WB outperforms the PB. Section 6 concludes

and outlines possible extensions of the results presented in this paper. All proofs

and technical details are deferred to the last section.

The following notation will be used along the paper: all vectors are col-

umn vectors; for any vector a, ak denotes its k-th coordinate and ‖a‖ its Eu-

clidean norm; the superscript
T

denotes transpose; Eθ and Pθ denote expec-

tation and probability, respectively, assuming that the data has CDF F (·; θ);
P∗ denotes the conditional probability law, given the data; all limits in this

paper are taken when n→ ∞;
L→ denotes convergence in distribution;

P→ de-

notes convergence in probability;
a.s.→ denotes the almost sure convergence; for

any complex number z = a+ ib, |z| is its modulus; an unspecified integral de-

notes integration over the whole real line R; for a given non-negative real-valued

function w we denote ‖ · ‖w to the norm and 〈·, ·〉w to the scalar product in the

Hilbert space L2
(w) = {g : R → C,

∫

|g(t)|2w(t)dt <∞}; if F is a CDF, then

L2
(F ) = {g : R → C,

∫

|g(t)|2dF (t) <∞}; for any real function f(t; θ) differen-

tiable at t ∈ R and at θ = (θ1, θ2, ..., θp)
T ∈ R

p
the following notations will be
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used:

f ′(t; θ) =
∂

∂t
f(t; θ) , f(r)(t; θ) =

∂

∂θr
f(t; θ), 1 ≤ r ≤ p,

∇f(t; θ) =

(

f(1)(t; θ), f(2)(t; θ), ..., f(p)(t; θ)
)T
.

2. THE TEST STATISTIC

Let (X1, Y1), ..., (Xn, Yn) be IID from model (1.1), that is, Yj = m(Xj) +

σ(Xj)εj , 1 ≤ j ≤ n. Since the hypothesis H0 is on the common error distribution,

ε1, ..., εn, and the errors are not observable, the inference must be based on the

residuals,

ε̂j =
Yj − m̂(Xj)

σ̂(Xj)
, 1 ≤ j ≤ n,

where m̂(·) and σ̂(·) are estimators of m(·) and σ(·), respectively. Several choices

are possible for m̂(·) and σ̂(·). Here, as in [11], we use the following kernel

estimators for the density function fX of X, the regression function m(·) and the

variance function σ2
(·),

f̂X(x) =
1

n

n
∑

j=1

Khn
(Xj − x) ,

m̂(x) =
1

nf̂X(x)

n
∑

j=1

Khn
(Xj − x)Yj ,

σ̂2
(x) =

1

nf̂X(x)

n
∑

j=1

Khn
(Xj − x) {Yj − m̂(x)}2 ,

where Khn
(·) =

1
hn
K(

·
hn

), K(·) is a kernel and hn is the bandwidth, satisfying

certain conditions that will be specified later.

Hušková and Meintanis [11] proposed the following test for testing H0,

Ψ =

{

1, if Tn,w(θ̂) ≥ tn,ω,α,

0, otherwise,

where tn,ω,α is the 1 − α percentile of the null distribution of Tn,ω(θ̂),

(2.1) Tn,ω(θ̂) = n

∫

|cn(t) − c(t, θ̂)|2ω(t)dt = n‖cn(t) − c(t, θ̂)‖2
w,

cn(t) is the ECF of the residuals,

cn(t) =
1

n

n
∑

j=1

exp(itε̂j) =
1

n

n
∑

j=1

cos(tε̂j) + i
1

n

n
∑

j=1

sin(tε̂j),
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c(t; θ) is the CF associated to F (ε; θ), that is, c(t; θ) = Eθ{exp(itε)} = R(t; θ) +

iI(t; θ), ω(t) is a nonnegative function such that
∫

ω(t)dt <∞, which may depend

on θ, and θ̂ is a consistent estimator of θ satisfying the following assumption.

(A.1) Under H0,
√
n(θ̂ − θ0) =

1√
n

n
∑

j=1

ψ(εj ; θ0) + op(1), where θ0 is the

true parameter value, Eθ0
{ψ(εj ; θ0)}= 0 and Eθ0

{

‖ψ(εj ; θ0)‖2
}

<∞.

Assumption (A.1) implies that, when the null hypothesis is true and θ0
denotes the true parameter value,

√
n(θ̂ − θ0) is asymptotically normally dis-

tributed. This assumption is satisfied by commonly used estimators such as ma-

ximum likelihood estimators and method of moment estimators when ε1, ..., εn
are observable and, in such a case, the expression of the function ψ is well-known

(see, for example, [1, Ch. 5]). In our setting, the errors are not observable and

the expression of the function ψ differs from the observable case. This topic will

be discussed in detail in Section 4.

Theorem 1 in [11] states that if θ̂ satisfies (A.1), H0 is true and θ0 is the true

parameter value, under certain additional conditions (assumptions (A.2)–(A.7) in

Section 7),

(2.2) Tn,ω(θ̂)
L−→ ‖Z(t; θ0)‖2

ω,

where {Z(t; θ0), t ∈ R} is a centered Gaussian process on L2(ω) with covariance

structure of the form Covθ0
{Z1(ε; t, θ0, ψ), Z1(ε; s, θ0, ψ)},

(2.3)
Z1(ε; t, θ, ψ) = cos(tε) + sin(tε) −R(t; θ) − I(t; θ) − tε{R(t; θ) − I(t; θ)}

−t ε2−1
2 {R′

(t; θ) + I ′(t; θ)} − ψT
(ε; θ){∇R(t; θ) + ∇I(t; θ)}.

Clearly, the asymptotic null distribution of Tn,ω(θ̂) is unknown. It depends on

the hypothetical the error distribution, on the chosen estimator and the true

unknown value of the parameter.

In order to try to approximate the null distribution of Tn,ω(θ̂) we first

observe that it resembles a degree-2 V-statistic, because

Tn,ω(θ̂) =
1

n

n
∑

j=1

n
∑

k=1

ρ(ε̂j , ε̂k; θ̂),

with ρ(ε, z; θ) = u(ε−z)−u0(ε; θ)−u0(z; θ)+u00(θ), u0(ε; θ) =
∫

u(ε−z)dF (z; θ),

u00(θ) =
∫

u(ε− z)dF (ε; θ)dF (z; θ), and u(t) =
∫

cos(tε)ω(ε)dε.

Dehling and Mikosch [4] (see also Hušková and Janssen [10]) showed that if

ε1, ..., εn are IID, ξ1, ..., ξn are IID with E(ξ1) = 0 and Var(ξ1) = 1, independent

of ε1, ..., εn and Vn =
1
n2

∑

1≤j,k≤n g(εj , εk) is a degenerate degree-2 V-statistic,
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then the conditional distribution, given ε1, ..., εn, of

1

n

∑

1≤j,k≤n

g(εj , εk)ξjξk

consistently estimates that of nVn. In the light of this result, since ε̂j and θ̂

are approximations to εj and θ, respectively, one may be tempted to estimate

the null distribution of Tn,ω(θ̂) by means of the conditional distribution, given

(X1, Y1), ..., (Xn, Yn), of

(2.4) W ∗
=

1

n

∑

1≤j,k≤n

ρ(ε̂j , ε̂k; θ̂)ξjξk.

We will see that this approach is wrong. The next result gives the limit distribu-

tion of W ∗
. The required assumptions are listed in Section 7.

Theorem 2.1. Suppose that ‖θ̂ − θ1‖ = op(1), for some θ1 ∈ Θ, that as-

sumptions (A.2)–(A.6) hold, that the first partial derivatives R(r)(t; θ), I(r)(t; θ),

1 ≤ r ≤ p, exist and are continuous functions ∀θ ∈ U(θ1) ⊆ Θ, an open neighbor-

hood of θ1, and they are bounded by functions in L2(ω), ∀θ ∈ U(θ1), then

sup
x

|P∗ {W ∗ ≤ x} − P {W0 ≤ x}| P−→ 0,

where W0 = ‖Z0(t; θ1)‖2
ω, {Z0(t; θ1), t ∈ R} is a centered Gaussian process on

L2(ω) with covariance structure of the form Cov{Z0(ε; t, θ1), Z0(ε; s, θ1)},
Z0(ε; t, θ) = cos(tε) + sin(tε) −R(t; θ) − I(t; θ).

From the result in Theorem 2.1 and (2.2), it is clear that the conditional

distribution of W ∗
does not provide a consistent estimator of the null distribution

of Tn,ω(θ̂) because replacing m(·), σ(·) and θ by m̂(·), σ̂(·) and θ̂, respectively,

has an impact on the asymptotic null distribution of the test statistic that is not

captured by the conditional distribution of W ∗
. The next Section shows how to

deal with this problem.

Before ending this section we do some comments on the behaviour of θ̂

under the alternative. Theorem 2.1 assumes that θ̂ has a limit (in probability),

θ1. In practice, to estimate θ one proceeds as if H0 were true. For example, θ is

usually estimated by its quasi maximum likelihood estimator, which maximizes

the likelihood under the null hypothesis (with the errors replaced by the resi-

duals). IfH0 is true, under certain assumptions, the resulting estimator converges

to the true parameter value (see Section 4); if H0 is not true, then proceeding as

in White [22] for observable data, it can shown that, under certain conditions,

the estimator also converges to a well-defined limit. Similar comments could be

done for other estimators.
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3. CONSISTENCY OF THE WB APPROXIMATION

If assumptions (A.1)–(A.7) hold andH0 is true, from the proof of Theorem 1

in [11], it follows that

(3.1) Tn,ω(θ̂) = T1,n,ω(θ0) + op(1),

where

T1,n,ω(θ) = ‖ 1√
n

n
∑

j=1

Z1(εj ; t, θ, ψ)‖2
ω,

with Z1(ε; t, θ, ψ) as defined in (2.3). Now, from (3.1) and applying the results in

[4], we get that the conditional distribution, given (X1, Y1), ..., (Xn, Yn), of

T ∗
1,n,ω(θ0) = ‖ 1√

n

n
∑

j=1

Z1(εj ; t, θ0, ψ)ξj‖2
ω,

provides a consistent estimator of the distribution of Tn,ω(θ̂), when H0 is true.

From a practical point of view, this result is useless because Z1(εj ; t, θ0, ψ) de-

pends on the non-observable error εj , on the unknown value of θ0 and on the

function ψ(εj ; θ0), whose explicit expression is usually unknown. Suppose that

‖θ̂ − θ1‖ = op(1), for some θ1 ∈ Θ, θ1 being the true parameter value if H0 is

true. To overcome these difficulties we replace εj by ε̂j , θ0 by θ̂ and ψ(εj ; θ0) by

ψn(ε̂j ; θ̂), where ψn(·; θ̂) is a function of the data which approximates ψ in such

a way that

(3.2)

1

n

n
∑

j=1

‖ψn(ε̂j ; θ̂) − ψ1(εj ; θ1)‖2 P−→ 0,

with E{‖ψ1(ε; θ1)‖2} <∞ and ψ1(ε; θ1) = ψ(ε; θ1) if H0 is true.

The choice of ψn will depend on ψ, that is, on the estimator of θ considered.

Section 4 studies some proposals for ψn satisfying (3.2) for two common choices

for θ̂: the maximum likelihood estimator and the method of moments estimator,

both based on the residuals. So, the null distribution of Tn,ω(θ̂) is now estimated

by means of the conditional distribution, given (X1, Y1), ..., (Xn, Yn), of

T ∗
2,n,ω(θ̂) = ‖ 1√

n

n
∑

j=1

Z1(ε̂j ; t, θ̂, ψn)ξj‖2
ω.

The next theorem gives the limit of the conditional distribution of T ∗
2,n,ω(θ̂), given

(X1, Y1), ...(Xn, Yn).

Theorem 3.1. Suppose that ‖θ̂− θ1‖ = op(1), for some θ1 ∈ Θ, θ1 being

the true parameter value if H0 is true, and that assumptions (A.1)–(A.7) and

(3.2) hold, then

sup
x

∣

∣

∣
P∗

{

T ∗
2,n,ω(θ̂) ≤ x

}

− P {T2 ≤ x}
∣

∣

∣

P−→ 0,
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where T2 = ‖Z2(t; θ1)‖2
ω, {Z2(t; θ1), t ∈ R} is a centered Gaussian process on

L2(ω) with covariance structure of the form Cov{Z1(ε; t, θ1, ψ1), Z1(ε; s, θ1, ψ1)}.

The result in Theorem 3.1 is valid whether the null hypothesis H0 is true

or not. An immediate consequence of this fact and (2.2) is the following.

Corollary 3.1. If H0 is true and the assumptions in Theorem 3.1 hold,

then

sup
x

∣

∣

∣
P∗

{

T ∗
2,n,ω(θ̂) ≤ x

}

− Pθ1

{

Tn,ω(θ̂) ≤ x
}

∣

∣

∣

P−→ 0.

Let α ∈ (0, 1) and

Ψ∗ =

{

1, if Tn,ω(θ̂) ≥ t∗2,n,ω,α,

0, otherwise,

where t∗2,n,ω,α is the 1 − α percentile of the conditional distribution of T ∗
2,n,ω(θ̂),

or equivalently, Ψ∗ = 1 if p∗ ≤ α, where p∗ = P∗
{

T ∗
2,n,ω(θ̂) ≥ Tn,ω(θ̂)obs

}

and

Tn,ω(θ̂)obs is the observed value of the test statistic. The result in Corollary

3.1 states that Ψ∗ is asymptotically correct, in the sense that its type I error is

asymptotically equal to the nominal value α.

Corollary 3.2. Suppose that H0 is not true and let c(t) denote the true

CF of the errors. If the assumptions in Theorem 3.1 hold and ω is such that

(3.3) κ = ‖c(t) − c(t; θ1)‖2
ω > 0,

then P (Ψ∗ = 1) → 1.

Corollary 3.2 shows that, if ω is such that (3.3) holds, then the test Ψ∗ is

consistent in the sense of being able to asymptotically detect any (fixed) alterna-

tive. Since two distinct characteristic functions can be equal in a finite interval

(Feller [5, p.506]), a general way to ensure (3.3) is to take ω positive for almost

all (with respect to the Lebesgue measure) points in R.

Remark 3.1. If model (1.1) is homoscedastic, that is, if σ(x) = σ, ∀x,
for some unknown σ > 0, we can use the residuals ε̃j = Yj − m̂(Xj), 1 ≤ j ≤ n,

and consider σ as a parameter of the family F . In this framework, the result in

Theorem 3.1 (with weaker assumptions) keeps on being true with the following

simpler expression for Z1(ε; t, θ, ψ),

Z1(ε; t, θ, ψ) = cos(tε) −R(t; θ) + sin(tε) − I(t; θ) − tεR(t; θ) + tεI(t; θ)

−ψT
(ε; θ){∇R(t; θ) + ∇I(t; θ)}.
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Remark 3.2. If the null hypothesis is simple, then the result in Theorem

3.1 (with weaker assumptions) is also true with the following simpler expression

for Z1(ε; t, θ, ψ) = Z1(ε; t),

Z1(ε; t) = cos(tε) −R(t) + sin(tε) − I(t) − tεR(t) + tεI(t)

− t
ε2 − 1

2
{R′

(t) + I ′(t)},

where R(t) and I(t) denote the real and the imaginary parts of the CF of the law

in the null hypothesis.

Remark 3.3. If model (1.1) is homoscedastic and the null hypothesis

is simple, which implies that σ(x) = σ, ∀x, for some known σ > 0, as observed

in Remark 3.1, we can use the residuals ε̃ = Yj − m̂(Xj), 1 ≤ j ≤ n. In this

setting, the result in Theorem 3.1 (with weaker assumptions) is also true with

the following simpler expression for Z1(ε; t, θ, ψ) = Z1(ε; t),

Z1(ε; t) = cos(tε) −R(t) + sin(tε) − I(t) − tεR(t) + tεI(t),

where R(t) and I(t) denote the real and the imaginary parts of the CF of the law

in the null hypothesis.

Remark 3.4. When the null hypothesis is simple, the asymptotic null

distribution of the test statistic Tn,ω(θ̂) does not depend on unknown parameters.

So, in this case the asymptotic null distribution could be used to approximate

the null distribution. The simulations carried out (reported in Section 5) reveal

that, for small to moderate sample sizes, the WB provides a better fit.

Remark 3.5. Theorem 3 in [11] shows that the PB null distribution

estimator of Tn,ω(θ̂) satisfies a result which is similar to that stated in Corollary

3.1 for the WB estimator. Nevertheless, although the tests Ψ∗ and the one

obtained by approximating tn,ω,α through its PB estimator, are both of them

consistent against all fixed alternatives, their powers will be different for finite

sample sizes.

So far we have assumed that the weight function does not depend on θ, but

in some cases it does. Such dependence is motivated by the recommendations

in Epps and Pulley [8], who suggest to choose ω(t) giving high weight where

the ECF is a relatively precise estimator of the population CF. It entails taking

ω(t) = ν{|c(t; θ̂)|}, for some ν, a nonnegative increasing function. For example, if
∫

|c(t; θ)|2dt <∞, one could choose ω(t) = |c(t; θ̂)|2/
∫

|c(x; θ̂)|2dx, which is the

choice for ω in Epps and Pulley [8] (see also Epps [7]). In addition, as observed

in Jiménez-Gamero et al. [12], such choice for ω(t) may have some computational
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advantages when the density (under the null hypothesis) of ε1 − ε2, ε1 − ε2 + ε3
and ε1 − ε2 + ε3 − ε4 is known since from expression (14) in [12], the test statistic

(2.1) can be expressed as

1

fε1−ε2
(0; θ̂)







1

n

n
∑

j,k=1

fε1−ε2
(ε̂j − ε̂k; θ̂)

− 2

n
∑

j=1

fε1−ε2+ε3
(ε̂j ; θ̂) + nfε1−ε2+ε3−ε4

(0; θ̂)







,

where fU (x; θ) is the density function of U .

If the weight function ω depends on θ, ω(t) = ω(t; θ), then the test statistic

(2.1) becomes

Tn,ω̂(θ̂) = n

∫

|cn(t) − c(t; θ̂)|2ω(t; θ̂)dt = n‖cn(t) − c(t; θ̂)‖2
ω̂,

where the subindex ω̂ means that the weight function depends on θ̂, that is,

ω(t) = ω(t; θ̂). To deal with this case we will assume that the weight function is

smooth as a function of θ, as expressed in the next assumption.

(A.8) |ω(t; θ1)− ω(t; θ)| ≤ ω0(t; θ1)‖θ− θ1‖, ∀ θ in an open neighborhood

of θ1, with ω0(t; θ1) satisfying
∫

ω0(t; θ1)dt <∞.

If assumption (A.8) holds, assumptions (A.2), (A.7) hold with ω(t) = ω0(t; θ)

and H0 is true, then

Tn,ω̂(θ̂) = T 1
n,ω(θ̂) + op(1),

with T 1
n,ω(θ̂) = n

∫

|cn(t) − c(t, θ̂)|2ω(t; θ1)dt.

Let T ∗
3,n,ω(θ̂) = ‖ 1√

n

∑n
j=1 Z1(ε̂j ; t, θ̂, ψn)ξj‖2

ω̂ and

Ψ1∗ =

{

1, if Tn,ω̂(θ̂) ≥ t∗3,n,ω,α,

0, otherwise,

where t∗3,n,ω,α is the 1 − α percentile of the conditional distribution of T ∗
3,n,ω(θ̂).

Now, proceeding as in the case where ω does not depend on the parameter θ, we

state the following result.

Theorem 3.2. Suppose that ‖θ̂ − θ1‖ = op(1), for some θ1 ∈ Θ, θ1 being

the true parameter value if H0 is true, that assumptions (A.1)–(A.8) and (3.2)

hold, where both (A.2) and (A.7) hold with ω(t) = ω0(t; θ1) and ω(t) = ω(t; θ1).

(a) If H0 is true, then

sup
x

∣

∣

∣
P∗

{

T ∗
3,n,ω(θ̂) ≤ x

}

− Pθ1

{

Tn,ω̂(θ̂) ≤ x
}∣

∣

∣

P−→ 0.

(b) If H0 is not true and (3.3) holds with ω(t) = ω(t; θ1), then

P (Ψ1∗ = 1) → 1.
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The observation in Remark 3.1 also applies in this case.

Remark 3.6. The results stated up to now keep on being true if instead of

using the raw multipliers, ξ1, ..., ξn, we use the centered multipliers, ξ1−ξ̄, ..., ξn−ξ̄,
as suggested in [2, 15], where ξ̄ =

1
n

∑n
j=1 ξj .

Remark 3.7. In practice, to calculate the WB approximation to the null

distribution of Tn,ω(θ̂) (analogously for Tn,ω̂(θ̂)) we proceed as follows:

1. Calculate the residuals ε̂1, ..., ε̂n (or ε̃1, ..., ε̃n, if the model is homoscedas-

tic).

2. Calculate θ̂ and the observed value of the test statistic Tn,ω(θ̂)obs.

3. Calculate mjk = 〈Z1(ε̂j ; t, θ̂, ψn), Z1(ε̂k; t, θ̂, ψn)〉ω, 1 ≤ j ≤ k ≤ n, and

take mjk = mkj .

4. For some large integer B, repeat the following steps for every b ∈
{1, ..., B}:
(a) Generate n IID variables ξ1, ..., ξn with mean 0 and variance 1.

(b) Calculate T ∗b
2,n,w(θ̂) =

1
n

∑

j,k ξjξkmjk (or T ∗b
2,n,ω(θ̂)= 1

n

∑

j,k(ξj − ξ̄)
· (ξk − ξ̄)mjk, as noted in Remark 3.6).

5. Approximate the p-value by p̂ =
1
B

∑B
b=1 I{T ∗b

2,n,ω(θ̂) > Tn,ω(θ̂)obs}.

4. PARAMETER ESTIMATORS

The maximum likelihood estimator (MLE) satisfies Assumption (A.1) for

observable random variables. In our case, the errors are not observable. It seems

reasonable to replace the errors by the residuals in the likelihood and then maxi-

mize in θ the resulting function. Specifically, assume that the CDF F (x; θ) has

a Radon–Nikodym derivative f(x; θ) with respect to some σ-finite measure over

(R,B), where B is the class of Borel sets of R. To estimate θ we treat the residuals

as it they were the true errors and consider

θ̂ML = arg max
θ∈Θ

n
∑

j=1

log f(ε̂j ; θ).

Theorem 3.1 in Heuchenne and Van Keilegom [6] shows that (under certain con-

ditions) θ̂ML satisfies (A.1) with ψ(ε; θ) = ψML(ε; θ) given by

(4.1) ψML(ε; θ) = ρ(ε; θ) + ερ1(θ) +
ε2 − 1

2
ρ2(θ),
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where ρ1(θ) = Eθ{ρ′(ε; θ)}, ρ2(θ) = Eθ{ερ′(ε; θ)}, ρ(ε; θ) = −A(θ)−1∇ log f(ε; θ),

A(θ) = (Ars(θ)) and

Ars(θ) = Eθ

(

∂

∂θr
log f(ε; θ)

∂

∂θs
log f(ε; θ)

)

, 1 ≤ s, r ≤ p.

In view of (4.1), a natural choice for ψn(ε; θ) is ψn(ε; θ) = ψn,ML(ε; θ) with

ψn,ML(ε; θ) = ρn(ε; θ) + ερ̂1(θ) +
ε2 − 1

2
ρ̂2(θ),

where

ρn(ε; θ) = −Ân(θ)−1∇ log f(ε; θ),

ρ̂1(θ) =
1

n

n
∑

j=1

ρ′n(ε̂j ; θ),

ρ̂2(θ) =
1

n

n
∑

j=1

ε̂jρ
′
n(ε̂j ; θ),

ρ′n(ε; θ) = −Ân(θ)−1 ∂

∂ε
∇ log f(ε; θ),

Ân(θ) = (Ân,rs(θ)),

Ân,rs(θ) =
1

n

n
∑

j=1

∂

∂θr
log f(ε̂j ; θ)

∂

∂θs
log f(ε̂j ; θ), 1 ≤ s, r ≤ p.

The next theorem shows that ψn,ML(ε; θ) satisfies (3.2). Let AF (θ) =

(AF,rs(θ)), with AF,rs(θ)=E
(

∂
∂θr

log f(ε; θ) ∂
∂θs

log f(ε; θ)
)

, 1≤ s, r≤ p, ρ1,F (θ)

= E{ρ′F (ε; θ)}, ρ2,F (θ) = E{ερ′F (ε; θ)} and ρF (ε; θ) = −AF (θ)−1∇ log f(ε; θ).

Theorem 4.1. Suppose that ‖θ̂− θ1‖ = op(1), for some θ1 ∈ Θ, θ1 being

the true parameter value if H0 is true, and that assumptions (A.3)–(A.6), (A.9)

hold, then ψn,ML(ε; θ) satisfies

1

n

n
∑

j=1

‖ψn,ML(ε̂j ; θ̂) − ψ1(εj ; θ1)‖2 P−→ 0,

with ψ1(ε; θ) = ρF (ε; θ) + ερ1,F (θ) +
ε2−1

2 ρ2,F (θ).

Clearly, ψ1(εj ; θ) in Theorem 4.1 satisfies ψ1(εj ; θ1) = ψML(ε; θ1) when H0

is true.

Remark 4.1. If model (1.1) is homoscedastic then the expressions for

ψML(ε; θ) and ψn,ML(ε; θ) simplify to ψML(ε; θ)= ρ(ε; θ)+ερ1(θ) and ψn,ML(ε; θ)

= ρn(ε; θ) + ερ̂1(θ), respectively.
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Another estimator that is commonly used is the method of moment esti-

mator (MME). Although these estimators are not usually optimal, they are fre-

quently used because their calculation is less time consuming than that of MLEs.

MMEs satisfy Assumption (A.1) for observable random variables. As noticed

before, in our setting the errors are not observable. Next, we study if (A.1) still

holds when the errors are replaced by the residuals. Assume that, under the null

hypothesis, θ0 = g(µ0), for some known function g = (g1, ..., gp)
T
, gr : R

k−1 → R,

1 ≤ r ≤ p, µ0 = (µ0,2, ..., µ0,k)
T

and µ0,s = Eθ0
(εs), ∀s. The first moment has

not been included because, by construction, it is known and equal to 0. In

heteroscedastic models the second order moment is also known (thus in this case

µ0 = (µ0,3, ..., µ0,k)
T
), but it is not in homoscedastic models (thus in this case µ0 =

(µ0,2, ..., µ0,k)
T
). Nevertheless, we will work with µ0 = (µ0,2, ..., µ0,k)

T
, by implic-

itly understanding that in heteroscedastic models g(µ0,2, ..., µ0,k)= g(µ0,3, ..., µ0,k).

Let θ̂MM = g(µ̂), with µ̂ = (µ̂2, ..., µ̂k)
T
, µ̂s =

1
n

∑n
j=1 ε̂

s
j , ∀s. The next theo-

rem states that, under certain conditions, assumption (A.1) holds for θ̂MM . Let

∇gr(x) =

(

∂
∂x2

gr(x), ...,
∂

∂xk
gr(x)

)T
, 1 ≤ r ≤ p, and let ∇g(x) be the p× (k− 1)-

matrix with rows ∇g1(x)T , ...,∇gp(x)
T
, for any x = (x2, ..., xk)

T ∈ R
k−1

.

Theorem 4.2. Suppose that assumptions (A.3)–(A.6) hold, that g is con-

tinuously differentiable at µ0, that µ0,2k <∞ and that H0 is true, then

√
n(θ̂MM − θ0) =

1√
n

n
∑

j=1

ψMM (εj ;µ0) + op(1),

where ψMM (ε;µ0)=∇g(µ0)v, v= (v2, ..., vk)
T , vs = εs −µ0,s −µ0,s−1ε−µ0,s

ε2−1
2 ,

2 ≤ s ≤ k.

In the light of the result in Theorem 4.2, to approximate ψMM (ε;µ) we

could replace the population moments by their empirical counterparts based on

the residuals. The next theorem shows that this approximation for ψMM (ε; θ)

satisfies (3.2). Let µF,s = E(εs) and µF = (µF,2, ..., µF,k)
T
.

Theorem 4.3. Suppose that assumptions (A.3)–(A.6), (A.10) hold and

that µF,2k <∞, then

1

n

n
∑

j=1

‖ψMM (ε̂j ; µ̂) − ψMM (εj ;µF )‖2 P−→ 0.

Clearly, ψMM (εj ;µF ) = ψMM (εj ;µ0) when H0 is true.

Remark 4.2. If model (1.1) is homoscedastic then the expressions for

ψMM (ε;µ) simplifies to ψMM (ε;µ0) = ∇g(µ0)v, v = (v2, ..., vk)
T
, vs = εs −µ0,s −

µ0,s−1ε, 2 ≤ s ≤ k.
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5. FINITE SAMPLE PERFORMANCE

With the aim of studying the finite sample performance of the proposed

procedure, two simulation experiments were carried out: first, a homoscedastic

regression model was considered, and then a heteroscedastic regression model.

The main goal of these experiments is to compare the approximations provided

by the asymptotic null distribution (when the null hypothesis is simple), the

PB (as described in [11]) and the WB proposed in this paper, in three senses:

closeness of the approximation under the null, the power for fixed alternatives of

the resulting test and the consumed time (for the PB and the WB). This section

reports and summarizes the numerical results obtained. All computations were

performed using programs written in the R language [20].

In both models the hypotheses H0 : ε ∼ N(0, θ), that corresponds to test-

ing that the error distribution is normal with CF exp(−0.5θt2), and H0 : ε ∼
L(0, θ), that corresponds to testing that the error distribution is Laplace with

CF
1

1+θt2
, were studied. As in Hušková and Meintanis [11], and following the

recommendations in Epps and Pulley [8], the weight functions considered were:

ω(t; θ) = exp(−λθt2), when testing normality, and ω(t; θ) = (1 + θt2)4 exp(−λt2),
when testing for the Laplace distribution. For the homoscedastic model two cases

were considered: θ known and θ unknown. In this second case, the parameter

was estimated by a MME. Specifically, θ̂ =
1
n

∑n
j=1 ε̂

2
j , for testing normality, and

θ̂ =
1
2n

∑n
j=1 ε̂

2
j , for the Laplace distribution. To estimate the regression function

and the conditional variance, the Epanechnikov kernel K(u) = 0.75 × (1 − u2
)

was employed.

As for the choice of the bandwidth, in a recent review about GOF problems

in nonparametric regression, González-Manteiga and Crujeiras [9] say that the

bandwidth selection for tests based on smoothing is a “really tough problem”

and “it is far from being solved” (see also the discussions of Sperlich [21] and

de Uña-Álvarez [3] to the mentioned article). Because of this reason, to choose

h, we proceeded as in the simulation study in Pardo-Fernández et al. [18]: we

took h = c× na
, where c and a are real constants and n is the sample size; to

determine c, a and λ some preliminary simulations were performed with the

purpose of finding values giving type I error close to the nominal. For all tried

combinations of c ∈ (1, 1.8), a ∈ (−0.50, −0.25) and λ ∈ (0.03, 0.54) good results

were obtained for the WB. Here we only report the results for c = 1.2, a = −0.375

and λ = 0.04.

The error distribution were generated from: the normal distribution (de-

noted as N in the tables), the Laplace distribution (denoted as LP ), the logistic

distribution (denoted as LG), the Gumbel distribution (denoted as G), the beta

distribution with parameters a = 1 and b = 0.5 (denoted as β), the chi-squared
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distribution with 3 degrees of freedom (denoted as χ2
3) and the Student t distribu-

tion with 5 degrees of freedom (denoted as t5). All aforementioned distributions

were conveniently centered and scaled to have mean 0 and variance 1.

To approximate the p-value, 1000 replications were generated for both the

PB and the WB. For the WB, the raw multipliers and the centered multipliers

were considered, denoted by WB1 and WB2 in the tables, respectively. The

multipliers were generated from a univariate standard normal distribution. As

for the asymptotic distribution (when the null hypothesis is simple, denoted as

A in the tables), it is rather difficult to calculate because it coincides with that

of
∑

j≥1 λjχ
2
1,j , where χ2

1,1, χ
2
1,2, ... are independent chi-squared variables with

one degree of freedom, the set {λj , j ≥ 1} are the non-null eigenvalues of the

integral equation
∫

C(t, s)Gj(t)dt = λjGj(s), with corresponding eigenfunctions

{Gj(·), j ≥ 1}, C(t, s) is the covariance kernel of Z1(ε; t) (see Remarks 3.2 and

3.3 for the expression of Z1(ε; t)), and determining the eigenvalues of an integral

equation is tricky. Because of this reason, we approximated it by generating

10,000 samples of size 1000 obeying H0 and calculated the test statistic at each

sample, obtaining 10,000 values. The empirical CDF of these 10,000 values was

taken as an approximation to the asymptotic null distribution.

1000 samples with size n = 25 were generated from each distribution and

the fractions of p-values less than or equal to 0.05 and 0.1 were calculated. The

experiment was repeated for n = 50, 100.

5.1. Homoscedastic model

The reported results correspond to the model

Yj = Xj +X2
j + εj , 1 ≤ j ≤ n,

where Xj follows the uniform (0, 1) distribution. We first considered that θ is

known. Since the model is homoscedastic and the null hypothesis is simple, the

simplifications in Remark 3.3 can be applied. Table 1 displays the results obtained

for the type I error and the power for testing normality and Table 2 for testing

GOF to the Laplace distribution. Looking at these tables it can be concluded

that, in terms of type I error, both the PB and the WB behave very close to the

nominal levels, while the asymptotic approximation is a bit conservative, specially

for testing GOF for the Laplace distribution. As for the power, the test based on

the WB approximation seems to be a bit more powerful than one based on the PB.

In most cases (all but alternatives β and χ2
3 in Table 2) the WB approximation

is also more powerful than one based on the asymptotic approximation.

Tables 3 and 4 show the results when θ is assumed to be unknown. In this

case, the simplifications in Remark 3.1 can be applied. Looking at these tables it
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can be concluded that, in terms of the type I error, as before, both the PB and

the WB behave very close to the nominal levels. As for the power, for n = 25, 50

in some cases the WB is more powerful than the PB, but in others cases the

opposite is observed; for n = 100 the test based on the WB approximation seems

to be a bit more powerful than one based on the PB.

Table 1: (Homoscedastic model, simple null hypothesis) Percentage of rejections

for the normality null hypothesis at the significance levels 5% (upper entry)

and 10% (lower entry).

n = 25 n = 50 n = 100

A PB WB1 WB2 A PB WB1 WB2 A PB WB1 WB2

N
3.60 6.10 4.10 6.40 4.00 5.00 4.12 4.84 5.20 4.74 4.12 4.74
8.20 11.50 10.20 12.30 9.00 10.04 9.24 10.48 10.20 9.64 9.34 10.40

LP
25.50 36.10 57.80 64.80 45.40 56.30 86.60 88.30 76.60 77.70 98.90 99.00
35.90 48.70 70.60 74.70 57.40 68.50 90.40 91.00 83.60 83.20 99.60 99.70

LG
10.30 57.60 56.40 63.10 12.70 88.10 87.30 89.30 17.80 99.90 100.00 100.00
18.10 70.40 72.00 76.00 20.60 93.20 94.30 95.10 27.80 99.90 100.00 100.00

G
18.40 33.50 45.80 52.00 36.70 61.80 87.30 89.30 71.70 90.70 100.00 100.00
30.60 46.30 62.80 67.70 49.80 74.40 94.30 95.10 81.80 96.70 100.00 100.00

β
54.10 37.50 76.20 83.10 87.50 61.20 98.40 99.00 99.70 85.30 100.00 100.00
65.20 49.40 87.60 89.60 92.70 69.90 99.60 98.80 99.90 90.70 100.00 100.00

χ
2
3

48.60 44.20 76.50 82.50 84.60 73.40 98.40 98.60 99.90 94.50 100.00 100.00
61.30 57.30 87.80 89.60 92.70 83.10 99.10 99.30 99.90 97.00 100.00 100.00

t5
15.50 44.50 49.10 55.00 24.50 74.00 87.30 89.20 39.30 97.50 99.90 99.90
25.00 59.50 63.00 67.90 35.40 84.70 93.70 94.90 51.10 99.50 100.00 100.00

Table 2: (Homoscedastic model, simple null hypothesis) Percentage of rejections

for the Laplace null hypothesis at the significance levels 5% (upper entry)

and 10% (lower entry).

n = 25 n = 50 n = 100

A PB WB1 WB2 A PB WB1 WB2 A PB WB1 WB2

N
3.70 22.60 17.20 19.10 4.20 42.60 38.10 39.30 8.30 69.70 68.60 69.20
8.40 30.90 25.00 27.20 9.10 51.80 48.10 50.20 14.60 77.60 78.10 78.20

LP
2.70 4.70 3.60 4.20 3.80 4.80 3.80 3.80 3.90 5.50 4.40 4.50
7.30 9.40 7.70 8.90 8.20 10.60 8.00 9.20 8.90 9.20 9.00 9.10

LG
4.20 25.60 18.90 20.60 4.70 40.60 36.90 37.50 5.90 69.90 70.00 70.70
7.50 35.00 28.50 31.20 9.30 48.80 46.60 47.50 11.90 78.30 78.30 79.00

G
6.00 23.30 17.70 18.80 11.60 41.60 36.60 38.20 27.10 67.10 68.20 68.90

10.90 31.70 25.90 28.20 20.70 50.60 47.50 48.60 40.40 77.10 77.10 77.80

β
35.50 12.80 13.40 15.30 78.60 19.30 30.90 32.60 99.30 36.20 66.00 66.60
48.80 19.20 21.80 24.30 86.20 27.70 43.20 44.50 99.60 46.60 74.00 75.60

χ
2
3

17.50 20.00 16.00 17.80 44.40 34.00 32.60 33.80 92.30 61.50 65.60 66.50
27.20 27.60 24.00 25.70 59.10 44.00 43.70 44.60 96.90 72.00 76.20 76.70

t5
3.20 21.50 16.20 18.10 5.40 39.30 35.00 36.70 8.70 71.60 70.80 71.40
8.00 31.10 24.60 27.10 10.00 49.60 45.90 48.00 14.10 79.80 80.10 80.70
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Table 3: (Homoscedastic model, composite null hypothesis) Percentage of rejections

for the normality null hypothesis at significance levels 5% (upper entry)

and 10% (lower entry).

n = 25 n = 50 n = 100

PB WB1 WB2 PB WB1 WB2 PB WB1 WB2

N
6.50 5.60 7.30 5.20 4.80 5.60 5.40 5.10 5.20

10.70 10.90 14.50 10.00 9.90 11.10 9.20 9.20 9.60

LP
29.90 15.30 21.50 33.60 40.40 43.50 38.30 80.50 81.60
40.50 26.20 30.60 44.10 56.30 58.70 54.70 90.40 91.00

LG
30.30 44.10 50.50 47.80 86.60 89.00 94.90 99.90 99.90
40.30 60.60 65.80 63.90 93.80 94.60 98.50 99.99 99.99

G
29.10 18.50 21.50 35.70 42.50 43.50 51.80 80.50 83.60
43.50 29.20 30.60 51.30 58.30 59.70 66.10 90.40 95.90

β
18.00 16.40 20.40 23.30 39.40 42.70 67.30 80.80 82.10
25.40 27.10 30.50 32.80 55.30 56.60 72.10 89.70 91.60

χ
2
3

37.30 51.40 53.80 58.90 77.30 80.70 83.10 89.90 91.30
48.50 63.20 64.20 67.80 85.40 87.20 91.50 97.70 98.80

t5
40.40 14.50 21.50 52.90 38.90 42.40 76.80 82.30 83.10
58.70 28.70 31.40 69.20 53.70 56.00 88.20 89.50 90.30

Table 4: (Homoscedastic model, composite null hypothesis) Percentage of rejections

for the Laplace null hypothesis at significance levels 5% (upper entry)

and 10% (lower entry).

n = 25 n = 50 n = 100

PB WB1 WB2 PB WB1 WB2 PB WB1 WB2

N
53.20 56.90 58.80 62.80 64.40 66.20 69.30 71.40 77.20
66.30 68.20 71.10 74.50 75.40 76.60 80.60 80.90 81.20

LP
4.30 3.80 4.50 4.60 4.60 4.40 5.00 4.70 4.90
9.20 8.30 9.20 10.30 9.30 10.40 9.50 9.80 9.50

LG
52.40 48.20 50.50 60.40 58.50 60.20 74.60 77.50 78.50
65.30 62.00 65.70 72.10 71.70 73.90 90.80 93.20 93.70

G
52.20 47.20 50.30 50.40 51.10 58.70 63.80 65.50 66.90
64.30 60.70 64.60 62.20 61.50 73.20 80.40 82.30 83.10

β
50.50 57.00 62.90 55.80 60.60 65.60 76.40 83.50 87.70
63.60 71.50 76.50 72.30 74.20 77.30 87.70 95.60 98.80

χ
2
3

37.50 67.30 70.60 41.40 78.50 80.10 43.50 88.00 88.40
51.50 79.60 82.30 54.10 91.30 93.20 59.60 97.30 98.30

t5
33.30 42.20 44.60 38.10 44.80 44.80 44.10 51.20 52.00
46.40 52.80 56.70 52.30 56.40 58.90 60.90 65.00 65.80

5.2. Heteroscedastic model

The reported results correspond to the model

Yj = Xj +X2
j + (Xj + 0.5)εj , 1 ≤ j ≤ n,



Computationally Efficient Goodness-of-Fit Tests... 155

whereXj follows the uniform (0, 1) distribution. Since the model is heteroscedastic

and the null hypothesis is simple, the simplifications in Remark 3.2 can be applied.

Table 5 displays the results obtained for the type I error and the power for testing

normality and Table 6 for testing GOF to the Laplace distribution. Similar

conclusions to those given for Tables 1 and 2 can be also expressed in this case.

Table 5: (Heteroscedastic model) Percentage of rejections for the normality null

hypothesis at the significance levels 5% (upper entry) and 10% (lower entry).

n = 25 n = 50 n = 100

A PB WB1 WB2 A PB WB1 WB2 A PB WB1 WB2

N
4.50 6.00 5.40 6.50 4.90 5.36 4.82 5.92 4.90 5.32 5.08 5.74

10.30 10.80 10.20 12.50 10.50 10.70 10.12 11.74 9.40 10.30 10.64 11.24

LP
16.40 43.00 60.00 64.30 34.20 60.00 87.10 88.50 65.00 75.60 99.50 99.50
23.40 54.00 70.40 73.70 44.50 71.40 92.10 92.80 73.80 82.30 99.80 99.80

LG
7.40 57.60 56.40 63.10 8.50 91.90 94.70 95.20 12.60 99.80 100.00 100.00

12.10 70.40 72.00 76.00 15.00 95.90 97.40 98.10 20.20 99.90 100.00 100.00

G
19.40 39.10 56.40 63.10 36.90 68.10 94.70 95.20 67.20 93.60 100.00 100.00
29.90 55.00 72.00 76.00 49.90 80.30 97.40 98.10 76.10 97.60 100.00 100.00

β
43.00 16.10 57.60 63.30 86.20 77.00 99.80 99.80 99.90 95.20 100.00 100.00
56.20 26.10 70.00 74.70 92.30 86.20 100.00 100.00 100.00 97.60 100.00 100.00

χ
2
3

50.90 41.60 85.50 89.10 83.00 71.30 99.70 99.70 99.20 95.70 100.00 100.00
61.80 54.80 92.50 93.90 91.00 83.10 99.90 99.90 99.70 98.80 100.00 100.00

t5
9.20 51.00 59.10 65.40 15.90 80.20 92.90 94.30 27.90 99.00 100.00 100.00

16.20 65.70 71.60 76.50 23.40 89.30 97.70 98.00 36.80 99.90 100.00 100.00

Table 6: (Heteroscedastic model) Percentage of rejections for the Laplace null

hypothesis at the significance levels 5% (upper entry) and 10% (lower entry).

n = 25 n = 50 n = 100

A PB WB1 WB2 A PB WB1 WB2 A PB WB1 WB2

N
2.00 31.80 25.00 27.10 2.60 55.30 51.20 52.50 2.80 86.10 85.70 86.20
4.90 40.30 34.70 37.10 7.40 64.80 61.80 62.90 7.80 90.50 91.20 91.40

LP
2.10 4.60 3.70 4.60 3.00 5.70 4.00 4.40 3.60 4.40 4.00 4.40
6.80 10.00 8.00 9.60 7.30 11.50 9.20 10.20 7.80 9.10 8.40 9.00

LG
2.10 33.80 27.10 29.30 2.30 54.80 50.80 52.30 3.10 85.00 84.40 84.70
6.30 43.80 37.60 40.20 6.80 64.40 61.60 62.50 7.00 89.30 89.60 89.90

G
2.10 31.30 23.50 25.50 2.80 53.90 50.20 51.50 3.00 85.30 85.10 85.60
6.70 41.10 34.40 37.10 6.80 65.10 62.70 63.70 7.50 91.10 91.10 91.50

β
3.00 19.20 18.40 21.00 6.00 33.50 43.20 45.90 27.60 56.70 81.20 81.50
8.00 27.40 29.10 31.70 14.60 43.70 55.30 56.80 39.60 68.50 87.30 87.80

χ
2
3

2.70 22.30 18.60 20.80 3.40 43.10 42.90 44.50 5.60 78.40 81.30 81.90
7.10 30.80 27.30 30.10 7.60 54.50 54.10 56.60 12.70 84.10 87.30 87.70

t5
2.90 30.60 22.80 24.50 3.90 56.80 53.20 53.90 4.60 84.30 83.90 84.30
6.30 41.50 33.70 38.00 6.50 66.70 64.30 65.20 9.40 90.20 90.40 90.70
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5.3. Time consumed

Table 7 compares the PB and the WB (with raw and centered multipliers)

in terms of the required CPU time. This table shows the CPU time consumed

in seconds to get a p-value for testing GOF for the normal and the Laplace

distributions in the homoscedastic (for both single and composite null hypothesis)

and the heteroscedastic models with sample sizes n = 25, 50, 100, 200. Looking

at this table it becomes evident that the WB is more efficient than the PB,

in terms of the required computing time, specially for larger sample sizes. The

difference in time when using the raw and the centered multipliers is rather small.

Table 7: CPU time consumed for the calculation of one p-value in seconds

for testing normality and Laplace distribution for the homoscedastic

model and composite null hypothesis (upper entry), the hetero-

scedastic model (middle entry) and the homoscedastic model and

single null hypothesis (lower entry).

n
Normal distribution Laplace distribution

PB/WB1 WB1 WB2 PB/WB1 WB1 WB2

2.72 0.71 0.74 3.49 1.00 1.01
25 7.45 0.33 0.35 7.17 0.54 0.60

4.42 0.31 0.34 5.34 0.50 0.55

5.61 0.71 0.70 7.51 1.08 1.09
50 30.88 0.17 0.22 38.15 0.26 0.25

15.63 0.19 0.19 23.68 0.28 0.25

12.15 0.84 0.86 23.40 1.11 1.12
100 52.80 0.25 0.27 74.33 0.42 0.45

30.64 0.25 0.26 64.56 0.37 0.39

27.56 1.25 1.27 76.37 1.54 1.58
200 66.19 0.59 0.62 127.80 0.83 0.83

41.14 0.56 0.58 117.51 0.78 0.76

The gain in computational efficiency of the WB over the PB stems from the

fact that one does not have to re-estimate the parameters at each iteration, which

slows down the process considerably. Note that in the WB the parameter θ, the

regression function m(.) and the conditional variance function σ(·) are estimated

only one time. For the WB approximation, once the set {mjk, 1 ≤ j ≤ k ≤ n} is

computed, the WB replicates T ∗1
2,n,ω(θ̂), ..., T ∗B

2,n,ω(θ̂) can be calculated very rapidly.
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6. CONCLUSIONS

This paper proposes a WB approximation for the null distribution of a

test statistic for testing GOF to the error distribution in nonparametric mod-

els. It provides a consistent estimator. The WB and the PB share this property.

Nevertheless, from a computational point of view, the WB approximation is more

efficient, in the sense of requiring less computation time. The numerical examples

support these attributes. In addition, in cases were the asymptotic null distribu-

tion does not depend on unknown quantities, the simulations carried out declare

that, for small to moderate sample sizes, the WB provides a better fit than the

asymptotic distribution.

To derive the results in this paper we considered certain estimators for

the regression function and the conditional variance function. In addition, we

assumed that the covariate was univariate. The results could be extended by

considering other estimators (such as other local polynomial estimators) as well

as covariates with higher dimension. The null distribution of other test statistics

(for example, those based on the empirical CDF) could be similarly approximated.

7. APPENDIX

7.1. Assumptions

(A.2) The weight function ω satisfies

(7.1) ω(t) = ω(−t), ∀t,
ω(t) ≥ 0, ∀t, and

∫

t4ω(t)dt <∞.

There is no restriction in assuming that the weight function ω(t) satisfies (7.1)

because otherwise by defining ω1(t) = 0.5{ω(t)+ω(−t)}, which satisfies (7.1), we

have that Tn,ω(θ̂) = Tn,ω1
(θ̂).

(A.3) ε1, ..., εn are IID with E(ε4j ) <∞ and ε1, ..., εn and X1, ..., Xn are

independent.

Recall that by construction we have that E(εj) = 0 and Var(εj) = 1.

(A.4) (i) X has a compact support S.

(ii) fX , m and σ are twice continuously differentiable on S.

(iii) infx∈S fX(x) > 0 and infx∈S σ(x) > 0.
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(A.5) nh4
n → 0, nh2

n/ lnn→ ∞.

(A.6) K is a twice continuously differentiable symmetric pdf with com-

pact support.

Assumptions (A.4)–(A.6) are mainly needed to guarantee the uniform con-

sistency of the kernel estimators f̂X(·), m̂(·) and σ̂(·) for fX(·), m(·) and σ(·),
respectively.

(A.7) The first partial derivatives R′
(t; θ), I ′(t; θ), R(r)(t; θ), I(r)(t; θ),

1 ≤ r ≤ p, exist and are continuous functions ∀t ∈ R, ∀θ in an

open neighborhood of θ1. In addition, R′
(t; θ), I ′(t; θ), R(r)(t; θ),

I(r)(t; θ), tR
′
(t; θ), tI ′(t; θ), tR(r)(t; θ), tI(r)(t; θ), 1 ≤ r ≤ p, are

bounded by functions in L2(ω), ∀θ in an open neighborhood of θ1.

The following assumption will be used for the maximum likelihood estima-

tor of the parameter.

(A.9) The following functions exist ∀θ in an open neighborhood of θ1:

ur(x; θ) =
∂

∂θr
log f(x; θ) ,

u1,r(x; θ) =
∂2

∂x∂θr
log f(x; θ) , u0,r,s(x; θ) =

∂2

∂θr∂θs
log f(x; θ) ,

u2,r(x; θ) =
∂3

∂x2∂θr
log f(x; θ) , u1,r,s(x; θ) =

∂3

∂x∂θr∂θs
log f(x; θ) ,

and satisfy

|u1,r(a1 + a2x; θ)| ≤ b1,r(x), with xb1,r(x), b1,r(x) ∈ L2(F ) ,

|u0,r,s(a1 + a2x; θ)| ≤ b0,r,s(x) ∈ L2(F ) ,

|u2,r(a1 + a2x; θ)| ≤ b2,r(x) ∈ L2(F ) ,

|u1,r,s(a1 + a2x; θ)| ≤ b1,r,s(x) ∈ L2(F ) ,

∀a1, a2, θ such that |a1|, |a2−1|, |θ−θ1|≤δ, for some small δ, 1≤r,s≤p.
In addition, the following expectations exist:

E
{

ur(ε; θ1)us(ε; θ1)
}

,

E
{

εu1,r(ε; θ1)
}

,

1 ≤ r, s ≤ p.

The following assumption will be used for the method of moment estimator

of the parameter, which assumes that under the null hypothesis, θ0 = g(µ0), for

some known function g = (g1, ..., gp)
T
, gr : R

k−1 → R, 1 ≤ r ≤ p:

(A.10) gr is twice continuously differentiable at a neighborhood of µF ,

1 ≤ r ≤ p.
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7.2. Proofs

We now sketch the proofs of the results stated in the previous sections, as

well as some preliminary results. Along this section M denotes a generic positive

constant taking many different values.

Lemma 7.1. Suppose that assumptions (A.3)–(A.6) hold, then

(a)
1
n

∑n
j=1(εj − ε̂j)

2
= op(1).

(b)
1
n

∑n
j=1(ε̂

2
j − ε2j )

2
= op(1).

(c)
1
n

∑n
j=1(ε̂

2
j − 1)

2
= Op(1).

(d)
1
n

∑n
j=1 ε̂

2
j = Op(1).

Proof: First, observe that under the considered assumptions (see, for

example, Masry [16])

sup
x∈S

|m̂(x) −m(x)| = op(n
−1/4

),(7.2)

sup
x∈S

|σ̂(x) − σ(x)| = op(n
−1/4

).(7.3)

The difference between the residuals and the errors can be written as follows

(7.4) ε̂j − εj = εj

(

σ(Xj) − σ̂(Xj)

σ̂(Xj)

)

+

(

m(Xj) − m̂(Xj)

σ̂(Xj)

)

.

The results in (a)–(d) follow from (7.2)–(7.4).

Lemma 7.2. If ‖θ̂ − θ1‖ = op(1) and (A.7) holds, then

(a) ‖t{R′
(t; θ̂) −R′

(t; θ1)}‖2
ω = op(1),

‖t{I ′(t; θ̂) − I ′(t; θ1)}‖2
ω = op(1).

(b)
∫

‖∇R(t; θ̂) −∇R(t; θ1)‖2ω(t)dt = op(1),
∫

‖∇I(t; θ̂) −∇I(t; θ1)‖2ω(t)dt = op(1).

(c) ‖R(t; θ̂) −R(t; θ1)‖2
ω = op(1),

‖I(t; θ̂) − I(t; θ1)‖2
ω = op(1).

(d) ‖t{R(t; θ̂) −R(t; θ1)}‖2
ω = op(1),

‖t{I(t; θ̂) − I(t; θ1)}‖2
ω = op(1).

Proof: (a) From (A.7) tR′
(t; θ) ∈ L2(ω), ∀θ in a neighborhood of θ1. Since

θ̂
P→ θ1, the integral

∫

{R′
(t; θ̂)−R′

(t; θ1)}2t2ω(t)dt is finite with probability tend-

ing to 1. Thus, ∀ǫ > 0,∃M = M(ǫ) > 0 such that

(7.5)

∫

R\[−M,M ]
{R′

(t; θ̂) −R′
(t; θ1)}2t2ω(t)dt < ǫ,
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with probability tending to 1. tR′
(t; θ) is a uniformly continuous function in

[−M,M ] ×Bδ(θ1) = C, where Bδ(θ1) = {θ : ‖θ − θ1‖ ≤ δ}. Thus, ∀ǫ > 0, ∃ ρ =

ρ(ǫ) > 0 such that ∀(ta, θa), (tb, θb) ∈ C satisfying ‖(ta, θa)− (tb, θb)‖ < ρ, we have

|t1R′
(ta; θa) − t2R

′
(tb; θb)| < ǫ/ι, with ι =

∫

ω(t)dt. As a consequence

(7.6)

∫ M

−M
{R′

(t; θ̂) −R′
(t; θ1)}2t2ω(t)dt < ǫ,

with probability tending to 1. As ǫ is arbitrary, the result in (a) for the real part

follows from (7.5) and (7.6). The proof for the imaginary part is parallel.

(b) The proof of this part is quite similar to that of part (a).

Parts (c) and (d) can be proven by applying the mean value theorem.

Proof of Theorem 2.1: W ∗
can be expressed as W ∗

= W1 +W2 + 2W3,

whereW 2
3 ≤W1W2,W1 = ‖ 1√

n

∑n
j=1 Z0(εj ; t, θ1)ξj‖2

ω,W2 = ‖ 1√
n

∑n
j=1{Z0(ε̂j ; t, θ̂)

− Z0(εj ; t, θ1)}ξj‖2
ω. From the results in [4],

sup
x

|P∗ {W1 ≤ x} − P {W0 ≤ x}| a.s.−→ 0.

Thus, to show the result it suffices to see that W2 = op∗(1) in probability. With

this aim, observe that W2 can be expressed as W2 =
∑4

j=1 Sj +
∑

j 6=k Sjk, with

S2
jk ≤ SjSk, 1 ≤ j, k ≤ 4. In the proof of Theorem 3.1 it is given the expression

of Sj and it is also proven that Sj = op∗(1) in probability, 1 ≤ j ≤ 4. This proves

the result.

Proof of Theorem 3.1: T ∗
2,n,ω(θ̂) can be expressed as T ∗

2,n,ω(θ̂) = D1 +

D2 +2D3, where D1 = ‖ 1√
n

∑n
j=1 Z2(εj ; t, θ1)ξj‖2

ω, D2 = ‖ 1√
n

∑n
j=1{Z2(ε̂j ; t, θ̂)−

Z2(εj ; t, θ1)}ξj‖2
ω, D2

3 ≤ D1D2. From the results in [4],

sup
x

|P∗ {D1 ≤ x} − P {T2 ≤ x}| a.s.−→ 0.

Thus, to show the result it suffices to see that D2 = op∗(1) in probability. With

this aim, observe that D2 can be expressed as

D2 =

10
∑

j=1

Sj +

∑

k<j

Sjk,

with S2
jk ≤ SjSk, 1 ≤ j, k ≤ 10,

S1 = ‖ 1√
n

∑n
j=1{cos(tεj) − cos(tε̂j)}ξj‖2

ω,

S2 = ‖ 1√
n

∑n
j=1{sin(tεj) − sin(tε̂j)}ξj‖2

ω,

S3 = ‖ 1√
n
{R(t; θ̂) −R(t; θ1)}

(

∑n
j=1 ξj

)

‖2
ω,
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S4 = ‖ 1√
n
{I(t; θ̂) − I(t; θ1)}

(

∑n
j=1 ξj

)

‖2
ω,

S5 = ‖ t√
n

∑n
j=1{ε̂jR(t; θ̂) − εjR(t; θ1)}ξj‖2

ω,

S6 = ‖ t√
n

∑n
j=1{ε̂jI(t; θ̂) − εjI(t; θ1)}ξj‖2

ω,

S7 = ‖ t
2
√

n

∑n
j=1{(ε̂2j − 1)R′

(t; θ̂) − (ε2j − 1)R′
(t; θ1)}ξj‖2

ω,

S8 = ‖ t
2
√

n

∑n
j=1{(ε̂2j − 1)I ′(t; θ̂) − (ε2j − 1)I ′(t; θ1)}ξj‖2

ω,

S9 = ‖ 1√
n

∑n
j=1{ψT

n (ε̂j ; θ̂)∇R(t; θ̂) − ψT
1 (εj ; θ)∇R(t; θ1)}ξj‖2

ω,

S10 = ‖ 1√
n

∑n
j=1{ψT

n (ε̂j ; θ̂)∇I(t; θ̂) − ψT
1 (εj ; θ)∇I(t; θ1)}ξj‖2

ω.

We will show that Sj = op∗(1) in probability, 1 ≤ j ≤ 10. By the mean value

theorem,

S1 =
1

n

n
∑

j,k=1

ξjξk(εj − ε̂j)(εk − ε̂k)

∫

t2 sin(t
∼
εj) sin(t

∼
εk)ω(t)dt,

where
∼
εj= αjεj + (1 − αj)ε̂j , for some αj ∈ (0, 1). Then, from Lemma 7.1 (a),

E∗(S1) ≤
1

n

n
∑

j=1

(εj − ε̂j)
2

∫

t2ω(t)dt = op(1),

which implies S1 = op∗(1) in probability. Analogously, S2 = op∗(1) in probability.

Since S3 =

(

1√
n

∑n
j=1 ξj

)2
‖R(t; θ̂) −R(t; θ1)‖2

ω, the central limit theorem

and Lemma 7.2 (c) imply that S3 = op∗(1) in probability. Analogously, S4 =

op∗(1) in probability.

Observe that S5 = S51 + S52 + 2S53, with S2
53 ≤ S51S52,

S51 =
1
n

∑n
j,k=1(ε̂j − εj)(ε̂k − εk)ξjξk‖tR(t; θ̂)‖2

ω,

S52 =
1
n

∑n
j,k=1 εjεkξjξk‖t{R(t; θ̂) −R(t; θ1)}‖2

ω.

From Lemma 7.1 (a) and Assumption (A.2), it follows that E∗(S51) = op(1) and

thus S51 = op∗(1), in probability. From Lemma 7.2 (d), it follows that E∗(S52) =

op(1) and thus S52 = op∗(1), in probability. Therefore, S5 = op∗(1), in probability.

Analogously, S6 = op∗(1), in probability.

Observe that S7 = S71 + S72 + 2S73, with S2
73 ≤ S71S72,

S71 =
1
4

1
n

∑n
j,k=1(ε̂

2
j − 1)(ε̂2k − 1)ξjξk‖t{R′

(t; θ̂) −R′
(t; θ1)}‖2

ω,

S72 =
1
4

1
n

∑n
j,k=1(ε̂

2
j − ε2j )(ε̂

2
k − ε2k)ξjξk‖tR′

(t; θ1)‖2
ω.

From Lemma 7.1 (c) and Lemma 7.2 (a), it follows that E∗(S71) = op(1) and thus

S71 = op∗(1), in probability.
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From Lemma 7.1 (b) and (A.7), it follows that E∗(S72) = op(1) and thus

S72 = op∗(1), in probability. Therefore, S7 = op∗(1), in probability. Analogously,

S8 = op∗(1), in probability.

Observe that S9 = S91 + S92 + 2S93, with S2
93 ≤ S91S92,

S91 = ‖ 1√
n

∑n
j=1{ψn(ε̂j ; θ̂) − ψ1(εj ; θ1)}T∇R(t; θ̂)ξj‖2

ω,

S92 = ‖ 1√
n

∑n
j=1 ψ1(εj ; θ1)

T {∇R(t; θ̂) −∇R(t; θ1)}ξj‖2
ω.

From (3.2) and (A.7), it follows that E∗(S91) = op(1) and thus S91 = op∗(1), in

probability. From (A.1) and Lemma 7.2 (b), it follows that E∗(S92) = op(1) and

thus S92 = op∗(1), in probability. Therefore, S9 = op∗(1), in probability. Analo-

gously, S10 = op∗(1), in probability. This completes the proof.

Proof of Corollary 3.2: From Theorem 3.1 it follows that T ∗
2,n,ω(θ̂) =

Op∗(1) in probability. From Theorem 2 in [11],
Tn,ω(θ)

n
P−→ κ > 0. These two

facts imply the result.

Lemma 7.3. Suppose that ‖θ̂ − θ1‖ = op(1), for some θ1 ∈ Θ, and that

assumptions (A.3)–(A.6), (A.9) hold, then

(a)
1
n

∑n
j=1 ‖∇ log f(ε̂j ; θ̂) −∇ log f(εj ; θ1)‖2

= op(1).

(b) Ân,rs(θ̂) = AF,rs(θ1) + op(1), 1 ≤ r, s ≤ p.

(c) ρ̂1(θ̂) = ρ1,F (θ1) + op(1).

(d) ρ̂2(θ̂) = ρ2,F (θ1) + op(1).

Proof: (a) From the mean value theorem and (A.9),

1
n

∑n
j=1

{

∂
∂θr

log f(ε̂j ; θ̂) − ∂
∂θr

log f(εj ; θ1)
}2

=
1
n

∑n
j=1

{

∂2

∂ε∂θr
log f(ε̃j ; θ̃)(ε̂j − εj) +

∑p
s=1

∂2

∂θr∂θs
log f(ε̃j ; θ̃)(θ̂s − θ1s)

}2

≤ Sr,1 + Sr,2 + 2Sr,3,

with S2
r,3 ≤ Sr,1Sr,2, ε̃j = (1 − αj)ε̂j + αjεj , for some αj ∈ (0, 1), 1 ≤ j ≤ n, θ̃ =

(1 − α)θ̂ + αθ1, for some α ∈ (0, 1),

Sr,1 = ‖θ̂ − θ1‖2 1

n

n
∑

j=1

p
∑

s=1

b20,r,s(εj)

and

Sr,2 =
1

n

n
∑

j=1

b21,r(εj)(ε̂j − εj) = op(1).
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From (A.9), (7.2)–(7.4), it follows that Sr,1 = op(1), Sr,2 = op(1), 1 ≤ r ≤ p.

This proves (a).

The proof of parts (b)–(d) follows similar steps to that of part (a).

Proof of Theorem 4.1: Observe that
1
n

∑n
j=1 ‖ψ1n(ε̂j ; θ̂)−ψ(εj ; θ1)‖2 ≤

D1 +D2 +D3 +D4, with D2
4 ≤ ∑

j 6=k DjDk,

D1 =
1

n

n
∑

j=1

‖Ân(θ̂)−1∇ log f(ε̂j ; θ̂) −AF (θ1)
−1∇ log f(εj ; θ1)‖2,

D2 =
1

n

n
∑

j=1

‖ε̂j ρ̂1(θ̂) − εjρF,1(θ1)‖2,

D3 =
1

n

n
∑

j=1

‖
ε̂2j − 1

2
ρ̂2(θ̂) −

ε2j − 1

2
ρF,2(θ1)‖2.

By using the results in Lemmas 7.1 and 7.3 one obtain Dj = op(1), 1 ≤ j ≤ 3,

and hence the result.

Proof of Theorem 4.2: From (7.2)–(7.4),

1√
n

n
∑

j=1

ε̂sj =
1√
n

n
∑

j=1

εsj +
1√
n

n
∑

j=1

εs−1
j

m(Xj) − m̂(Xj)

σ̂(Xj)
(7.7)

+
1√
n

n
∑

j=1

εsj
σ(Xj) − σ̂(Xj)

σ̂(Xj)
+ op(1).

Taking into account the following facts

(m.1) supx∈S

∣

∣

∣

m̂(x)−m(x)
σ̂(x) − m̂(x)−m(x)

σ(x)

∣

∣

∣
= op(n

−1/2
),

(m.2) supx∈S

∣

∣

∣
m̂(x) −m(x) − 1

nfX(x)

∑nv

k=1Khn
(x−Xk)σ(Xk)εk

∣

∣

∣

= op(n
−1/2

),

it follows that

1√
n

n
∑

j=1

εs−1
j

m(Xj) − m̂(Xj)

σ̂(Xj)
=

=
−1

n
√
n

n
∑

j,k=1

εs−1
j εk

σ(Xk)

fX(Xj)σ(Xj)
Khn

(Xj −Xk) + op(1).

Now, by using projections, we get (see, for example, the proof of Theorem 2 in

[18] for a similar development)

(7.8)
1√
n

n
∑

j=1

εs−1
j

m(Xj) − m̂(Xj)

σ̂(Xj)
= −µF,s−1

1√
n

n
∑

j=1

εj + op(1).



164 G.I. Rivas-Mart́ınez and M.D. Jiménez-Gamero

Next we deal with the third term in the right-hand side of (7.7). Taking into

account the following facts

(s.1) supx∈S

∣

∣

∣

σ̂(x)−σ(x)
σ̂(x) − σ̂(x)−σ(x)

σ(x)

∣

∣

∣
= op(n

−1/2
),

(s.2) supx∈S

∣

∣

∣
σ̂(x) − σ(x) − σ̂2(x)−σ2(x)

2σ(x)

∣

∣

∣
= op(n

−1/2
),

(s.3) supx∈S

∣

∣

∣
σ̂2

(x) − σ2
(x) − 1

nfX(x)

∑n
j=1Khn

(Xj − x)

·
[

{Yj −m(x)}2 − σ2
(x)

]
∣

∣

∣
= op(n

−1/2
),

it follows that

1√
n

n
∑

j=1

εsj
σ(Xj) − σ̂(Xj)

σ̂(Xj)
=

=
1

2n
√
n

n
∑

j,k=1

εsj
1

fX(Xj)σ2(Xj)
Khn

(Xj −Xk)
[

σ2
(Xj) − {Yk −m(Xj)}2

]

+ op(1).

Now, by using projections, we get (see, for example, the proof of Lemma 11 in

[19] for a similar development)

(7.9)
1√
n

n
∑

j=1

εsj
σ(Xj) − σ̂(Xj)

σ̂(Xj)
= −µF,s

2

1√
n

n
∑

j=1

(ε2j − 1) + op(1).

The result follows from (7.7)–(7.9).

Proof of Theorem 4.3: Notice that

µ̂s − µF,s =
1

n

n
∑

j=1

(ε̂sj − εsj) +
1

n

n
∑

j=1

(εsj − µF,s).

From (7.2)–(7.4), the first term in the right-hand side of the above equality is

op(1); from the SLLN, the second term in the right-hand side of the above equality

is o(1) a.s. Therefore µ̂s − µF,s = op(1), 2 ≤ s ≤ k. The result follows from this

fact and (A.10).
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