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1. Background

Conventional version of the, extremely popular, Cox (JRSS 1972) Proportional
Hazards (PH) regression model for censored survival data imposes two assumptions: (1)
linearity of the effects of continuous predictors on log hazard; and (2) PH assumption that
requires the Hazard Ratio (HR) expressing the predictor’s impact to remain constant over
entire follow-up period. In 1990's, several researchers proposed flexible non- or semi-
parametric generalizations of the Cox model, in order to relax either the linearity or the
PH assumption. Applications of these methods in various areas of epidemiological and
biomedical research yielded new insights into the role of prognostic factors for colon
cancer (Quantin et al, Am J Epi 1999), breast cancer (Gray, JASA 1992), stroke (Lewis et
al, Ann Int Med 1997), and many other diseases. In contrast, little work has been done on
simultaneous relaxation of both assumptions.

2. Objectives

1/  To propose a new method for simultaneous flexible modeling of both (i) non-
linear dose-response functions; and (ii) changes over time in HR, within a generalized
version of Cox model;

2/ to evaluate the usefulness of simultaneous estimation using both simulated and
real-life data;

3/ to assess issues related to testing the linearity and/or PH hypotheses, and to
model selection.

3. Method

We propose a generalization of our previous work on flexible modeling of time-
dependent HR (Abrahamowicz, MacKenzie and Esdaile, JASA 1996), to estimate the
“flexible product model”:

h(t|x) = h0(t) exp[f(t)*g(x)]
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where h0(t) and h(t) denote, respectively, the baseline hazard function and hazard
conditional on the predictor X. Low-dimension regression splines (Ramsay, Stat Science
1988) are employed to simultaneously model two “marginal” functions: f(t) and g(x)
representing, respectively, the time-dependent and non-linear effects of predictor X.
Several Likelihood Ratio Tests (LRT) are proposed to test various hypotheses of interest.
To avoid the problems related to model identification and over-parametrization, the model
is re-formulated so that g(x) represents only the relative changes in hazard associated with
different predictor values, while the strength of their impact is represented by f(t). This
implies a specific interpretation of the estimates, and of their pointwise confidence
intervals, which will be illustrated using an empirical example. Finally, a simple test of the
adequacy of the assumptions underlying the product model will be proposed.

4. Simulations:

One of the two main goals of the simulations is to assess the accuracy of the point
estimates of the two marginal functions, and of  the resulting estimates of the conditional
hazards. To this end, we will simulate different, practically relevant, data structures using
our previously developed permutational algorithm for generating censored survival data
with abitrary patterns of time-dependent relative risks (MacKenzie and Abrahamowicz, J
Stat & Computing, in press). The performance of the proposed LRT tests, in terms of both
empirical test size and power will be also evaluated. The second major goal of the
simulations is to demonstrate the impact of model mis-specification on the bias in the
estimates, and on the inflation of type I error rates of relevant tests. Specifically, we will
demonstrate that constraining the estimate by imposing an (incorrect) linearity assumption
may result in type I error rate as high as 70% when testing the proportional hazards
hypothesis, and - vice versa - an incorrect assumption of the constant hazard ratio may
produce a dramatic inflation of type I error rate for testing the linearity of the dose-
response relationship.

5. Illustration

The ability of the new method to yield new insights in the structure of real-life data
will be illustrated by assessing the effects of popular markers (CD4 cell count and viral
load) of disease progression in HIV-positive patients. This example is of practical interest
as previous analyses, that focused on only one of the two aspects of the relationships
between these HIV markers and clinical outcomes, suggested, respectively, that: (i) their
effects are non-linear; and (b) they change during follow-up time. These conclusions will
be revisited using our flexible product model.
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1. The Statistical Analysis of the Data

A form of measuring the economic activity of a country is by its gross national
product (GNP) and by its gross national product per capita (GNPpc). Since our
objective is to study the evolution of the Argentinean economy from 1875 to 1999, we
analyse the annual data of the GNP and the GNPpc for this period. We take the
logarithm of the series and apply a structural time series model of the form

(1)
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where ty  is the log of the series, tµ  is the trend, tψ  is the cycle, tε is an irregular

component serially independent, normally distributed with mean zero and constant
variance, i. e. 2~ NID(0, )t εε σ , tz  is a p×1 vector of observed explanatory

variables and δ  is p×1 vector of unknown parameters. A stochastic formulation of the
trend allows the level tµ  and the slope tβ  to evolve over time. The stochastic cycle is
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where cλ  is the frequency in radians within the interval 0 cλ π≤ ≤ , tκ  and tκ ′  are

two white noise mutually uncorrelated with mean zero and common variance 2
κσ , and

ρ  is a smoothing factor such that 0 1ρ< ≤ . The period is 2 / cπ λ .

In our case and for both series we identify and estimate a model with fixed
level, i. e. 2 0ησ = , stochastic slope and cycle, with some structural changes in the

slope and outliers. The outliers are identified as those large values in the irregular
residuals and are captured using dummies variables as explanatory variables in the
measurement equation [the first equation of (1)]. The changes in the slope are
identified as those large values in the slope residuals and are captured using dummies
variables in the corresponding transition equation [the third equation of (1)]. The
estimation procedure was carried out by means of the Kalman filter and smoother and
using the STAMP package [Koopman, Harvey, Doornik and Shephard (1995)]. Due to
the lack of space, we are going to analyse only the GNPpc because it is usually
considered the most important from the economic point of view. Anyway, the results
for both series are highly similar.

2. More than a Century of Argentinean Economy

In general, the Argentinean economy has shown an important growth during the
period under consideration. In fact, the trend was growing at an increasing rate with
some intermediate periods of decrease, such as 1909-1916, 1928-1931 and 1979-1989
(for the GNP, they are 1913-1916, 1929-1931 and 1980-1989). On the other hand,
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both series have a stochastic cycle with a period of 5 years and 7 months and
amplitude of 2% of the trend, approximately. There are two outliers in both series; one
in 1891 corresponding to an external debt crisis and another in 1899 which
corresponds to an important monetary reform.

Figure 1. GNPpc of Argentina 1875-1999 with trend [(a) and (b)], its slope (c) and
its cycle (d)

In the period under consideration there are five structural changes
corresponding to changes in the slope. The first one occurred in 1881 as a result of
new economic policies implemented by the national government from 1880 and the
increasing use of better technologies mainly in transport. The second one occurred in
1917, and it could be attributed to the consequences of the First World War. The third
happened in 1932 and it is the result of the world recession. The forth came about in
1947 and it is the result of the economic reforms introduced by the newly appointed
government headed by J. D. Perón. Finally, the fifth occurred in 1990 and clearly we
can attribute it to the passage from an hyperinflationary period which reached its
maximum in 1989 to a stabilisation period which started in 1991. For the GNP the
only changes in the slope that took effect where in 1881, 1917 and 1990.

The five structural changes occurring in the GNPpc determine six periods in the
Argentinean economy associated with different political circumstances inside the
country and with important international situations that affected Argentina.
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This paper uses a competing risks model of unemployment duration in which exit
from unemployment can result from finding a job or becoming inactive, which
destinations are properly viewed as behaviorally distinct states (Flinn and Heckman,
1983).  Use of a competing risks specification while familiar is not commonplace in
empirical unemployment duration analysis   Altogether less familiar, is the notion that
risks may be defective (Yamaguchi, 1992).

Whereas in single-risk duration models one aggregates over a number of exit
modes, for competing risks one has to confront the possibility that some exit routes are
simply not viable. Furthermore, if indeed there exists a subpopulation with a zero hazard
rate, we should observe a declining aggregate hazard function.

The empirical model used here reflects the sample information and the sample plan
(observation over a fixed interval).  We use a grouped duration model in which remaining
duration is conditioned on elapsed duration (Cox and Oakes, 1985).  A flexible
semiparametric baseline hazard function is specified, namely, a piecewise-constant hazard
function with 13-segments.  Modes of failure are treated as independent competing risks.
This competing risks framework is next extended to encompass defective risks, which are
then allowed to depend on the characteristics of the individual while allowing for gamma
heterogeneity of the "susceptible" subpopulation. The model is estimated via maximum
likelihood methods

Our data are taken from the nationally representative Portuguese quarterly
employment surveys (Inquérito ao Emprego), conducted by the National Institute of
Statistics (INE) (Instituto Nacional de Estatistica).  The sample period is 1992(2)-1997(4),
the starting date being dictated by changes in survey design after the first quarter of 1992.

The quarterly employment survey has a quasi-longitudinal capacity.  One sixth of
the sample rotates out each quarter, allowing us to track transitions out of unemployment
for up to five quarters, and hence pursue the conditional approach. Transition rates are
obtained simply by identifying those unemployed individuals in the survey, and their
elapsed duration in a given quarter, who move out of unemployment over the subsequent
quarter. The destination states of previously unemployed workers can also be identified.
For present purposes, we distinguish between the two destination states of employment
and inactivity.

More technically the stock sampling basis of the employment survey provides
backward recurrence times for the relevant labor market state.  Information on forward
recurrence times has thus to be inferred.  Specifically, remaining duration of
unemployment, conditional on elapsed duration, distributed as the entrant conditional
density function (Lancaster, 1990).
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The main lesson of this paper is that a substantial proportion of (Portuguese) long-
term unemployment can be explained either by the failure of individuals to receive
acceptable job offers or by their non-consideration of the inactivity option. We showed
that some factors preempt options at the same time as they independently shape transition
rates out of unemployment (i.e. for viable options).  Defective risks are clearly manifested
in cause-specific survival functions.

All of this is consistent with the conventional view of ossified European labor
markets. The argument is that high firing costs not only decrease flows into
unemployment but also strengthen the bargaining power of insiders.  The result is a lower
arrival rate of job offers, and higher unemployment duration to reestablish equilibrium
(Blanchard and Portugal, 2001).  In this setting, it is indeed likely that an important subset
of the unemployed population (especially older individuals) will see their already slim
chances of receiving acceptable job offers being reduced to zero.

We singled out for special attention the role of age and unemployment benefits.
Each has statistically significant effects on hazard rates and defective risks. Age increases
the proportion of those who will never receive acceptable job offers and symmetrically
decreases the proportion of those active in the labor market.  It also independently
increases hazards into inactivity. Unemployment  benefit effects are a little more tricky to
the extent that even in Portugal one cannot be a recipient for ever. Subject to this caveat -
although benefits can be received in one form or other for up to 5 years - benefits are
associated with increases in the proportion of those who will never find work.  Benefits
also decrease the hazard rates into employment and inactivity among those for whom
these options are not preempted.

In search of a more adequate specification of unemployment duration, modern
duration analysis should not simply recognize alternative destination states (and here it
would also seem profitable to consider a variety of employment options) but also
explicitly incorporate defective risks. The relevance of the latter is most obvious in terms
of understanding long-term unemployment and interpreting negative duration dependence.
In general, if there are defective risks to begin with, and these are ignored in modeling
unemployment duration, there is a bias toward a declining hazard function that results
from the mixture of the two subpopulations.  (In our case, there are in essence two hazard
functions: one that declines before trending up, and another for which the hazard rate is
zero.  In conjunction, they produce a declining hazard.)
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1. Introduction

Datasets with missing values arise frequently in statistical practice. Population
surveys inevitably face the problem of incomplete data, missing data create difficulties
in quality of life studies, in cancer clinical trials, etc. There exist many ways to deal
with missing data problems, ranging from the most naive one focusing on the
complete cases only to well-defined parametric, semiparametric and nonparametric
approaches.

A large part of the literature deals with missing covariate values. Here however
we consider missing response data. We focus attention on smoothing methods to
obtain multiple imputation estimators and this in a non-Bayesian framework.

The onset to the use of kernel methods for imputation of missing values was
given by Titterington and Sedransk (1989), who used kernel density estimation in
combination with a nonparametric bootstrap for imputing values. In their method,
relationships between variables are not directly accounted for. For single imputation in
a nonresponse setting, Cheng (1994) and Chu and Cheng (1995) used kernel
estimators in a regression model. We make use of a nonparametric regression
relationship between a partially observed response variable and a fully observed
covariate to create multiple imputations for the missing data.

2. A local Imputation Method

Our approach is based on local imputation methods. Whereas multiple
imputation is mainly regarded as a Bayesian technique (see Little and Rubin 1987,
Rubin 1987), the proposed methods are essentially bootstrap based (see Efron 1994).
The parameter of interest is a marginal parameter of an incompletely observed
variable. The regression relationship with a completely observed variable is exploited
to impute values for the missing items. Throughout, we assume an ignorable
nonresponse mechanism.

We introduce two local bootstrap methods, a local resampling method which is
fully nonparametric (not needing model specification), and a local semiparametric
bootstrap method which still assumes that the conditional response distribution is
correctly specified but which allows any smooth conditional mean response structure.
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The method requires two smoothing parameters used in two different stages of the
algorithm, a resampling step and an imputation step.

Asymptotic expressions for bias, variance and mean squared error are derived.
These can be used to determine the optimal order of the sample size for both
smoothing parameters. To get fully data-driven bandwidth selectors, a new adjusted
jackknife procedure is presented. A simulation study and an example on quality of life
data illustrate the performance and the applicability of the method.
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1. Two-Period Repeated Measurement Designs

In such diverse fields as agriculture, animal husbandry, food science, education,
psychology, social engineering, marketing, medicine, pharmacology, and industry,
researchers often perform experiments designed in such a way that each experimental
unit is assigned more than once to a treatment, either different or identical. Such
designs are known by different names in the literature: repeated measurement
(crossover or changeover) designs.

In many situations due to lack of enough experimental units and for many other
practical reasons, including substantial variability among units we need to use
repeated measurement designs for assessments and the estimation of differences
between the treatments under the study. But then for reasons beyond the control of the
experimenter effects such as carryovers (residuals) or interactions will enter into the
data. In some cases, it might be desirable to generate and measure such carryover
effects. When repeated measurement designs are recommended because of their
economic use of experimental material, then the estimation or elimination of these
effects becomes a secondary and often important aspect of the design and its related
analysis. Of course, we should make every effort to avoid these undesirable effects in
the design stage. But this might not be possible in all cases. Therefore, we need to
identify efficient designs, which allow the study and the elimination of these effects.

We assume t (≥2) treatments are to be studied utilizing n experimental units.
Each unit is to be used in two periods. These two periods are the same for all n units.
In the absence of missing observations the design will yield 2n observations. Each unit
can be given the same treatment or different treatments in two periods. Thus, we are
allowed to select n sequences from t2 possible sequences of two treatments each.
There is no restriction that these n sequences must be distinct. Thus, our design
problem is which n sequence give us the best design and how should we analyze the
related data. Clearly, the choice will depend on the model of observations and the goal
we expect to achieve from the study. Throughout the paper, we use d to denote the
design and d ( i, j ) to denote the treatment being assigned to unit j in period i, i = 1, 2;
j = 1, 2, …, n.

The Model If d (1, j ) = k, then the model of response for the observation, y1jko ,
collected on unit j in period 1 is postulated to be:

(1) y1jko = µ + π1+ βj + τk + e1jko ,

where, µ is the general mean, π1 is the effect of period 1, βj is the effect of unit j, and
τk is the direct effect of treatment k. These are unknown constants. e1jko is the only
random (noise) component of the model which is assumed to be distributed as normal
with mean zero and variance σ2. All these n observations are independent. Note that
we use y1jko rather than y1jk to signify that there is no carryover effect on this
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observation. However, for the n observations collected in the second period two cases
arise:

Case 1 If d (2, j) = d (1, j) = k, then the model of response for y2jkk is:

(2) y2jkk = µ + π2 + βj + τk + ρk + e2jkk,

where, π2 is the effect of period 2 and ρk is the carryover effect of treatment k from
period 1 on itself in period 2. This carryover effect is called the self-carryover effect of
treatment k.

Case 2 If d (2, j) = k, d (1, j) = l, k ≠ l, then the model of response for y2jkl is:

(3) y2jkl = µ + π2 + βj + τk + ρl
*+ e2jkl ,

here ρl
* is the carryover effect of treatment l on treatment k in period 2. Note that this

carryover effect is the same for all k ≠ l. This carryover effect is called the simple
mixed carryover effect of treatment l. Self and simple mixed carryover effects are
assumed to be constants. The error e2jkl is assumed to be normal with mean zero and
variance σ2. The observations on different units are independent but the two
observations on each unit are allowed to be correlated with cov ( y1jko , y2jkk) =
cov ( y1jko , y2jkl) = δ σ2. If possible, we should plan the study so that δ becomes
positive.

Therefore, our model could have up to 5+3t+n unknown parameters. However,
the t direct treatment effects and σ2 are primary parameters of the study. Note that we
could entertain a more general mixed carryover effect. For example, we could assume
that the mixed carryover effect of a treatment in period 1 on the treatment in period 2
depends on what treatment was applied in period 2. However, we believe this might
unnecessarily overparameterize and often saturate or even worse super saturate the
model.

Study and the estimation of self and simple mixed carryover effects are very
important in many fields including, but not limited to, medicine and life sciences. For
example, in a single drug therapy for a chronic disease it will be very helpful to the
physician to know the magnitude of the self-carryover effect of the drug the doctor is
recommending for her patient. Or, for arranging the best crop rotation schedule it will
be very useful to know the size and the impact of the simple mixed carryover effects.

To minimize the possible confusion about the carryover effects and for other
practical reasons such as compliance in clinical trials two-period repeated
measurement designs are very popular designs in practice. However, to avoid
confounding and its related statistical problems for two-period designs we should not
limit ourselves while choosing sequences of treatments. In this article we study, for
the first time, two-period repeated measurement designs for comparing two or more
treatments allowing the appearance of two types of carryover effects namely self-
carryover and simple mixed carryover effects. It is shown that if we properly design
the study then unbiased and efficient estimates of all contrasts in direct treatment
effects can be obtained. If we carefully design the study we can eliminate simple
mixed carryover effects in the analysis stage. We have shown that it is easy to design
the study if we are also interested in optimally estimating contrasts in self-carryover
effects. It is also pointed out that if we are not careful in our design we might partially
or fully confound the design yielding damaged or unusable data. Finally, we have
shown the structure of the smallest designs that allow unbiased estimation of
independent contrasts in simple mixed carryover effects.
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1. Introduction

We consider the parametric estimation in an exponential distribution with pdf
given by,

1
( ;è) ,

è

x

f x e
θ

θ
−−

=    0 ,xθ< <

which has mean 2θ and variance 2θ .  We consider the jackknife and other point and
interval estimates of the location and scale parameters and also the estimates of the
right tail probability of the above exponential distribution with equal location and
scale parameters.

2. Estimation of θ  and 2θ  

We consider the following estimates of θ  in the above exponential distribution
where the location and scale parameters are both equal.

^

1 (1)Xθ = , 
^

2 (1)2

n
X

n
θ =

+
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^
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1
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i
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X
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θ
=

= ∑ , where the estimator 
^

2θ  and the method of

moments estimator
^

3θ are both unbiased. The ordinary jackknife estimator of 1θ (Gray

and Schucany (1972)) can be written as 
^

1 (1) (2)

2 1 1
( )

n n
J X X

n n
θ − −= − .  From the fact

that 
^

1( )E
n
θθ θ= + , a bias reducing estimator 

^

4θ  can be defined by

^
^ ^

1
4 1 (1)

1n
X

n n

θθ θ −= − = .  Considering the mean square errors of these five estimators,

we observe the following fact:

Fact 1 MSE 
^

1( ( ))J θ  > MSE 
^

3( )θ  >  MSE 
^

1( )θ  >  MSE 
^

2( )θ  >  MSE 
^

4( )θ .

From the maximum likelihood estimate 
^

1θ  and the bias reducing estimator 
^

4θ

of θ , we define an estimator 
^

1kθ in the following manner.  Let
^ ^

10 1 (1)Xθ θ= = , and
^

10
1

( )E
n

θ θ θ= + ,

^ ^

11 4 (1)

1
(1 )X

n
θ θ= = − , and

^

11 2

1
( )E

n
θ θ θ= − ,
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^
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By induction we can define an estimator of θ as follows:
^

1 (1)
0

( 1)
,

ik

k i
i

X
n

θ
=

−= ∑   k = 0, 1, 2, 3, …  .

We observe the following Fact 2.

Fact 2 (a)
^

1 1

( 1)
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k k
E

n
θ θ θ+

−= + ,   k = 0, 1, 2, …

(b)
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θ θ
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−= ∑ ∑ , k = 0, 1, 2, …

(c)
^ ^

1 2lim kk θ θ→∞ =
(d)By numerical evaluations, we find that the bias reducing estimate

^ ^

11 4θ θ=  is better than 
^

1kθ  for k = 0, 2, 3, …  .
We also considered several confidence intervals based on these point estimators

of θ and observe that the confidence interval based on
^

4θ  has the shortest expected
length.

In a similar fashion, we observe that the bias reducing estimator
^
2 2

11 (1)2

2( 1)
(1 )

n
X

n
θ −= −  of 2θ  performs better than the other proposed estimators of 2θ

in the sense of the mean square error.

3. Estimation of the Right-Tail Probability

For the exponential distribution in Section 1, the right-tail probability R(t) is

given by ( )
t

R t e
θ

θ
−−

= , 0 .tθ< <   We consider four estimators of R(t) based on the

various point estimates of θ .  The estimator based on the bias reducing point

estimator 
^

4θ , namely,
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1

( ) exp[ ]
1

n
t X

nR t
n

X
n

−−
= − − ,   (1)

1n
t X

n

−> ,

is observed to have less mean square error that the other three estimators when R(t) =
0.01, θ = 0.5 and the sample size n = 10(5)30.
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Broadband wireless networks are seen today as one of the key factors for the
success of the global communication infrastructure in the near future. Their design,
planning and control must be supported by suitable traffic models that are able to deal with
new sets of constraints in which the quality of service (QoS) management and mobility
play an important role.

Traffic models for wireless networks that have been proposed in the literature may
be classified according to their dimension. One-dimensional models consider a street or a
highway and are reviewed in Antunes et al (2001). Two-dimensional models are proposed
for scenarios where mobility in multiple directions in the plane is considered. These
models are mainly focused on mobility aspects as the circuit switching characteristics of
today cellular systems impose special constraints on the teletraffic component Antunes.et
al (1998) On the contrary, third and fourth generation networks, will support fixed and
variable rate transmission.

In this paper we propose a new traffic model for broadband wireless networks that
allows fairly general mobility behaviour and describes the changes in the bandwidth
requirements over the duration of each connection. It can be applied to both sub-urban and
urban scenarios, as well as linear scenarios.

The model considers a finite set of cells, called a cluster, where mobiles arrive
according to a Poisson process. The mobile users move between positions, independently
of each other, according to a Markov renewal process, which allows for non-exponential
holding times in a cell.  We note that simulation studies revealed that the holding time in a
cell is not exponential and showed that the generalized gamma distribution can be a good
approximation for the cell residence time with random movement Zonnozi and
Dassanayake (1997) and D. To restrict the movement of mobiles to existence paths or
roads in the cluster, each position is modelled as a pair of cells representing the former and
the current cell location of the mobile. According to Bacceli and Zuyev (1997), Su and
Gerla (2000), it is more realistic to consider that mobiles move according to the presence
of paths (highways, streets, roads and walking paths) than with complete random mobility.

For the teletraffic process, we assume that a Markov modulated fluid process
Pacheco and Prabhu (1996) (MMFP) describes the individual bandwidth of a mobile
during its presence in the system. The state space of the MMFP is the union of

1K + disjoint sets, 0 1, ,..., KA A A , where K is the total number of types of calls. The set 0A
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represents inactive states (without call) and the set kA (1 k K≤ ≤ ) represents the states

associated to the traffic class k .
For each type of call state or traffic class, we investigate the transient and limit

number of mobiles in different cells, which turn out to be independent Poisson random
variables. Moreover, we conclude that the handoff processes between cells of the cluster
are the sum of independent Poisson cluster processes, and we characterize their univariate
distributions through generating functions. If mobiles make at most one visit to a cell
coming from another cell, then the handoff process between the two cells is a non-
homogeneous Poisson process. As a consequence, the handoff process from a border cell
to the outside in the general model and all the handoff processes between cells in the
highway model per traffic class are non-homogeneous Poisson processes. Our analysis
uses intensively the theory on translations and thinnings of Poisson processes along with
the theory of Markov renewal and semi-Markov processes.

The performance analysis for network planning involves a longer time scale. Hence
for capacity planning we propose the use of limit results. Since our model does not assume
capacity constraints, we use the sample-path analysis version of Palm probabilities to
approximate the handoff and new call blocking probabilities.

Unlike network planning, connection admission control and congestion control
involve a short-time scale requiring a transient analysis. A key to network control is to
exploit the detailed knowledge of the network state in order to obtain good estimates of the
mean and variance of the demand in the near future. We assume that we know the number
of mobiles in the cluster and, for each mobile: the position, the elapsed time in that
position and the teletraffic state. Using the Lindeberg-Feller central limit theorem for non-
identically-distributed summands we predict the total required bandwidth at some future
time in a cell.

Finally, results of simulation studies are used to validate the theoretical analysis,
leading to the following conclusions: for blocking probabilities below 3% the accuracy of
the analytical results is very good; and for a large number of mobiles in the system, the
estimation of the required capacity in a near future can be accurately done through the use
of a normal approximation.
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1. Introduction

The state space representation and its application on time series analysis
provides us with new ways for analysing time series. From pioneering first research by
Akaike (1974) to most recent work Maravall (1994), Kitagawa (1998) or Durbin
(1998), researchers have worked based on state space representation and have tried to
model situations where time series go from simple stationary situations to the most
complex non-stationary, non-linear and non-gaussian situations. In our paper different
time series have been modelled through state space representation. A similar approach
in gaussian and stationary ARMA time series models proposed Muñoz(1988).

(1) xt = F xt-1 + G vt

(2) yt = H xt + wt

Our work is based on the usual state space representation characterized by two
equations: state equation (1) and observation equation (2). Both non-restricted in terms
of the density function associated with the random variable (vt) and (wt), respectively.
Both equations allow us to express our filtering problem in terms of density functions.
We are interested in the following densities:

(3) P(xt/Yt) =K P(yt/xt) P(xt/Yt-1)

(4) P(xt/Yt-1)

The first one is known as the filtering density (3) and the second one prediction
density (4). Note that Yt expresses the observation vector up to t and that K is a
normalized constant.

2. Methodology

On the one hand, in order to obtain the complex densities (3) and (4) related to
each time instant, we introduce a simple numerical method. The filtering densities are
obtained using an approximation to the real density. This approximation procedure
defines some nodes over the state domain where each density will be evaluated.

In fact, any density is taken as discrete and is defined in the same set of points
as the nodes mentioned above. With 25 or 50 nodes we achieved enough accuracy in
simple-model estimation.

On the other hand, the parameters of our model will be reached by applying the
usual likelihood approach. This means maximizing the log likelihood function defined
as:
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If we have an analytical expression for the log likelihood (5), we just need to
define the partial derivatives and apply a well-known quasi-newton optimization
method. Sometimes, it is not easy to obtain the partial derivatives in non-gaussian and
non-linear situations. In such situations we use non-derivative methods.

3. Simulations and Results

In situations where there is no doubt about the results we have proved our
methodology. This simulation comes from stationary, linear and gaussian time series
and is defined by its easier model AR(1). Then we apply the methodology to a more
sophisticated and critical situation, typically known as unit root estimation, and also to
a AR(1) model without gaussian error. Statistical software package has been used to
compare results.

Our last simulation comes from non-linear, non-stationary and non-gaussian
time series. We take the Kitagawa’s (1987) example of Tokyo rain falls to illustrate
the type of approach where time series is discrete and obviously non-gaussian.

4. Conclusions

Our approach reduces significantly the complexity related to evaluate the
filtering densities in each time instant. This approach is non restrictive in three ways:
Firstly, we do not need to impose a gaussian density or make any linear or stationary
assumption to apply the methodology. Secondly, it is not necessary to obtain an
analytical and close expression for the partial derivatives of our cost function
(likelihood function). Thirdly, the computational cost and the calculation time are
severely reduced.
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1. Introduction

Robust Bayesian analysis studies the sensitivity of the results of Bayesian analysis
with respect to the inputs of the analysis, mainly the prior distribution and the loss
function. Usually, the imprecision in beliefs and preferences are modelled by a class Γ of
prior distributions and a class Ζ of loss functions. The most commonly used measures in
global sensitivity analysis are the range of the bayes actions and the range of the posterior
expected loss of the bayes action for a fixed pair (loss, prior), see Berger et al (2000).

The usual interpretation of the range is that the quantity of interest is robust when
the range is small, and is not robust when the range is large. This interpretation is quite
intuitive; however it is very much problem-dependent: it is not clear what is meant by
“large” and “small”, see Ríos et al (2000). The following example shows this
shortcoming:

Example 1 Suppose that we have a decision problem with precision in the loss
function L(a,θ)=(a-θ)2.

1. If we considered a class of prior distributions so that its posterior means µ are in
[0,5] and its posterior variances σ2 are in [0.1,0.2], the range of the bayes alternatives
could be considered quite large, (5). Moreover, the range of the posterior expected loss for
a=2.5 is 6.35.

2. If we considered a class of prior distributions, so that its posterior means µ are in
[0,5] and its posterior variances σ2 are in [100.1,100.2], the range of the bayes alternatives
could be considered, again, quite large, (5). Moreover, the range of the posterior expected
loss for a=2.5 is 6.35, too.

Apparently the two classes could consider themselves equal, i.e., either both robust
or both nonrobust. Moreover, since, for all prior distribution π the expected loss of a is (a-
µπ)

2+σπ
2 and the expected loss for π–bayes action is σπ

2, in both cases the greater
difference between posterior expected loss of a=2.5 and posterior expected loss of bayes
action µπ is 6.25. It is achieved for µπ=0  and σπ

2=0.1 (among other values) in the first
class and for µπ=0  and σπ

2=100.1 (among other values) in the second. For the first class
the posterior expected loss of 2.5 is 6.35 and for the bayes action is 0.1. For the second
class the posterior expected loss of 2.5 is 106.35 and for the bayes action is 100.1. Then,
we think that the second class is less sensitive than the first one.

This example motivates the use of other sensitivity measures. We propose one
in the following section.

2. Sensitivity Measure

Definition We define the sensitivity measure of a with respect to Γ×Ζ by

, ( , )

( , , )
( ) sup 1

( , , )L L

T a L
S a

T a Lπ π

π
π∈Γ ∈Ζ

 
= −   

where
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θ θ π θ θ
π θ π θ θ

θ π θ θ
= = ∫∫ ∫

, and ( , )La π the bayes actions

for the pair (L,π)
S(a) measures the maximum relative error between the expected posterior loss of

the alternative a and the expected posterior loss of the bayes actions for any pair prior-loss
function.

The smaller is S(a), the less sensitivity will be found in alternative a respect to
changes in the loss function or prior distribution, i.e. the selection of a as optimal
alternative is quite good although there are imprecision in beliefs and preferences. A
particular case of this measure can be found in Ruggeri and Sivaganesan (2000)

In an opposite way, we define a robustness measure R(a).

( , )

,

( , , ) 1
( ) inf

( , , ) 1 ( )
L

L

T a L
R a

T a L S a
π

π

π
π∈Γ ∈Ζ

 = =  + 

Example 2 (Cont. of Example 1) After some simple computations, we get for the
first class S(2.5)=62.5  and for the second class S(2.5)= 0.0624. This means that in the first
case we have an error of 6250% and in the second case the error is only 6.24%, showing
the difference between robustness of the two classes. Figure 1 shows some posterior
distributions for classes 1 and 2. Note than for class 2 there is no visual difference between
distributions.
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Figure 1. Posterior distributions for classes 1 and 2.
We apply our sensitivity measure to some classes from bayesian robustness

literature, see e.g. Berger (1994).
This work has been supported by the grant number IPR00A075 from the Junta de

Extremadura.
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1. Introduction

Usually, in many national sample surveys, information collected regularly on
the same population from one period to the next. In such repetitive surveys, three
possible sampling procedures may be used:

1. Extracting a new sample on each occasion (repeated sampling).
2. Using the same sample every occasion (panel sampling).
3. Performing a partial replacement of units from one occasion to another

(sampling on successive occasions, which is also called rotation sampling when the
units are constructed in the number of stages in which they are to become part of the
sample, as it happens with the EPA -Spanish Survey of Working Population- which
are performed quarterly, and most of the family surveys carried out by the INE
-Spanish Statistics Institute-).

The third possibility, has been discussed extensively by several authors in the
case of estimating the population mean (total) (Rao and Mudholkar, 1967; Artés and
García, 2000). However, in many of such repetitive surveys, the estimate of the
population ratio and product of two characters for the most recent occasion may be of
practical interest.

We build the optimum estimator of the ratio population means at the second

occasion, ( ) ( )2
ˆ ,  1,2,3iR i = . For the matched portion an estimate improved may be

obtained using a double sampling estimate for the ratio of two means

( ) ( )2
ˆ ,  1,2,3i mR i = , and a simple ratio estimate, 2

ˆ
uR , based on the unmatched part of

the sample on the second occasion, with weights Q  and 1 Q− , that minimize

( )( ) ( )2
ˆ ,  1,2,3iV R i = . Thus ( ) ( ) ( )22 2

ˆ ˆ ˆ1 ,  1,2,3ui i mR QR Q R i= + − =  and

(1) ( )( ) ( )
2

2 2 i
min 1 2 0 1 22 2

1+qZˆ = C +C -2 C C  1,2,3
1+qi

i

R
V R i
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2
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−
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=

where ( ) ( )1 1 0 2 2 02A C C C Cρ ρ= −    and ( ) ( )1 1 0 2 2 0opt C C C Cθ ρ ρ= − .

The optimum matching fraction is obtained minimizing in (1) with respect to u ,
and so, we have

1 1
,  1,2,3i i

opt
i

Z Z
p i

Z

+ − +
= =
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We can compote the gain in precision, G , of the combined estimate ( )2
ˆ

iR ,

obtained by using a double-sampling ratio estimate of means from the matched portion

of the sample on the second occasion, over the direct estimate, 2R̂

( ) ( )( )
( )( )

( )
( )

2 2

2

ˆ ˆ 1
;  1,2,3.

ˆ 1 1

i i

ii

V R V R Z p p
G i

p ZV R

− − −
= = =

+ −

Necessarily 1p ≤ . If 1p =  (perfect matching) or 0p =  (no matching), the gain

is zero. For other ( )0 1p p< < , there will be positive gain for  ( )1 2R̂  if 1A < − , for

( )2 2R̂  if 1A > , and for ( )3 2R̂  if 0A θ< <  or 0 Aθ< < .

The theory has been applied to provide more accurate estimations of the
analysed variables over a study on schoolchildren’s health habits and fitness carried
out in Almeria schools. From these data we can state that

COMPARISON OF ESTIMATORS
Estimators % Gain in precision

Direct

( )1 2R̂ -30.06%

( )2 2R̂ 2.04%

( )3 2R̂ 26.51%
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1. Introduction

This paper is concerned with the distribution of the approximate score statistic
for power transformation of the response in regression that was introduced by
Atkinson (1973). This statistic is the t test for regression on a constructed variable.
Since the constructed variable is a function of the response, the null distribution of this
statistic is not exactly Student’s t. The simulation study of Atkinson and Lawrance
(1989) shows that, although the distribution of the statistic is roughly symmetrical, the
variance is too large. However the extent of this variance inflation is different in
different examples. In the most extreme case it is roughly two rather than one, an
effect which is large enough to give misleading interpretation of the observed value of
the statistic. The results in this note characterise conditions under which good, or less
good, agreement with the null t distribution can be expected.

2. The Forward Search

We are concerned with the Box-Cox parametric family of transformations for
positive data, for which, for example, a value of one for the parameter λ indicates no
transformation, whereas zero indicates the log transformation. Information on the need
for a transformation often comes from the largest or smallest observations. As a result,
the estimated transformation, or equivalently, the value of T(λ), the approximate score
statistic for λ, can be misleading if one or more outliers are present. The presence of a
single outlier is revealed by the constructed variable plot. If z(λ) is the transformed
response for a particular λ and w(λ) the constructed variable for the transformation,
the constructed variable plot is that of residual z(λ) against residual w(λ), both
residuals being from regression on the variables X in the regression model. However,
Atkinson and Riani (2000, Chapter 4) show that the constructed variable plot will fail
if more than one or two outliers are present. Instead they suggest a forward search
through the data, from which they produce a “fan plot” of values of T(λ) which leads
to a clear indication of the presence and effect of multiple outliers.

The forward search starts from a robustly selected subset of the observations
which is outlier free. The size m of the subset used in fitting the data is augmented by
one and the model refitted, each growth in sample size selecting the m + 1
observations with the smallest residuals. The procedure continues until m = n, the
number of observations. As a result of the structure of this search the outliers, if any,
enter at the end, that is as m approaches n. The plot of the statistic T(λ) during this
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search indicates the effect of individual observations on the evidence for a
transformation. Outliers often cause sudden jumps in the value of the statistic. Both
the order of observations produced by the search and the values of T(λ), depend on the
value of λ used in the search. Usually the results for five values of λ are plotted on the
same graph. The evidence of wrong values of λ increases as observations are added
during the search, giving plots T(λ) which move steadily away from zero, often some
in positive and some in negative directions. Because of the shape of the resulting five
curves, this picture is called a “fan plot”.

3. Tests and the Fan Plot

Given the ordering of the observations in the forward searches on which the fan
plot is based, it is not clear what is the null distribution of T(λ) in the plot. The
simulations of Atkinson and Riani (2001) show that, for much of the search, the t
distribution provides a good guide to significance, the simulated distribution rapidly
becoming indistinguishable from the normal as m increases. However, at the end of
the search, two interesting effects are observed which account for the distributional
properties noted by Atkinson and Lawrance when m = n. It is this last part of the
search which is important for the detection of influential observations.

The first effect is a lengthening of the tails of the distribution in the last few
steps, so that the graph of the estimated percentage points diverges with m like the bell
of a trumpet. The simulations show that this effect increases as the value of the
multiple correlation coefficient R2 decreases, being negligible when strong regression
is present and strongest for a simple random sample. The explanation lies in the
changing structure of the constructed variable plots during the search, which are
highly structured for simple samples, but seemingly random if strong regression is
present. This reflects the dependence of the correct transformation on the structure of
the linear model, if any, as well as on the distribution of errors.

The second effect which is also sometimes present is that of skewness in the
simulated distribution. This is caused by the need to reject non-positive values of the
simulated response. Although the distribution of the transformed observations cannot,
in general, be exactly normal, it should involve a negligible truncation of negative
values. That these occur sufficiently often to have an effect on the distribution of T(λ)
is an indication that a model has been fitted to the data for which the predictive
distribution has an appreciable probability of generating negative observations. Such a
model cannot be correct for observations that should be positive and is an indication
that a satisfactory model has not been found. This difficulty does not arise with the
lognormal model (λ = 0), where all predictions are positive when exponentiated back
to the original scale.
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Let { }( , ) : , 0W s t s t ≥ be a standard Wiener sheet and consider the process

( , ) ( , )Z s t W s t m= +  with an unknown parameter m ∈ " . Let [ ] ( ), 0,a b ⊂ ∞  and let

[ ]: ,a bγ → "  be a continuous, strictly decreasing function with ( ) 0bγ > . Consider

the curve ( )( ) ( ){ }, : ,s s s a bγΓ = ∈ and the set

( ) ( ) ( ){ }2, : ,  or , .G s t a s b t s s b t bγ γ= ∈ ≤ ≤ ≥ > ≥"

Let G G⊂#  be a subset containing an ε -strip of Γ , i.e.,

( ) [ ] ( ) ( ){ }
( ) [ ] ( ) ( ){ }

2

2

, : , , ,

, : , , ,

s t s a a t s a

s t s a b t s s G

ε γ γ

ε γ γ ε

∈ ∈ + ∈   

∈ ∈ + ∈ + ⊂  

" $

#"

with some 0ε > . Arató, N. M. (1997) considered a twice continuously differentiable

function γ on [ ],a b  and determined the maximum likelihood estimator (MLE) of

m based on the observation of ( ){ }( , ) : ,Z s t s t G∈ # by the help of stochastic partial

differential equations. We derive the MLE of m  under less assumptions on the
function γ applying direct discrete approach instead.

First we verify that for a partition 1 2 1: N Na s s s s b−ℑ = < < < < =% of [ ],a b  the

MLE of m based on any finite sample containing the observations

( )( ){ } ( )( ){ }1, :1 , : 2i i i iZ s s i N Z s s i Nγ γ −≤ ≤ ≤ ≤$

and possibly also finitely many observations from

( ) ( ){ }
1

, : ,
N

i i
i

Z s t s s t sγ
=

≥ ≥$

has the form /N N Nm Aς=# , where
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.
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We prove that if we take a sequence of partitions
( ) ( ) ( ) ( )
1 2 1: ,  1,2,N N N N

N N Na s s s s b N−ℑ = < < < < = =% !  with ( )( ) ( )
1

2
max 0N N

i i
i N

s s −≤ ≤
− →  than

the above MLE converges in 2L  norm to the MLE of m based on the observation of

( ){ }( , ) : ,Z s t s t G∈ # . This MLE is a weighted linear combination of the values at the

endpoints  ( ), ( )a aγ  and  ( ), ( )b bγ  of the curve Γ and a weighted integral of the

observed process and its normal derivative along the curve Γ.
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The theory and methods for multivariate extreme values are aimed at
characterising and estimating features of the joint distribution of vector random
variables in the tail region. Recently there has been much work developing parametric
and non-parametric methods for estimating the characteristics of the dependence
between extreme values. In this study we overview the two approaches, illustrating
how advances in  the parametric approach can be incorporated into the nonparametric
approach. We illustrate how this leads to improved performance, especially in cases of
weak asymptotic dependence.

 An advantage of parametric methods for multivariate extreme value is their
ability to adjust estimates of the marginal distributions to account for information in
the other variables. This feature is particularly important when marginal outliers are
present or when marginal observations are missing through a non-random mechanism.
We will illustrate how a fully multivariate analysis helps in such problems.
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We consider the statistical model given by

(1) { },  i *= \ 0i i iY f σε= + ∈ " "

where ( )
1i i

f f ≥=  is an unknown sequence of real numbers (called the signal), or a σ
positive number and the iε ’s a sequence of i.i.d. standard Gaussian random variables.

One observes the sequence ( )
1i i

Y Y ≥= . Let ( ),a p Rε  denotes the pl -body

( ) ( ), 2
*

* , ,

p

pk
a p

k k

f
R f l R

a
ε

∈

  = ∈ ≤ 
  

∑
"

"

where R  is a positive integer, p  ome real number in ] ]0,2  and ( )
1k k

a ≥  a non

increasing sequence of positive numbers converging towards 0. We consider the
problem of testing " 0f = " against the alternative " ( ) { }, \ 0a pf Rε∈ " and establish

nonasymptotic bounds for the separation rate. Those bounds hold under no condition
on the decay of the ka ’s. The upper bound derives from the performance of a test
described in Baraud, Huet, Laurent BHL which uses model selection technics. To
establish the lower bound, we reduce to the case of an alternative of the form

( ) { }{ }2 * , , 0 ,  0 ,i if l i f D i N f∈ ≠ ≤ ∀ > ="

where the integers D  and ( )N D N≤  are judiciously calibrated, and use combinatoric

arguments. Our results allow to recover asymptotic bounds established in the pioneer
papers by Ermakov (91), Ingster (93a), Lepski and Spokoiny (99).
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1. Introduction

The phenomenon of the exponential increase of the mortality rate in human
population in the age interval 30-85 years was firstly described by Gompertz in1825.
Later studies showed this regularity to be hold at suitable ages for a number of
multicellular organisms. In spite of deceleration of the hazard in human after 85 and
leveling-off or leveling-off in Drosophila it seems that the phenomena of exponential
growth in mortality is closely related to the essence of senescence processes in the
living organism. A number of approaches aim to explain exponential increase of adult
mortality with age. One class of such models is based on the theory of extreme values
and regards a living organism as a system of interacting elements performing different
physiological functions. Gradual decline of their amount and capacities lead to
increasing risk of the failure for the organism as a whole.

In the model proposed by Abernethy(1998) the living organism is regarded as a
system components or clones of replicating cells dedicated to perform a specific vital
function. All the mature cells evolve from a unique stem cell and the waiting-time for
completion of the fixed-length string of replications is a random variable with a
distribution function of exponential type. The members of a mature cell-pair, that is
the outcome of completed string, discharge immediately their vital function. Since the
number of replications is bounded, any given stem cell can produce a large but finite
number of cell-pairs. The clone is failed when all but a small critical number q out of
its large population of n=2h-1 cell-pairs have been generated. The death of organism is
associated with the failure of at least one clone. This model assumes the mitotic cycle
as a random duration and terminated by a counting mechanism resident in the DNA of
somatic cells. The counter is duplicated during mitosis and passed on to the daughter
cells with its new-updated state. The counter terminates mitosis after h+k cycles,
where k is the replication number at which the embrionic cell mass differentiates into
2k clones. If the times-to-replication-completion are asymptotically independent, the
extreme values theory can be applied to this model and an exponential hazard
h(t)=exp(-Rexp(αt)) for the life span is derived from this model. By unlimited cellular
replicability h(t) vanishes and by default death would be restricted to catastrophic
events, accidents, or overwhelming infection, which typically are constant risks,
independent on age.

Another way to get different forms of hazard curves is changing of the age-
scale. In the next section we will show how to choose the age-scale to get any kind of
a hazard.
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2. Age-Scale Transform of the Waiting Time for Mitotic Events

The survival function corresponding to the Gompertz hazard can be represented
in a form W(t)=exp(-Rexp(αt)). In principle, for any given continuous survival
function S(t) one can find such an age-scale transform x(t) that W(x(t))=S(t).
Particularly, x(t)=ln(-ln(S(t))/R)/α. But what in reality may this age-scale transform
mean on the cellular level? We have only one possibility for changing the age-scale.
This possibility is in changing the exponential increase with age of the waiting time
for mitotic events. Now we define such a transform of the waiting time for mitotic
events with age, that lead to a given hazard µ(t) and supply our general formulae with
some important examples. It can be proven that the hazard ( )tµ# for the modified
waiting-time-for-completion-of-replication, corresponding to survival function S(t) is
given by the function

ln ln( ln ( ))
( ) ( )

ln( ln ( ))( ln ( ))

S t
t t

S t S t
µ µ−≈

− −
#  as t→∞.

As a corollary of this result we receive three important forms of hazard rates as
t→∞.

1. Exponential (Gompertzian) hazard, ( ) exp( )t tµ ≈

( ) ln( )t t tµ ≈# ;

2. The leveling-off of a hazard, ( )t constµ ≈

ln ln( )
( )

ln( )

t
t t

t
µ ≈# ;

3. Weibull hazard, ( )t t λµ ≈ ,λ>-1,

ln ln( )
( )

( 1) ln( )

t
t t

t
µ

λ
≈

+
# .

The constant hazard can be regarded as a special case for Weibull hazard when
λ=0. An exponential hazard corresponds to the exponential increase with age of the
waiting time for mitotic events, t eτ≈ . In the case of leveling-off or of Weibull hazard

the waiting time for mitotic events increases as double exponent, i.e. /( 1)et e
τ λ +≈ .
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Let 1 2, ,..., nX X X , be a sequence of independent and identically distributed

random variables with distribution function F  and with tail quantile function U
defined by

{ }( ) inf ; ( ) 1 1/U x y F y x= ≥ − .

Denoting the order statistics by 1, ,...n n nX X≤ ≤ , the basic statistical model

considered here is given by the maximal domain of attraction condition which governs
extreme value theory : Suppose that there exist sequences of constants ( ; 0)n na a >  and

( )nb , and some γ ∈ℜ , such that

(1) ( )
1

,lim exp 1n n n

n
n

X b
P x x

a
γγ −

→∞

−   ≤ = − +     
 for all .x

The main aim of this paper is to discuss the estimation problem of the extreme
value index γ  under this model. Most research in this area concentrates on the heavy

tailed distributions with 0γ > . In such a case, it follows from (1) that X is of Pareto-

type. Therefore, the tail function 1( ) (1 )U x Q x−= −  with Q  the quantile function of

F , is regularly varying, that is ( )( )U x x L xγ=  where L  is a slowly varying function,

i.e. satisfying ( ) / ( ) 1L tx L x → as x → ∞ , for all 0t > . For the estimation of γ  under
this regular variation model, Hill (1975) proposed the following estimator:

, 1, ,
1

1
log log .

n

n n

k

k n n j n n k n
jn

H X X
k − + −

=

= −∑

Here ( )nk  is a sequence of positive integers (1 )nk n≤ < which, in theoretical

asymptotic considerations, satisfies the conditions nk → ∞  and / 0nk n →  as n → ∞ .
It has been mentioned in literature that this and many other estimators can be viewed
as estimators of the slope in a Pareto quantile plot. A large group of estimators of γ
evolves from different possible regression fits on Pareto quantile plots. An important
subclass of Pareto-type distributions was defined by Hall (1982) with

(2) { }1 2( ) (1 1 (1) )L x C C x oρ= + +



2º  QU A D R IM E S TR E  D E  2001

R E V I S T A  D E
E S T A T Í S T I C A

where 10, 0Cρ < >  and 2C ∈ ℜ . The asymptotic nature of the definition of the Pareto-

type model implies that any estimator will contain quantities, the selection of which plays
a crucial role for successful application of such a technique: especially the choice of the
number of extremes nk  has received a lot of interest. Minimizing the mean squared error

of the estimation technique has been a constant guideline throughout almost all
publications on this topic. However, next to the choice of nk , the appearance of a
systematic and important bias is considered to be a serious problem. This typically
happens when ρ  is small in the Hall model discussed above. Recently, in Beirlant et al.

(1999) and Feuerverger and Hall (1999), the regression problem defined by the upper
subsets

( )( )1,log 1 log ,log , ( 1,..., ),n j nn j X j k− ++ − =

of a Pareto quantile plot was further specified taking into account a second order slow
variation condition, essentially specified by the Hall model (2). In this way, the bias is
reduced and the problem of volatility in the plots of the estimates as a function of k
can be weakened, while mean squared error rates comparable with those of the more
classical estimators are retained.

The estimation of γ ∈ℜ has been studied less extensively. Beirlant et al. (1996)

proposed in this case an estimator based on a generalized quantile plot, which takes over
the role of the Pareto quantile plot in this more general setting. As in the 0γ > case, one

can now construct several regression based estimators for γ ∈ℜ . All estimators exhibit

bias problems for different underlying distribution functions. The aim of this paper is to
perform the same program as in Beirlant et al. (1999) starting from the generalized
quantile plot, inspecting the induced regression problem in more detail. This leads to new
estimators for γ ∈ℜ , which follow from working with a full, respectively a reduced,
regression model. The estimators resulting from the full model possess a smaller bias.
Then, we derive the regression model which allows to attain our goal through least squares
estimates of the parameters of the model. The basic asymptotic results are also given. The
behaviour of the resulting novel estimates of γ is discussed with a small sample

simulation study. Finally, we provide a diagnostic for selecting the number of extremes k
when using the generalized Hill estimator following from the reduced regression model.
This method is inspired by a new approach developed in Guillou and Hall (2000) for the
Hill estimator itself.
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We consider the mortality in m populations and suppose that it depends
randomly on some covariates X. For each individual this dependence is assumed to be
on two levels, namely an individual and a population level. More precisely, for the j'th
individual in the i'th population we consider hazard functions of the form

λ ij(t) = a(t) + (Zi + Zij)∙b(t)∙g(βX),

where a is the natural death intensity. Here Zi and Zij represent frailty on the individual
and population levels and have means that sum to one.

This model is well studied in Yashin et al. (1995) and Petersen (1998), but only
in the case where complete observations are available. We are mainly interested in
interval censored observations, a very common type of incomplete observations in
dose-time mortality studies. In theory it is straight forward to calculate the joint
survival function for each population. However, in practice it involves summation of a
very large number of survival probabilities if the population sizes are not very small.
We discuss possible solutions to this problem.

As an example we consider a dose-time mortality experiment in which groups
of ticks were subjected to different doses of an insect pathogen fungus. At 7 days in a
11 day period after the start of the experiment the number of dead ticks was observed.
For this kind of experiment Nowierski et al. (1996) proposed to use log-dose as a
covariate and an exponential link function g.
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Model uncertainty is increasingly being recognised as an important component
of our assessment of the strength of evidence in inferences drawn from statistical
observations.  Scientific assessments that merely report the latest confidence intervals
to be published may reflect only a part of the uncertainty in our scientific conclusions.

Most approaches to model uncertainty proceed on the assumption that we have
access to original data and typically involve a full Bayesian analysis from first
principles.  In practice, published results of investigations are often restricted to point
and interval estimates of a particular parameter.

Accordingly we propose a simple method of using summary data in this form to
construct an overall interval for a single parameter that reflects the possibility that just
one of the models under consideration may in fact be correct.  The approach is
Bayesian and requires a specification of the prior probabilities that each model is
correct.  It also assumes (1) that the intervals on which we operate are effectively
Bayesian and (2) that the posterior distributions they yield are normal with variances
that may be assumed to be estimated without significant error.  Under these
assumptions it is straightforward to obtain an implicit equation for the upper and lower
limits of an overall (unconditional) Bayesian interval and the equation is easily solved
numerically.

The way the algorithm operates under changes in the parameters is explored and
the method is illustrated by applications in the field of radiation epidemiology.  The
underlying assumptions are discussed and argued to be less restrictive than at first
appears.
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World Wide Web (WWW) traffic is a significant part of network
communications. A net of servers (caches) provides delivery service of requested files.
However, the clients demand high quality of service, which grows together with the
business of the network. Thus accurate statistical models of cache behaviour might
help in dealing with these contradictory demands.

In the vast internet traffic literature there are several measures proposed to
characterise cache behaviour. The most common are hit rate and file popularity. These
are well examined and discussed, yet there are no satisfactory conclusions about the
traffic behaviour or about prediction and modelling of cache characteristics optimising
the Quality of Service.

The servers are set in a hierarchy reflecting the size and so the number of stored
and transferred files. The available data for analysis are cache log files giving values
of several variables, such as Time-stamp, Elapsed Time, Size of file, and other (see
ftp://ftp.ircache.net/Traces/readme). Analysis of these data for various caches shows
that they are all very bursty but they have very different correlation structures for
different caches.

Hence we have calculated a new variable, based on the Time-stamp and the
Elapsed Time, which is the number of requests being processed at a given time point,
for example at every second. We call it Queue Length, see Figure 1.

•  The Queue Length time series shows typical characteristics of a long
memory, self-similar process (cf. Beran, 1994):

•  There are periods where the observations stay at high level and periods
where they stay at low level.

•  At short time periods, there seem to be cycles and local trends.
•  At long time periods, there is no apparent trend or cycle; the series looks

stationary.
These properties could only be noticed looking at a minimum of one week's

data since there are daily differences. Hence, for the large caches, self-similarity is a
very useful characteristic as it allows aggregating of the series without changing its
properties, and so decreasing its size to a manageable one. Furthermore, one of the
mathematical consequences of these properties is that the autocorrelation function

( )ρ τ  tends, with lag τ tending to infinity, to the following simple form

(1)   
( )  c α

τρ τ τ −
→ ∞ → ,
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where c is a constant, 2 2Hα = − , ( )0.5,  1H ∈  being the so-called Hurst parameter,

widely used as a measure of self-similarity; the closer H is to one, the stronger the
self-similarity of the series.

0 2000 4000 6000 8000 10000 12000

  0

50

100

150

Figure 1. NLANR BO1 cache's Queue Length time series for a two-week period
(aggregated at 100 seconds non-overlapping periods of time).

We have examined data from a wide spectrum of caches, both of different size
and different hierarchy level. The non-linear least square method gives a good
approximate for the parameter H, which seems to take values between 0.75 and 0.85
for all considered servers. Another important property of the Queue Length is its
distribution. It is a very skewed, long tail kind of distribution and finding the one
fitting best to the data is not an easy task. Also the question arises whether there is a
connection between high values of H and the long tail distribution.

The purpose of our work is to examine further the Queue Length properties and
to find out which cache parameters or variables influence the Queue Length
performance. Currently, we are looking at the so-called flight delay, which, briefly, is
the total time spent on communication between a client and a cache minus the time of
the file transfer. We expect that this variable will prove significant to the Quality of
Service, measured by the Queue Length properties. We will present the results of our
investigation and discuss possible further work needed to optimise the Quality of
Service.
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There are examples of real-life time series, which exhibit behavior, whereby
their values seem to concentrate in a number of "attraction regions", preferring some
values to others. A striking example is the series of daily crude oil prices: the oil price
has a number of "preferred" regions (approximately at 18, 14 and 23 dollars per
barrel), and most trading occurs here. The price lies outside these regions only
relatively briefly and is then rather unstable. We can relate this feature of the time
series to a certain property the invariant distribution of the underlying stochastic
process. Namely, it can be expressed by the multimodality of the density of the
invariant distribution. This phenomenon is in general not possible to capture by using
traditional linear techniques of time series analysis.

We present a new approach to the problem of time series modeling in which we
capture the multimodal invariant distribution of time series data within the (nonlinear)
model. We propose to apply what we call a potential function approach whereby we
let the underlying process be governed by a potential field that has its local minima at
the attracting values with the addition of some random fluctuations.

We consider a continuous time process ( )t t Ry ∈  in R , evolving according to

(1) ( ) ,t t tdy U y dt dwβ′= − +

where :U R R→  is a potential function, ( )tw  is the standard Brownian motion and

Rβ ∈  is the factor that measures the magnitude of random fluctuations. Under suitable

conditions on U (Stroock and Varadhan (1979)), the distribution of ( )ty  approaches

weakly an equilibrium, which is a Gibbs distribution with density given (up to a constant)
by

(2)  2 ( ) /( ) U yy e β
βπ −= .

The discretization of the equation (1) (the Euler scheme) gives
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( ) .t t t t ty y U y t wβ+∆ ′= − ∆ + ∆

Motivated by this scheme, the potential function model for a discrete time series
( )i i Ny ∈  is given by

(3) 1 ( ) ,i i i iy y U y h ε+ ′= − +

where h  is an (unknown) time step, which we assume to be small, and ( )iε  are i.i.d.

random variables having normal distribution with mean 0 and variance hβ .
Using the relation (2) and a suitable estimate for the invariant density computed

from the data, we obtain the estimate for the (scaled) potential. The combined parameter
hβ  that measures the effect of random fluctuation together with time discretization is
subsequently estimated by the method of least squares.

This approach naturally extends to modeling multivariate time series. In that case
the potential function U in R  is replaced by the potential field in kR and the derivative –
by the gradient, so that the model (3) becomes 1 ( ) ,i i i iy y U y h ε+ = − ∇ + where ( )iε  are

i.i.d. multivariate normal random vectors with k uncorrelated components each having the
variance hβ . In fact, we can show that the assumption of the components being

uncorrelated with the same variance can be relaxed.
In dimensions higher than one, the main challenge in fitting the model is the

estimation of the potential field and its gradient. We show how to estimate the potential
field in higher dimensions by a combination of Gaussian kernels whereby parameters are
estimated by a variant of the maximum likelihood method.

Testing the resulting model against historical data of oil prices (univariate as well as
multivariate) shows that the essential price behavior is captured remarkably well. The
model can generate copies of time series with the same distributional properties as the
observed series, which is useful for applications such as parametric bootstrap, Monte Carlo
simulations, scenario testing and other applications that require a large number of
independent copies of the original time series. Furthermore, using the presented model for
forecasting reduces the uncertainty about future time series behavior and allows to make
better predictions.

To conclude, we note that our work was inspired by an optimisation technique
called simulated annealing, where  the global minimum of a function U  is found by the
application of diffusion in the form of (1) (Cherny (1985), Kirkpatrick (1083), Geman and
Hwang (1986)). Introducing diffusion into the evolution, allows it to escape from local
minima. This idea is in turn related to the physical procedure called annealing where a
physical substance is melted and then slowly cooled to find all low energy configurations.
The factor β  then gets a special meaning and corresponds to a “temperature” of the
substance.
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1. Introduction

We consider a fixed design regression model in which the non-negative
response Yx at covariate value ] [0,1x ∈ is subject to random right censoring by two

independent and non-negative censoring variables Cx and Dx.  The censoring variable
Dx has a general distribution function G2x, while Cx has a distribution function G1x that
satisfies the following proportional hazards assumption

(1) xâ
1x x1 - G (t) = (1 - F (t)) ,        t  0≥

for some βx > 0 and where Fx(t) = P(Yx ≤ t).  Since (1) expresses a type of informative
censoring, we call the model partially informative.  In the absence of covariates, it has
been introduced in Gather and Pawlitschko (1998).  The observed variables at design
point x are (Zx, δx), where Zx = min(Yx, Cx, Dx) and δx =1, 0, -1 according as Zx = Yx,
Cx, Dx.  We write Hx(t) = P(Zx ≤  t) and { }

xH xT inf t:H (t) 1= = .

2. Estimator for the Conditional Distribution Function

For our inference, we consider the observed data ( )
i ix xZ ,ä  (i=1,…,n) at n fixed

design points 0 < x1 ≤  x2 ≤ … ≤ xn < 1.  We assume that Fx and Gx are continuous and
also that the probabilities pxk = P(δx=k) (k = -1, 0, 1) are strictly between 0 and 1.  It
can be seen that βx = px0/px1 and that x x1 - F (t) = (1 - K (t)) xγ , where γx = 1/(1+βx) =

px1/(px0 + px1) and Kx(t) = P(min(Yx, Cx) ≤  t).  An estimator for Fx(t) is given by Fxh(t)
where xh

xh xh1 - F (t) = (1 - K (t))γ , where γxh and Kxh(t) are estimators for γx and Kx(t)

(see Braekers and Veraverbeke (2001)).  They involve smoothing weights { }ni nw (x;h )

of Gasser-Müller type, involving a probability density kernel K and a bandwidth
sequence 0 < hn → 0.

3. Uniform Consistency and Weak Convergence

Under regularity conditions on the design points and on the kernel K and under
smoothness conditions on the underlying quantities (existence of second order partial
derivatives), we have the following results.

Theorem 1  Assume 
x

HT < T  and 1-Hx(t) > δ > 0.

If hn → 0, 5

nnh /log n = O(1) , then as n → ∞ ,
-1/2 1/2

xh x n
0 t T
sup F (t) - F (t) = O((nh ) (log n) )     a.s.
≤ ≤

Theorem 2 Assume 
x

HT < T .

(a) If 5

nnh 0 → and log3n/(nhn) → 0, then as n → ∞ ,

[ ]1/2
n xh x x(nh ) (F ( ) - F ( )) W ( )     in     D 0,T⋅ ⋅ → ⋅
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(b) If hn = Cn-1/5 for some C > 0, then as n → ∞ ,

[ ]1/2
n xh x x(nh ) (F ( ) - F ( )) W ( )   in   D 0,T⋅ ⋅ → ⋅#

where xW ( ) ⋅ and xW ( )⋅# are Gaussian processes.

4. Testing for the Model

A formal test for this model is based on the following characterization: (1) holds
for some βx > 0 if and only if 1 0,1

x xxH (t) = ã  H (t)  (t  0)≥ , where
1
x x xH (t) = P(Z t, = 1)  δ≤  and 0,1

x x xH (t) = P(Z t,  -1)δ≤ ≠ .  Following an idea of Csörg�
(1998) we prove weak convergence of a normalized version of the empirical process

{ }1 0,1
xh xh xhH (t) ã H (t); t 0− ≥  where 1

xhH (t)  and 0,1
xhH (t)  are empirical distribution

functions of the kernel type:

ii

n
1
xh ni n x x

i=1

H (t)= w (x;h )I(Z t, ä = 1)≤∑ and 
ii

n
0,1
xh ni n x x

i=1

H (t)= w (x;h ) I(Z t, ä 1)≤ ≠ −∑ .

The limiting process is (under certain conditions on the bandwidth) equal to
0,1
x x0 x1B(H (t)/(p  + p ))  where { }B(t);0 t 1≤ ≤  is a Brownian bridge.  This result opens

the way to obtain limit distributions for goodness-of-fit statistics which are functionals
of this empirical process.
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Robust regression is often carried out using generalised M-estimators. If these
estimators are based on Huber type functions then a tuning constant has to be chosen
before the estimator is fully defined. The choice of the tuning constant is critical since
it determines the degree of efficiency and of robustness of the estimator.

Choosing the constant is almost a subjective decision. Different criteria of
choice and several specific values have been proposed in the literature. One common
approach is to fix a priori the cutting value without taking into account the probability
distribution of the population. This has the advantage of simplifying the process of
estimation but it can introduce variability on the efficiency of the estimator, since
efficiency depends on the true underlying distribution and on the form of the
estimator, as pointed out by Kelly (1992). The need of objective criteria for the choice
of the constant has motivated suggestions directed to specific models.

For the estimation of the parameters of a structural linear relation using
instrumental variables, Branco and Souto de Miranda (2000) suggest a method based
on the empirical influence function of the classical least squares estimator of the
relation parameters. This method can also be applied to robust estimation in linear
regression models, since the regression model can be seen as a particular case of a
structural relation model.

Kelly (1992) considers the simple linear regression model and suggests cutting
values that result from setting up a high asymptotic efficiency. Staude and Seather
(1990) consider the linear regression with p  regressors and take 1/ 2(( 1) / )c k p n= + ,

observing that 1k =  seems to be a better compromise between efficiency and
robustness. Wilcox (1997) chooses 2k =  to define the tuning constant, but he also
recommends another bounded influence estimator, presented in Coakley and
Heltmansperger (1993), which is based on a Huber function with 1.345c = .

The cutting values suggested for these bounded influence estimators and the
cutting values obtained using the influence function criterion are compared and the
corresponding estimators are studied.
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Let X1,…,Xn be a random sample from a two parameter exponential population.
From the indpendence between X1:n and Xn:n- X1:n, and from

    
f Xk :n − Xk −1:n

(x) =
n+1 − k

δ
 exp −

n+1− k
δ

 x
  

 
  

  

 
   I 0,∞( )

it is easily derived that the probability density function of the externally studentized
expression

    
Tn−1 =

X1:n − λ
X n:n − X 1:n

is

fTn−1
(t) = nexp(−ns) (n−1)exp − s

t

 

 
  

 

 
  1− exp − s

t

 

 
  

 

 
  

 

 
 
 

 

 
 
 

n−2

1
t

  
 
 

  

  
 
 

  
ds.

0

∞

∫

After some elementary algebra,

  
fTn−1

(t) = −n B(n,nt) + nt
∂B(n,nt)

∂(nt)

  

 
 
 

  

 
 
 

and using the fact that

  

∂B(n,nt)

∂(nt)
= B(n,nt) ψ (nt)−ψ (n + nt)[ ]

and the recurrence expression for the digamma function, we finally get

( )1

1

0,
1

( ) ( , )  .
( )n

n

T
k

nt
f t nB n nt I

n k nt−

−

∞
=

=
− +∑

With this expression it is easy to compute explicit expressions for 
1nTf −
, and

quantile tables for effective use.
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1. History

The Multilevel models project (http://multilevel.ioe.ac.uk/) at the Institute of
Education, London has produced a series of  PC DOS based software packages (ML2,
ML3, MLn) for fitting multilevel models for over 15 years. The original packages
were based on a maximum likelihood based estimation engine using the iterative
generalised least squares (IGLS) algorithm (Goldstein 1986) for Gaussian outcomes
and quasi-likelihood methods (MQL and PQL) for dichotomous outcomes.

In 1998 the software package MLwiN (Rasbash et al. 2000A) was first released
and contained many advances over its forerunners. It contained a user-friendly
Windows interface allowing users to set up their models using an equation-based
interface and to use extensive graphical displays to view their data. It also offered the
user the option of using Monte Carlo Markov chain (MCMC) estimation methods as
an alternative to the maximum likelihood methods. Gibbs sampling methods were
used for Gaussian outcomes and hybrid Metropolis-Hastings Gibbs sampling
algorithms were used for dichotomous outcomes (see Browne 1998 for details).

In 2000 a second release of the package was released containing a large number
of improvements particularly in the data manipulations features of the package. This
release also allowed the user greater flexibility over their choice of MCMC estimation
methods, the ability to fit Poisson response models using MCMC and enhanced
documentation (Rasbash et al 2000B). MLwiN is now the leading multilevel
modelling package in Europe and the project team currently run introductory
workshops on the use of the package several times a year.

Later this year a new development version of MLwiN with far greater MCMC
capabilities will be released to the user community and this presentation will detail
some of the new functionality that will be included.

2. MCMC Development Version

Currently the MLwiN package has a user community of over 2,000 people
worldwide who are generally academics from the social and medical sciences. Many
users do not have a strong statistical background and tend to use the default maximu
likelihood based methods as these are conceptually simpler to understand and
converge to point estimates. We do also have a more advanced userbase who are
interested in fitting more complex models that cannot be easily fit using the IGLS
algorithm and learning about other estimation methods.

For this user group we will be releasing a development version of MLwiN that
has far greater MCMC estimation functionality and will also contain additional
documentation on Bayesian statistics and MCMC algorithms in general. This
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development version will contain an estimation engine that can fit all of the models
that can be fit in the current version of MLwiN along with many more complex
models.

The advances here will include MCMC estimation of the following models:

•  Multivariate response multilevel models with missing responses.
•  Complex multilevel data structures including cross-classified and multiple

membership models
•  Mixed response Normal and Binomial multilevel models
•  Multilevel factor analysis models
•  Models with measurement error in the predictor variables.

The development version will also include the ability to convert any MLwiN
model into WinBUGS (Spiegelhalter et al. 1998) code. This will allow the user to
compare for some models the MH methods used in MLwiN with the adaptive
rejection algorithms used in WinBUGS.
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1. Introduction

Logistic regression modelling of mixed binary and continuous covariates is
common in practice, but conventional estimation methods may not be appropriate for
small samples. It is well known that the usual maximum likelihood estimates (MLEs) of
the log odds ratio parameters are biased in finite samples, and there is a non-zero
probability that an MLE is infinite. In exponential family models with canonical
parameterization, Firth (1993) showed that modifying the score function to remove first
order bias is equivalent to penalizing the likelihood by the Jeffreys' prior and removes the
order n-1 bias of the MLEs. Rubin and Schenker (1987) and others have noted the
equivalence between a Bayesian estimator based on Jeffreys prior and the correction that
adds ½ to each cell in a 2 by 2 table (Haldane 1956). In small sample studies of
multinomial logistic regression with general covariate types, these penalized estimates
(PMLEs) were found to have smaller bias and MSE than the MLEs (Bull et al. 2001), but
little is known about corresponding interval estimates.

Asymptotically, the MLEs are normally distributed around the true parameter with
variance given by the inverse of the Fisher information matrix, but in finite samples, the
quadratic approximation to the log likelihood may not apply. Wald test statistics and
confidence intervals (CIs) based on large sample standard errors can have poor properties
when the parameter is far from zero (Hauck and Donner 1977, Agresti 1999); CIs based
on the profile likelihood may be preferred in small samples (Alho 1992). The first order
asymptotic covariance matrix of the PMLEs is the same as that of the MLEs (Firth 1993),
but construction of symmetric Wald-type CIs based on the PMLEs may be ill-advised
because the small samples in which PMLEs are most useful will also be those in which the
log-likelihood is not quadratic. We evaluated alternative methods of CI construction in
small sample simulations and in a sparse data application.

2. Methods

Maximization of the unconditional and penalized likelihoods to obtain the overall
supremum and the profile likelihood was implemented with the Qnewton function in the
GAUSS software (Aptech 1990), which uses the BFGS descent algorithm. Finiteness of
the MLEs was determined with algorithms developed in previous studies (Bull et al 2001).
Symmetric Wald-type CIs were constructed with standard errors from the Fisher
information evaluated at the MLEs/ PMLEs. Profile CIs for each regression parameter
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were calculated by inversion of the likelihood ratio test based on the respective
likelihoods, using a simple secant method to obtain the interval endpoints.

Simulations of small datasets were conducted using GAUSS, including correlated
binary and continuous covariates in regressions with binary outcomes. The performance of
the CIs was compared with respect to coverage probability and mean interval length.

3. Application to a Disease Prevention Trial

One of the disease outcome of interest, occurrence of hepatitis C, was rare,
producing empty cells in some subgroups (Blajchman et al, 1995). As a result, in the
model with an interaction between Treatment and Time Period, the usual unconditional
logistic regression MLEs are infinite for two of the parameters. The Wald CIs, which are
undefined, were set to be the entire real line (Agresti 1999). The PMLEs, however, could
be obtained for all parameters. The profile likelihood CIs for the infinite MLEs have one
finite and one infinite limit, but in contrast, those for the PMLEs have two finite limits.

Treatment Time Period Treatment by Time

MLE – 4 –1.57 + 4
Wald CI ( – 4, + 4 ) ( –2.81, –0.32) ( – 4, + 4 )

Profile CI ( – 4, –0.78) ( –2.85, –0.28) ( –0.15, + 4 )

PMLE –2.43 –1.57 1.96

Wald CI ( –5.33, 0.47) ( –2.75, –0.38) ( –1.24, 5.16)

Profile CI ( –7.30, –0.24) ( –2.79, –0.34) ( –0.70, 6.95)

Table 1. Unconditional and penalized maximum likelihood estimates with 95%
CIs.
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We estimate in the minimax framework the common probability density f  of

i.i.d. random variables 1, , nX X!  which are not directly observed. Instead, we have at

our disposal random variables 1, , nY Y!  from the convolution model

,  1, ,i i iY X e i n= + = !

where the noise variables ie  are i.i.d. and independent of the iX .

The deconvolution model was thoroughly studied in the litterature, for densities
f  in various smoothness classes and noise densities either ordinary smooth or

supersmooth. We consider here the case where both the unknown density f  and the

errors' density ef  are supersmooth. They are described by their Fourier transforms F

and eF  respectively, as follows. We suppose that for some 0 2a< ≤  and 0r > , f

belongs to the analytic class of densities ( ),a rA L  such that

( ) ( )2
exp 2 .

r
F u a u du L≤∫

This condition describes an ellipsoid in the class of infinitely differentiable
functions. Direct estimation of such functions and very detailed description of these
objects is given by Lepski and Levit 1998.

As for the noise density, its Fourier transform has an exponential decay:

( ) ( ) ( )min maxexp exp ,
s s

eb b u F u b b u− ≤ ≤ −

for some strictly positive real numbers min max, ,b b b  and 0 2s< ≤ .
In minimax theory we introduce a maximal risk measuring the quality of

approximation of an arbitrary estimator for the worst function to estimate in our class.
For fixed regularity parameters a  and r , the minimax rate of convergence is the
convenient normalizing sequence for the following criteria. First, we search for an
estimation procedure whose normalized risk stays finite asymptotically and second,
the normalized risk must stay strictly positive asymptotically for any possible
estimation method.

Thus, for fixed , , ,a r b s  we introduce the maximal risk

( )
[ ]

,

sup , ,
a r

f n
f A L

R f f
∈
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and call it pointwise if the risk is the mean squared error (MSE) at some fixed real x ,
respectively, 2L  risk associated to the mean integrated squared error (MISE). In this

context, we describe kernel estimators nf  of f  attaining minimax rates in both cases.

The attained rates depend on whether r s< , case in which the bias effect is
stronger than the variance of the estimator, or r s> , where the variance is dominating.
In the case r s=  we obtain almost polynomial convergence rates and exactly
polynomial if 1r s= = . Our rates improve in this context the 2L  rates of wavelet
estimators in Pensky and Vidakovic 2000.

Moreover, in the case of noises having stable density we obtain efficient
bounds, which means evaluating the normalized maximal risks up to constants.

In a discrete version of the deconvolution model, Tsybakov 2000 obtained
adaptive rates of the 2L  risk and analytic classes of parameters. These rates are
surprisingly slower with a logarithmic factor than the minimax rates and this
phenomenon occurred previously only for the pointwise risk. We expect in our model
the same effect and adaptive, rates slower than the minimax by a logarithm. of n in the
case where r s≥ .

In the other case, if r s<  the estimators can be free of the smoothness
parameter of the unknown density f  and thus they are adaptive to the order of
smoothness for the same minimax rates of convergence.
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1. Introduction

In many practical situations, such as communication systems, there may be a
nonzero probability (false alarm probability) that any observation consists of noise alone;
this may be caused by an intermittent failure in the observation mechanisms. These
situations can be described by linear systems whose observation equation includes not
only an additive noise, but also a multiplicative noise component, modelled by a sequence
of Bernoulli random variables; such systems are called Systems with Uncertain
Observations.

The linear state estimation problem in systems with uncertain observations, under
the hypotheses of mutual independence of the noises and the initial state and independence
of the Bernoulli random variables, was treated by Nahi (1969). Later on, García-Ligero et
al. (1997) and Caballero et al. (2000) obtained the quadratic and polynomial filters,
respectively. In all these works it is assumed that, at any time, the false alarm probability
or, equivalently, the probability that the signal exists in the observations, is known.

In this paper we consider a linear discrete-time system with uncertain observations,
whose observation equation is given by

,    0k k k k kz u C x v k= + ≥

where kx  is the state vector at time ,k  kC  is the observation matrix and { };   0kv k ≥  is a

gaussian white noise. The uncertainties are governed by the sequence { };   0ku k ≥  of

independent Bernoulli random variables, and we assume that [ ]1kP u p= =  for all 0,k ≥
being p an unknown parameter. Also, we assume that the initial state and the noises of the
system are mutually independent.

Our aim is to obtain estimators for the probability p , based on the successive

observations, 0 1, ,..., ,kz z z  of the system, that can be obtained recursively.

The proposed estimators of the unknown parameter p  can be used for adapting the
linear, quadratic and polynomial filtering algorithms established in Nahi (1969), Garcia-
Ligero et al. (1997) and Caballero et al. (2000), respectively.
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2. False Alarm Probability Estimation

We set the problem of obtaining { }/ ,k
kp E p Z=  the Bayes estimator of the

probability p  given the observations { }0 ,...,k
kZ z z= , assuming a quadratic loss function.

Denoting by 1( / )f p Z −  the prior density for ,p  the posterior density, ( / ),kf p Z  can be

obtained from Bayes’ theorem, and it becomes

1 1

1 1

( / , ) ( / )
( / ) ,

( / , ) ( / )

k k
k k

k k
k

f z p Z f p Z
f p Z

f z p Z f p Z dp

− −

− −
=

∫
  0k ≥

where 1 1 1( / , ) ( / 1, ) (1 ) ( / 0, ).k k k
k k k k kf z p Z pf z u Z p f z u Z− − −= = + − =

Accordingly, the computation of the posterior densities requires obtaining the
densities 1( / , ),k

k kf z u i Z −=  0,1.i =  By the independence hypotheses of the system, the

density 1( / 0, )k
k kf z u Z −=  agrees with that of the observation noise vector kv . However,

as a result of the uncertainty in the observations, the determination of 1( / 1, )k
k kf z u Z −=

is not simple, since its computation grows in complexity as k  increases. To avoid this
difficulty, it seems natural to consider approximations for these densities. So,
approximations for the posterior densities and, consequently, for the Bayes estimators of
the parameter p are obtained.

We propose to approach this problem by approximating mixtures of gaussian
distributions by gaussian distributions with their corresponding parameters.

However, even though this procedure provides a recursive method for obtaining
approximations of the required densities, 1( / 1, )k

k kf z u Z −= , the computation of the

posterior densities may not be simple since, for each k , the densities 1( / , )k
kf z p Z −  have

a mixture form; obviously, the difficulty will depend on the prior distribution selected.
We have treated this problem by assuming that the prior density 1( / )f p Z − is a

Beta density. The reason for that supposition is that p is the parameter of a Bernoulli
distribution and the family of Beta distributions is a conjugate family for the sampling
from a Bernoulli distribution. Then, it is easily seen that the posterior densities build up as
weighted averages of Beta densities. To avoid the computational complexity that this fact
involves, we propose to approximate, in each stage, the mixture of Beta densities by a
suitable Beta density.  The main advantage of this approximation is that the proposed
estimators of the probability p  can be easily obtained by a recursive relation.
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1. Introduction

The estimation problem in linear systems in which some observations may not
contain the signal has been considered as an important research field, because of its
applications in many practical situations, such as communication systems, in which there
can exist an intermittent failure in the observation mechanisms. So, there may be a
nonzero probability (false alarm probability) that any observation consists of noise alone.

In these systems, called Systems with Uncertain Observations, the observation
equation includes not only an additive noise, but also a multiplicative noise component,
modelled by a Bernoulli random variables sequence. Because of this multiplicative noise,
even if the additive noises are gaussian, the conditional expectation of the state given the
observations, which provides the least mean-squared error (LMSE) estimator, is not a
linear function of the observations and its computation requires an exponentially growing
memory. Consequently, for this class of systems, attention has been directed to suboptimal
estimators which are easier to achieve.

Nahi (1969) treated the LMSE linear filtering problem in systems with uncertain
observations, when the multiplicative process is an independent Bernoulli random
variables sequence, under the hypothesis of mutual independence of the noises and the
initial state. Later on, García-Ligero et al. (1997) considered the LMSE quadratic filter and
Caballero et al. (2000a) generalised this study considering the polynomial filter of an
arbitrary order ν  ( 1)ν ≥ .

In systems with uncertain observations in which the additive noises of the state and
observation equations are correlated at consecutive instants of time, the LMSE linear
filtering problem was treated by Hermoso and Linares (1994). Recently, on the
assumption that the additive noises are correlated at the same instant of time, Caballero et
al. (2000b) have studied the LMSE ν th-order polynomial filtering problem. Our aim in
this paper is to examine the asymptotic behaviour of this ν th-order polynomial filter for
the case of stationary systems, more exactly, we propose to determine if this polynomial
filter admits a steady-state form.

2. Steady-State Behaviour of the Polynomial Filter

In order to study the ν th-order polynomial filtering problem in systems with
uncertain observation and correlated disturbances, Caballero et al. (2000b) defined a new
system (augmented system), whose state and observation vectors were obtained as the
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aggregate of the original vectors and their Kronecker powers up to the ν th-order. In this
way, the LMSE linear filter of the augmented state based on the augmented observations
provides the LMSE ν th-order polynomial filter for the original state.

The application of this polynomial filter to stationary systems motivates the study of
conditions under which it admits a steady-state form. This form would be very
advantageous from a computational point of view, since some of the calculations, such as
the computation of the gain matrices and the error covariance matrices, would not have to
be performed at each iteration of the algorithm. Thus, for practical applications it is
important to see if the linear filtering algorithm for the augmented system admits a steady-
state form. This would allow us to calculate the steady-state linear filter for the augmented
state which provides the steady-state polynomial filter for the state of the original system.

The existence of a steady-state linear filter for the augmented system is not an
immediate issue because, even though the original system is stationary, the augmented
system may not be. Hence, our aim in this paper is, on the one hand, to establish
conditions which guarantee that the augmented system is asymptotically stationary and, on
the other, to determine under these conditions the steady-state form of the linear filtering
algorithm proposed by Caballero et al. (2000b).

With regard to the first aim, we show that the augmented system is asymptotically
stationary provided that the original stationary system is asymptotically stable or,
equivalently, its transition matrix is strictly stable.

In order to obtain the steady-state linear filter in the asymptotically stationary
augmented system, we define a new system, whose state equation coincides with that of
the augmented system, but its observation matrix is deterministic (there is no uncertainty
in the observations). This system satisfies the conditions to apply the Kalman filter for
systems with correlated noises; moreover, this filter coincides with the linear filter for the
state of the augmented system, provided that the observations are identical. On the other
hand, it is easy to prove that, if the transition matrix of the original system is strictly stable,
this new system is also asymptotically stationary. Then, we can apply the steady-state
Kalman filtering algorithm which provides the steady-state algorithm for the linear
filtering problem of the augmented state.

Finally, as we have indicated above, the steady-state polynomial filter for the state
of the original system is obtained from the steady-state linear filter for the augmented
state.
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We shall consider here a class of consistent semi-parametric estimators of a
positive tail index γ, parametrized in a tuning parameter α, which enables us to have
access, for any available sample, to an Asymptotically Unbiased estimator of γ, with a
reasonably flat Mean Squared Error pattern, as a function of k, the number of top
order statistics considered, and a high  efficiency relatively to the classical Hill
estimator (Hill, 1975), provided we may have access to a larger number of top order
statistics than the number needed for optimal estimation through the Hill estimator.
Such a class is given by

1
2(2 )

( )
( 1)

( ) ( )
( ) :   ,  1

( ) (2 1)
n

n
n

M k
k

M k

α
α

α
αγ α

α−

 Γ= ≥ Γ + 
,

where ( )( )
1: :

1

1
( ) : ln ln  ,  0

k

n n i n n k n
i

M k X X
k

αα α− + −
=

= − >∑ , are consistent estimators of

( 1) αα γΓ + , whenever k is an intermediate sequence, i.e., nk k= → ∞ , and ( )k o n= ,

as n → ∞ . (1) ( )nM k is the above mentioned Hill estimator for γ. Under these

restrictions on k, the statistics ( ) ( )n kαγ  are consistent for γ, and under some extra mild

conditions on the second order behaviour of F they are asymptotically normal, with an

asymptotically bias eventually non-null, and given by lim ( / ),   1
n

b k A n kα α
→∞

> , where

A(t) measures the rate of convergence of ln ( ) ln ( )U tx U t−  towards ln xγ ,

( ) (1 1/ )U t F t←= − , F ←  denoting the generalized inverse function of F. The bias term

bα is given by:

{ }2 11
(1 ) 2(1 ) 1  

2
b α α

α ρ ρ
ρ

− −= − − − + ,

and consequently, for every 0ρ <  there is always a value 0α  such that 
0

0bα = . In

table 1 we present the values 0( )α ρ  for a few values of the second order parameter ρ.

For the value 1ρ = −  and for a sample of size n = 5000 from a Burr model,
/ 1/( ) 1 (1 )F x x ρ γ ρ−= − + ,  x ≥ 0, γ > 0, ρ < 0, with 1γ ρ= − = , we illustrate, in figure 1,
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the smoothness of the sample path of 0( ) ( )n kαγ , α0 = 1.9, relatively to the sample path of
(1) ( )n kγ  and of (5) ( )n kγ .

ρ -0.10 -0.25 -0.50 -0.75 -1.00 -1.25 -1.50 -2.00 -2.50 -3.00 -
�

α0(ρ) 4.654 3.106 2.374 2.071 1.900 1.789 1.710 1.605 1.536 1.488 1

Table 1: αααα0(ρρρρ) as a function of the second order parameter ρρρρ.
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Figure 1. Sample paths of (1) ( )n kγ , (1,9) ( )n kγ  and of (5) ( )n kγ .

The simulation results obtained on the basis of a multi-sample procedure of size
1000 10×  enable us to make the following comments:

1. As expected, there is a great reduction in the MSE of the estimator, 0( )
0 ( )n kαγ

and consequently, provided we get to know ρ, we may easily work with an
estimator highly efficient relatively to the Hill estimator.

2. Also the stability of the sample path of ( ) ( )n kαγ  for value α0 may provide a
selection of the optimal value (defined in an adequate way, like has been
done, for instance, by Gomes and Martins (2001)), which will on its turn
provide an estimator of ρ.

3. Even in the region 1ρ < − , where it is difficult to find competitors to the Hill

estimator, we are able to obtain, with 0( ) ( )n kαγ , a better performance of this
estimator relatively to the Hill estimator,  provided we go deeper in the
sample.
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Cohort study designs are often used to assess the association between
community based ambient air pollution concentrations and health outcomes, such as
mortality, development and prevalence of disease, and pulmonary function. Typically,
a large number of subjects are enrolled in the study in each of a small number of
communities.  Fixed site monitors are used to determine long-term exposure to
ambient pollution.  The association between community average pollution levels and
health is determined after controlling for risk factors of the health outcome measured
at the individual level (i.e., smoking). Health responses, however, often cluster by
community, indicating that responses of subjects within the same community are more
similar than responses of subjects in different communities.  This implies that
community itself poses some risk to health.  Community-level variables, such as
measures of socioeconomic status of the community, can be used to model this
unexplained risk in addition to individual-level risk factors.  Failure to account for all
the variation between community health outcomes even after controlling for individual
and community level risk factors can lead to downward biased estimates of the
uncertainty in the community-level risk factors, including air pollution (Ware and
Stram, 1988).  Additional bias in the uncertainty of the risk estimates can occur if the
community average health outcomes display spatial auto-correlation.  That is, health
responses for communities close together are more similar than responses for
communities farther apart.  Auto-correlation in the residuals of these models could be
due to missing or systematically mis-measured risk factors that are spatially auto-
correlated.  Failure to account for spatial auto-correlation can yield downward biased
estimates of uncertainty in the community-level risk factors and may suggest un-
complete control for potentially confounding community-level factors with the
variables of primary interest, such as air pollution (Miron, 1984).  We present a new
spatial regression model linking spatial variation in ambient air pollution to health.
Health outcomes can be measured as continuous variables (pulmonary function),
binary (prevalence of disease), or time to event data (survival or development of
disease).  The model incorporates risk factors measured at the individual level, such as
smoking, and at the community level, such as air pollution.  We demonstrate that the
spatial auto-correlation in community health outcomes, an indication of not fully
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characterizing potentially confounding risk factors to the air pollution-health
association, can be accounted for through the inclusion of location in the deterministic
component of the model assessing the effects of air pollution on health. We present a
statistical approach that can be implemented for very large cohort studies.  Our
methods are illustrated with an analysis of the American Cancer Society cohort to
determine whether the prevalence of heart disease is associated with concentrations of
sulfate particles.
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1. Introduction

Spatial point processes can be considered random geometric structures where
the typical measure  is based on the spatial locations of the individuals considered.
Different models for point structures have been developed, starting from the Poisson
process and ending up with Gibbs point processes. The latter class has been mostly
used to model interaction between locations with several degrees of spatial structure.
They are built having as reference the Poisson point process and usually the
homogeneity assumption has been considered. However, in recent years, models for
inhomogeneous point processes with interaction have been suggested by several
authors (Stoyan and Stoyan, 1998; Baddeley et al., 2000; Jensen and Nielsen,
2000a,b). This appears to be a very natural step towards a more realistic modelling,
where both first and second order properties of the point pattern are taken into
account. Inhomogeneous point patterns may arise in many applied experimental
sciences such as forestry, where both the spatial location and possible interactions
between the trees might be subject to soil fertility, defined through a spatial random
field.

The aim of this paper is to show fruitful comparisons between both point
process structures with an emphasis on the misfitting issue. Questions like what is the
error shown when an original inhomogeneous point process is being fitted by an
homogeneous structure will be discussed. The results will be used to analyze real data
sets coming from several applied fields.

2. Theoretical Set-Up

A point process is said to be a Poisson point process with intensity function λ
if a) The number of points in any region B follows a Poisson distribution with mean

( )
B

x dxλ∫ ; and b) Given n points, their positions can be considered as an independent

sample from the distribution with density ( ) / ( )
B

x x dxλ λ∫ . If λ  is constant the

Poisson point process is said to be homogeneous, otherwise the process is
inhomogeneous. A homogeneous Poisson process is often used as a reference model.

Markov or Gibbs point processes are useful to describe inhibition (van
Lieshout, 2000 and references therein). These processes are defined upon a reflexive
and symmetric relationship which in turn defines the neighbourhood condition
between points in the pattern. Let X be a point process with density f with respect to
the homogeneous Poisson point process with intensity 1. If X is Markov, its
conditional intensity ( ) / ( )f x u f x∪  depends only on those points in x which are
neighbours of u. These processes are also characterized by the Hammersley-Clifford
theorem and the density is of the form
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(1) ( )( ) exp i j
i j

f x C x xφ
<

 
= − − 

 
∑∑ ,

where C is a normalising constant and φ  is a pair potential function modelling the
interaction between points.

Following Jensen and Nielsen (2000) there are three basic ways of introducing
inhomogeneity into a Markov model: a) Inhomogeneity induced by a non-constant
first-order interaction (Stoyan and Stoyan, 1998); b) By thinning of a homogeneous
Markov point process (Baddeley et al., 2000); c) By transformation of a homogeneous
Markov point process (Jensen and Nielsen, 2000). For any of the three ways, the
inhomogeneity may be described by a function λ  defined on the same set as the
points. In addition to the point pattern, explanatory variables may be observed at each
point, for the purpose of explaining the inhomogeneity. The interaction specified in
the models may or may not be location dependent.

For example, inhomogeneous Gibbs processes where the point density follows a
deterministic trend are very useful (Baddeley et al., 2000; Jensen and Nielsen, 2000;
Stoyan and Stoyan, 1998). In this case, equation (1) becomes

(2) ( )( ) exp ( )i j i
i j i

f x K x x p xφ
<

 
= − − 

 
∑∑ ∏ .

Now p(.) is a non-negative function modelling the trend in the density of the
points. While the potential function models the short-range interaction, p determines
the long-range variability.

3. Misfitting Issues

The aim in this section is to present a simulation study to quantify misfitting
situations. We will focus on the three different types of introducing inhomogeneity in
point patterns and on several degrees of trend modelling, varying from smooth trends
to stronger ones. We will also use several point pattern models, such as the Strauss
process and other more general Gibbs processes.

Finally we will analyze real point patterns and show how the misfitting affects
the concluding results.
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Rapidly increasing population pressure in many rural areas of developing
countries has led to changes in land use owing to deforestation, reclamation of
wetlands, etc., or due to other catchment modifications like floodgates and roads. Such
changes are intended to increase agricultural production, the use of waterpower,
improve the quality of life and so forth. However, land mismanagement may have
inadvertent negative effects on a hydrological regime, such as increasing the
occurrence of floods and decreasing dry season flows. Therefore there is a need for
improved knowledge and quantitative analysis of the impact of changes in land use
and management practice on land and water resources.

The hydrological literature contains three basic approaches dealing with impact
of land use change on catchment runoff: the experimental catchment approach, the
land use modelling approach, and studies involving the use of hydrological models
(sometimes combined with basic statistical methods such as linear regression and
simple parametric and nonparametric tests). Lumped catchment models must be used
carefully as they may fail to predict the impact of land-use change on catchment
runoff due to limitations in the model conceptualization of the hydrological processes
involved (Kuczera et al.,1993). Therefore, rigorous model validation procedures are
required before the model capabilities can be assessed (Ewen and Parkin, 1996).

Our proposition below can be viewed as the extension of the model estimate
and dynamic response variable comparison methods (before and after changes)
proposed in Jakeman et al. (1993). In previous work we have developed a simple
Markov generalized linear model of the mean and variance structures of runoff at time
t, given previous rainfall and runoff (Capkun et al., 2000). Its mean is taken to be a
linear autoregressive combination of present and previous rainfall and previous runoff,
while its variance also depends on rainfall history. Inference for its parameters may be
performed using classical likelihood methods, and also using the more robust
technique of quasilikelihood, presupposing no particular distribution for runoff.
Robust “sandwich” confidence intervals for the model parameters are constructed
using both likelihood and quasilikelihood approaches. The model generally seems to
fit rather well.

In this talk I shall discuss a smoothing method for correlated data that allows us
to evaluate the impact of floodgate construction on runoff. Our data example uses
daily observed rainfall and runoff on the Viege catchment in Switzerland, 1922–1985.
The Mattmark floodgate was constructed in the 1960’s and our goal is to evaluate the
effect of this on the model parameters. When fitted using a local polynomial model
and quasilikelihood (Fan and Gijbels, 1996), we obtain a correlated series of estimates
such as that shown in Figure 1. The vertical lines show the approximate beginning and
end of the floodgate construction and dashed lines are “sandwich” based confidence
intervals for two of the model parameters. Parameter beta_0 explains the direct impact
of the rainfall on simultaneous runoff, while gamma_1 is the autoregressive parameter
of lag one.
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This approach seems not to have been applied per se in the statistical literature,
which apart from applications of smoothing methods to financial times series has
largely concentrated on the situation where the data are independent though not
identically distributed. Not many smoothing methods have been used in hydrology,
and if so, almost entirely in the density estimation context. However they seem
potentially very useful.

Figure 1. Local parameter estimates for fit of our autoregressive model to data
from Viege. Vertical lines show the approximate beginning and end of the
floodgate construction; dashed lines are “sandwich” confidence intervals.

References

Capkun, G., Davison, A. C. and Musy, A. (2001). A robust rainfall-runoff transfer model,
Submitted to Water Resources Research.

Ewen, J. and Parkin, G. (1996).Validation of catchment models for predicting land-use and
climate change impacts. 1. Method, Journal of Hydrology, 175, 583-594.

Fan, J. and Gijbels, I. (1996). Local Polynomial Modelling and Its Applications. Chapman and
Hall. London.

Jakeman, A. J., Littlewood, I. G. and Whitehead, P. G. (1993). An assessment of the dynamic
response characteristics of streamflow in the Balquhidder catchments, Journal of
Hydrology, 145, 337-355.

Kuczera, G., Raper, G. P., Brah, N. S. and Jayasuriya, M. D. (1993). Modelling yield changes
after strip thinning in a mountain ash catchment: an exercise in catchment model
validation, Journal of Hydrology, 150, 433-457.



ME II

IM E S TR E  DE  2001

Asymptotic Properties of a Simple TCP Model

Niclas Carlsson
Åbo Akademi University, Department of Mathematics

Fänriksgatan 3 B, FIN-20500 Åbo, Finland
nkarlsso@abo.fi

1. Introduction of the Model

Consider a data transmission channel using the transmission control protocol
(TCP), in combination with a congestion control algorithm. Congestion control limits
the traffic on a loaded channel by controlling the number of data packets sent at a time
before waiting for an acknowledgement, that is, it controls the maximum size of bursts
of packets. If one burst is sent without errors, the maximum size of the next one is
increased by an additive constant. If, on the other hand, an error is detected, then the
maximum size of the next burst is decreased by a constant multiplicative factor.

Our model mimics this behaviour under some simple assumptions. We assume
that there is always data to be sent so that we always send the maximum amount of
packets allowed. We also assume that the probability of error for each packet is
independent of all other packets and equal to a constant p. The round trip time (RTT),
the time taken for a signal to travel to the destination and back, is assumed to be
constant and for simplicity we choose it to be equal to one. We also assume that we
always can detect if an error has occurred before the next burst of packets is to be sent.

Consequently we study the family of Markov chains { }
0n n

X
∞

=  which have the

transition probabilities:

(1) 1

1

( ) (1 )

( ) 1 (1 )

n

n

X
n n

X
n n

P X X b p

P X aX p
+

+

 = + = −
 = = − −

where 0 < a < 1 and b > 0 are arbitrary but fixed. In real-world applications we usually
have 1

2a = .
Similar models have been studied in the past, for instance in Mathis et al. and

Padhye et al., but our approach is different from these in that we are not making
further mathematical assumptions, for instance, by assuming that the time between
drops is independent of X. Also, we study not only the asymptotic mean of the
process, but the stationary distribution and its convergence as well as the convergence
of the process itself.

2. Summary of Results

A known feature of congestion control models is that the throughput is

asymptotic to c p  for some c as 0p → . We show that our process (1), when scaled

by a factor p  in both time and space, converges to an easily characterized process as

0p → .

More exactly, we prove the following results: Consider the process (1). Let

,  ( )p n nY pX p= . Then the following holds:
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1 For any p > 0, the process , p nY  has a unique invariant measure pµ .

2. Let , p tY  be the continuous time process received by replacing discrete time

steps by exponential times with mean 1 p . Then the set of invariant

measures for , p tY  and ,  p nY  coincide.

3. The process , 
w

p t tY Y →  in [ [0,D ∞  as 0p → , where tY  is a Poisson-

intensity type jump process with linear drift.
4. The process tY  has a unique invariant measure 0µ . This measure has a

density, which can be represented as an alternating sum of the form
2( ) exp( )k kf x a b x= −∑ .

5. 0
w

pµ µ →  as 0p → , where 0µ  is the invariant measure of tY .

Thus, for p small, the unique stationary distribution of (1) can be approximated
by a simple linear transformation of 0µ . The density of 0µ  is depicted in figure 1, for

a particular choice of parameters.

Figure 1. The invariant density f(x) for a=1/2, b=1.
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We consider the general set-up of a model of probability measures on a space
Χ, parameterised by a space Θ. We want to estimate the parameter θ using a
likelihood-method called fair estimation. This means that we consider an estimator T
such that the distribution of T on Θ given the underlying parameter θ has a likelihood
in θ that is independent of θ. In other words, each parameter has the same likelihood
of being estimated correctly. An estimator with this property is called fair; we then
take that fair estimator that maximizes the likelihood of estimating correctly. Of
course, one has to make precise what is meant by the likelihood of T in θ, and this
entails a choice that reflects how accurate each parameter has to be estimated with
respect to the other parameters.

If we follow this procedure for classical multivariate models or normal linear
regression, we find the classical (unbiased) estimators back, which are significantly
better than the maximum likelihood estimator, especially when the number of
parameters is close to the number of data points. Furthermore, for some relatively
simple parametric models, we get more natural and more efficient estimators than the
maximum likelihood method. For general parametric models we can get the same
asymptotic behaviour as the (asymptotically efficient) maximum likelihood estimator.

In general it is hard to find the optimal fair estimator, but it does exists also in
non-parametric models. We were able to find this estimator for interval censoring case
1, but we can still only calculate it for small sample sizes. However, especially for
small sample sizes, fair estimation outperforms the maximum likelihood method in
almost every sense. In order to calculate the fair estimator in this non-parametric
model, we had to develop a completely new methodology with some very interesting
theoretical results. Present work also entails trying to use this methodology to prove
asymptotic efficiency (in a certain sense stronger than just the optimal rate) of the
maximum likelihood estimator (and hence also of the right fair estimator) in this case.
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The Generalized Pareto distribution (GPD) is a useful distribution for
describing flood exceedances, that is, the distribution of heights of flood waters over a
specific level called the threshold. In this paper we illustrate the above application.
The paper is based on Choulakian and Stephens (2001), where much greater detail is
given.  The GPD has the following distribution function:

1/( ) 1 (1 / ) kF x kx a= − −

where a  is a positive scale parameter, and k is a shape parameter.  The density
function is

(1 ) /( ) (1/ )(1 / ) ;k kf x a kx a −= −

the range of x  is 0 x≤ < ∞  for 0k ≤  and 0 /x a k≤ ≤  for 0k > .  For the special
values 0k =  and 1, the GPD  becomes the exponential and uniform distributions
respectively.   The distribution is sometimes called simply Pareto when  0k ≤ . Since
the GPD has three parameters, it can be a versatile distribution for use with long-tailed
data. This is demonstrated in Choulakian and Stephens (2001).

When the GPD is used in the modelling of extreme values in hydrology, as
described above, the distribution is often called the “peaks over thresholds” (POT)
model.  Davison and Smith (1990) discuss this application in their section 9, using
river flow exceedances for a particular river over a period of 35 years.  Davison and
Smith also suggest an interesting method of deciding the threshold: essentially the
threshold is raised until the exceedances fit the GPD. This relies on an attractive
feature of the GPD, similar to that for the exponential distribution: if a variable has a
GPD distribution, its conditional distribution given that the value exceeds a value, say
T, is also GPD.  This method of choosing the threshold is investigated in some detail.
For this purpose one needs tests of fit for the GPD, and these are given, based on the
Cramér-von Mises and Anderson-Darling statistics. Examples are given to illustrate
the estimation techniques and the goodness-of-fit procedures.
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1. Motivation

To investigate goodness of fit, we test whether a set of independent data has a
certain density ƒ0(.,θ), where the vector θ  may or may not be completely specified. Of
course, there is a number of tests available for this situation. We discuss density-based
omnibus goodness of fit tests based on estimated versions of likelihood ratio or score
tests, incorporating nonparametric density estimation in a natural fashion. We focus on
estimators constructed via log linear expansions, as they lead to a particular revealing
structure regarding both construction of tests and limit distributions.

2. Data-Driven Test Statistics

Consider the following log linear expansion, where ƒ0  is the density under the
null hypothesis,

ƒS(x | a ) = ƒ0(x)cS(a)-1exp{ 
j  S

( )j ja xψ
∈
∑ }

for x in the interval of interest, where the �j functions are orthogonal and normalized
with respect to ƒ0, and also orthogonal to the function �0=1. The set S is a subset of
the natural integers, like {1, … , m}, and cS(a) is a normalizing constant. Employing
this model, the likelihood ratio test statistic becomes

Zn
*= *, nn S

Z  = 2 
*

1 0

ˆ( | )
log

( )

Sn
n

i

i i

f X a

f X=
∑  = 2n{

*

ˆ
n

j j
j S

a ψ
∈
∑ - log *

nS
c ( â )},

where â is arrived at via maximum likelihood in the particular model indexed by the

selected set S *
n , and where 1

1
( )

n

j j ii
n Xψ ψ−

=
= ∑ . An alternative to the likelihood-ratio

inspired test statistic is the score test, which here takes the particularly simple form
*

nT  =
*

2

n

j
j S

nψ
∈
∑ .

3. Behavior of Tests Using the AIC or BIC Regime

Denote S *
n  the maximizer w.r.t S, of the Akaike information criterion (AIC):

AICn,S= ZnS – C |S |  where C is a constant bigger than 1.
Assume that at the outset all subsets S of {1, … , m0} are considered, where m0

is fixed. The test proceeds by rejecting the null hypothesis when Zn
*>z0, with this

positive constant appropriately adjusted. Another option is to reject the null hypothesis
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if *
nZ > 0, with the threshold parameter C adjusted to lead to a required significance

level. The two types of test given here have certain parallels to ideas worked with
earlier, but only in regression contexts, and with a nested sequence of models (Aerts,
Claeskens and Hart, 1999, 2000), rather than as here where all models inside a certain
range are allowed consideration.

If one wishes to allow subsets of {1, …, m0} with a growing m0, the traditional
solution is to work with the sequence of nested subsets, say {1, …, m}. We refer to
Claeskens and Hjort (2001) for the asymptotic distribution of *

nZ and *
nT under a

sequence of local alternatives.
The Bayesian information criterion in the present case takes the form

BICn,S= ZnS – (log n)|S | . We show that the BIC applied to nested models only, as is
commonly done, has disadvantages and that, surprisingly, in the context of all subsets,
there is a version of the BIC based tests, which is asymptotically equivalent with the
different-looking corresponding AIC version.

Finite sample simulations, where we compare a number of different tests, show
that none of the tests appears to be uniformly best.

4. Testing a Parametric Family

The null hypothesis to be tested is that the density belongs to a parametric
family ƒ0(.,θ), where θ  is p-dimensional, and traditional regularity conditions apply.

Let basis functions �j(x,θ) be orthogonal with respect to ƒ0(x,θ). For a bounded
set S, consider the extended parametric model

ƒS(x,θ |a ) = ƒ0(x,θ)cS(a,θ)-1exp{ 
j  S

( , )j ja xψ θ
∈
∑ },

where cS(a,θ) is a normalizing constant. There are several ways to perform tests in
parametric families. The apparatus developed is very general, and can be applied to
test the adequacy of any parametric family, subject to the usual regularity conditions,
also in higher dimensions. An important example is to test for multivariate normality,
see Claeskens and Hjort (2001) for more details.
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We address the problem of estimating the direction parameter and the regression
function in a Poisson single index model. The observed data ( ), ,K

i iX Y IR xIN∈  for

1,...,i n=  are independent, the conditional distribution of iY  given the vector of

explicative variables iX  is Poisson, and we  assume that we have a Single Index
Model :

( ) ( )
0 0 ,i iR x E Y X x g xβ β= = =  

where 0xβ  is the usual product of two vectors from kIR , and gβ  is defined by:

( ) .i ig z E Y X zβ β= =  

The Single Index Models have been extensively used in the literature in
actuarial sciences, in biometrics or in econometrics, but with a fixed link function in
the framework of General Linear Models (GLM, see McCullagh and Nelder, 1989).
Here we focus on the problem of estimating simultaneously the link and the
parameters β  in the case of a Poisson regression model. One of the most attractive

approaches for estimating this kind of models is based on M-estimation methods:

under the only above SIM condition a consistent estimator ˆ
nβ of 0β can be defined by

maximizing with respect to β  the empirical mean of some objective function :Ψ

( )( ),
1

1ˆ ˆarg max , ,
n

n

n i h i
i

Y g X
n ββ

β β
=

= Ψ∑

where ,ˆ
nhgβ  is a nonparametric estimator of the function gβ ,defined below, and nh  is

the serie of corresponding bandwidths, which tends to zero at some appropriate rate as
n → ∞ . The Nadaraya-Watson leave-one-out estimator of ( )ig Xβ β  will be used. It is

defined as:

( ) ( ) ( )
( ),ˆ ,n

n

n

j i j h i ji
h i

j i h i j

Y K X X
g X

K X X
β

β β
β

β β
≠−

≠

−
=

−
∑
∑

where ( ) ( )1 /
nh n nK x h K x h−=  and K  is a fixed kernel function (typically a symmetric

probability function).



2º  QU A D R IM E S TR E  D E  2001

R E V I S T A  D E
E S T A T Í S T I C A

On can find in Delecroix and Hristache (1999), asymptotic efficiency arguments
justifying the maximum  likelihood principle to choose here the function Ψ . Our
estimator of 0β  is  then the solution of:

( ) ( )( ) ( ) ( ){ }, ,
1

1ˆ ˆ ˆarg max log .
n n

n
i i

n i h i h i
i

Y g X g X
n β ββ

β β β− −

=
= −∑

Once 0β  has been consistently estimated, the regression function

( ) ( )R x E Y X x= =  can be estimated, in a second stage, from the nonparametric

regression of iY  on the estimated index ˆ ,n iXβ  using the Nadaraya-Watson estimator,

which has the same form as in (1.5), except that here, the ith observation is included in
the sum and that we  use another serie of bandwidth '

nh .To resolve the problem of

choosing practically the two series of bandwidth nh  and ' ,nh  Delecroix, Hristache,
Patilea (1999), following Härdle, Hall and Ichimura (1993), suggest to define:

( ) ( ) ( ),
,

1

1ˆ ˆ ˆ, arg max , .
n

i
n n i h i

h
i

h Y g X
n ββ

β β−

=

 = Ψ ∑
and

( ) ( )ˆ ˆ;
ˆˆ ˆ ,

n n
n nh

R x g xβ β=

They prove the n  asymptotic normality of β̂   and ( )ˆ .nR x

The aim of our study is twofold. First we investigate by Monte Carlo
experiments the finite sample properties  of that estimator. It shows that it is very
difficult to use in practice, for reasonable sample sizes, the above limit laws. Then we

suggest a bootstrap procedure to construct confidence intervals for β̂  , and show the

practical  efficiency of the method by simulation  arguments. We conclude by the
study of a real data set.
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The problem of estimating and forecasting systematic risk, or the so-called beta
parameter in the market model, is well-known and has been studied by several authors
(see e.g. Lam 1999, Lally 1998, Bowie and Bradfield 1998, Boabang 1996, Draper
and Paudyal 1995, Murray 1995 and Bartholdy and Riding 1994). Some time ago, a
paper by Fama and French (1992) sparked a debate about the relevance of beta.
According to Fama and French (1992) “beta as the sole variable explaining returns on
stocks is dead”.  Their findings have sparked renewed interest in the beta parameter
and its applications in modern portfolio theory.  Using a similar methodology, Davis
(1994), and He and Ng (1994) came to a similar conclusion to that of Fama and
French.  However, Kothari et al.(1995) and Clare et al.(1998) used alternative
methodologies and found that beta still has an important role to play. Earlier, this
viewpoint was strongly supported by Black (1993) who claimed that Fama and French
used “data mining” to reach their conclusions. In spite of these criticisms, many
practitioners today still use estimates of beta in their decision-making processes and
various services that provide beta estimates exist. Therefore research into finding more
efficient estimators for beta remains relevant. The classical estimator for beta is the
well-known ordinary least squares (OLS) estimator, but several authors have shown
that this estimator suffers from several deficiencies, e.g. it has a mean reversion
tendency, is inefficient when return distributions are non-normal, and has significant
bias problems when shares are thinly traded. Several alternatives for OLS have been
proposed in the literature. Amongst others, Vasicek (1973) and Blume (1973)
proposed estimators to improve the mean reversion tendency of beta, Chan and
Lakonishok (1992) proposed robust estimators to ensure more efficient estimation of
beta, and Scholes and Williams (1977) proposed estimators to deal with the bias
problem when shares are infrequently traded. A host of empirical studies have been
carried out in order to evaluate the performance of the estimators under various
conditions (see e.g. the recent studies by  Draper and Paudyal 1995, Murray 1995,
Boabang 1996, and Lally 1998). Of the above-mentioned estimators, the Vasicek-
estimator and the robust estimators seem to perform well over a wide range of
empirical studies.
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In this paper we will base the so-called Vasicek-estimator (see Vasicek 1973)
on the class of L-estimators and will evaluate its performance empirically, using data
from the Johannesburg Stock Exchange (JSE). By doing this we combine the
properties of the Vasicek-estimator with that of robust estimators and show that the
new estimators perform much better than OLS and better or as good as some of the
other popular estimators. In order to combine the Vasicek-estimator with the class of
L-estimators, good scale estimators are needed for the various L-estimators
considered. We define suitable scale estimators and show their consistency.



ME II

IM E S TR E  DE  2001

Incomplete Data: A Unifying Approah

Daniel Commenges
INSERM U330, Bordeaux, France

Daniel.Commenges@bordeaux.inserm.fr

The topic of incomplete data has focussed much attention in recent years.
Two main directions can be distinguished: missing data and censored data.
Although other types of incomplete data can be considered I will focus on the two
concepts mentioned. Censored data have been known for a long time especially in
survival data analysis. One of the first method dealing with such types of data is
the Kaplan-Meier estmator (Kaplan and Meier, 1958). The work of Rubin (1976)
has been a cornerstone in the classification and the study of missing data. This
topic has gained a particular importance with the development of analyses for
longitudinal studies. The two types of incomplete data seem to have something in
common but the theories developed for them are completely different. One
unifying attempt has been made by Heitjan (1994).

The aim of the present work is to unify the two concepts by a stochastic
process approach. In a general framework we have a process of interest, say X,
which is not completely observed. We define a continuous time response process
R(t) which takes the value 1 if the process is oberved at time t, 0 otherwise. This
framework covers for instance the case where X is a continuous process observed
at discrete times and the case where X is a counting process observed in continous
time during a certain period. In the former case there may be missing data (if
R(t)=0 where it was planned that R(t)=1); in the latter case we may have the
classical right censored data if the event was not observed during the observation
period.

The general framework, a process X observed when a continuous response
process is equal to one, certainly covers other interesting cases. The aim of the
work is to give conditions under which the process leading to incomplete data is
ignorable, thus generalizing results of Rubin (1976) and results known for
censored data to this broader context. The challenge is here to write the likelihood
of the observation of the processes. The correct definition of the likelihood which
is necessary here in the context of stochastic processes relies on the Radon-
Nikodyme derivative (Feigin, 1976).

The first step is to write the likelihood of the complete data (as if we
observed the two processes X and R), then to take the expectation, conditional on
what has been observed. Then conditions will be given for R(t) under which a
simple likelihood, ignoring the process leading to incomplete data, can be
obtained.
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1. Model Description

The aim of this work is to present a new family of Pearson’s Discrete
Distributions that may be obtained when the second polynomial coefficient in the
difference equation does not have real solutions but complex. Therefore, we consider
the following difference equation which the family of Pearson’s Discrete Distributions
verifies, that is

(1) ( ) ( )1 0r rG r f L r f r Z +
+ − = ∈

where :L Z R+ →  and { }: 0G Z R+ → −  are quadratic polynomials with real

coefficients such as

(2) ( ) ( )( ) ( ) ( )( )          1L r r r G r r rα α λ γ= + + = + +

with ,a ib C a ibα α= + ∈ = − the conjugate of α  and ,γ λ real numbers.
The solution of (1) is given by

(3)
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−

=

 + + 
= =

∏

which is always real-defined and it coincides with the terms of the Gaussian
Hypergeometric Function ( )2 1 , ; ;F α α γ λ  except a constant. So, imposing that rf  is a

probability mass function, 0f  may be obtained applying the Gauss Summation

Theorem for 1λ = .

The convergence of the function ( )2 1 , ; ;1F α α γ  does not depend on the complex

part of the roots of the polynomial L  because the convergence condition is

(4) ( ) 2 0a bi a bi aγ γℜ − − − + = − >

Moreover, the probability generating function, ( )g t , is given by this expression

(5) ( ) ( ) ( )
( )

( )
( )

2 1
0

0 2 1

, ; ;

! , ; ;1

r

r r

r r

t F t
g t f

r F

α α α α γ
γ α α γ

∞

=
= =∑

so it is said that this discrete distribution is spanned by the Gaussian
Hypergeometric Function with complex parameters.

2. Estimation

The following recurrence relation is verified by the moments about zero of the
obtained distribution



2º  QU A D R IM E S TR E  D E  2001

R E V I S T A  D E
E S T A T Í S T I C A

(6) { }1 1 2 1 3
0

h

h m m
m

h

m
ω µ ω µ ω µ+ +

=

 ′ ′ ′= + 
 

∑
where 1 21, 2aω γ ω= − =  and 2 2

3 a bω = + . As a consequence, the first three

moments 2,µ µ′  and 3µ′  satisfy the equation system indicated below

(7)
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( ) ( )

( ) ( ) ( )
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2 1 2 2 3 3

3 1 2 2 2 3 2 3 3
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2 2 1 2 0

µ ω ω ω

µ ω ω µ ω ω ω

µ ω ω µ ω ω µ ω ω ω

− − =
′ − − − − − =

′ ′− − − + − − − − =

from which we can solve the problem of estimation in two steps: first, solving the
linear system with 1 2,ω ω  and 3ω  as unknown values and replacing iµ′  by the sample

moments about zero im ; secondly, obtaining the explicit values of the parameters by

means of the relation with iω . But the drawback of this method is that the existence of
the third moment about zero is not guaranteed and it is also very sensitive to changes
in sample values. So, an alternative method is obtained from the quotient between
consecutive probabilities

(8)
( )
( )

( )( )
( )

( )
( )( )

2 2

12 2
1

1
, 0,1,

1
r

r r
r

G r r r a r bf
f f r

f L r r ra r b

γ
γ+

+

+ + + +
= = ⇒ = =

+ ++ +
!

whose disadvantage is that the whole sample information is not been used. In
consequence, we use mixed estimation methods that consider simultaneously the first
relations between moments and frequencies until obtaining the necessary number of
equations.

3. Applications

Finally, we conclude the description of this kind of distributions applying them
to model and describe some discrete situations in fields as Sports and Economics,
among others, and that may not be fitted adequately with the usual discrete
distributions.
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1. Introduction

Hypergeometric series and functions of matricial argument, defined as sums of
zonal polynomials, have been used in the expression of the distribution of quadratic
forms in multivariate normal samples. Nevertheless, the great majority of these series
of matricial argument do not have a explicit summation result, so many theoretic
results that depends on them can not be applied to real data.

In this paper, we describe a new expression of every hypergeometric series
expressed on terms of zonal polynomials, the latter calculated as a linear combination
of symmetric monomials, which are a more usual and single base of symmetric and
homogeneous polynomials. For this reason, it is necessary to calculate a great number
of zonal polynomials of a high degree on terms of these symmetric monomials. This
new expression permits the summation of hypergeometric series of matricial argument
(that involves zonal polynomials) with a finite number of addends, and the
approximate summation of series with a infinite number of addends, making possible
the application of theoretic results that involves this type of series. In the paper we
present, in fact, an application where is calculated the probability distribution of the
smallest root of a Wishart .

2. Results

The family of hypergeometric functions of matricial argument is given by

(1) ( ) ( ) ( )
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where for each k it’s necessary to sum over all partitions κ of k and (a)κ is the
generalized hypergeometric coefficient.

In this series, the zonal polynomial associated with the partition κ, ( )YCκ , is a

symmetric and homogeneous polynomial of degree k in the eigenvalues, myy ,...,1 , of

the argument matrix and such that (a) the term of high weight is mk
m

k yy ∙...1
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and (c) the sum of all the zonal polynomials of degree k is ( )ktrY .
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Given that there is no a general explicit expression for zonal polynomials, it’s
necessary to evaluate them through another known base of the symmetric and
homogeneous polynomials. In this sense, it’s known that (James, 1968)

(3) ( ) ( )∑
≤

=
κλ

λλκκ YMcYC ,

where λκ ,c  are constants which are calculated iteratively through an algorithm (James,

1968) that has been programmed in MATLAB (Gutiérrez, Rodríguez and Sáez, 2000),
and Mκ(Y) is the symmetric monomial associated with κ. In this manner, it’s possible
to express any hypergeometric series that involves zonal polynomials as a series given
by symmetric monomials. This methodology permits to apply, by example, the next
theoretic result.

Theorem If lm is the smallest root of S, where A=n∙S is Wm(n,Σ), and
r=(n-m-1)/2 is a positive integer, then

(4) [ ] ∑∑
=
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−
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nxetrxlP
0
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1
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2

1

*
2

1 κ

κ

where Σκ* denotes the sum over all the partitions κ=(k1,...,km) such that k1≤ r.

As a real application of this theorem, we have considered samples of 10 data of
the variables Sepal length for Iris setosa, Iris versicolor and Iris virginica in the well
known example by Fisher (1936). If we denote these samples z10x3 , centred in mean,
supposed Z→N3(0,Σ), then A=Z'∙Z is a W3(10,Σ) distribution, where Σ is approximated
by its maximum likelihood estimation.

We have validated this result in a empirical sense in two ways: First, simulating
sample data of Z and so, of A, checking that the empirical and the theoretical
distribution functions are the same (Conde et al, 2001); secondly, we have generated a
sample from the Fisher’s original data, we have calculated the empirical distribution
of this sample and we have tested the goodness of fit through a Kolmogorov-Smirnoff
test.
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1. Introduction

Let X  be a random variable with continuous cdf ( )F x , probability density

( )f x  and range [a,b]. Let us consider the symmetric kernel

K(s,t)=min{F(s),F(t)}-F(s)F(t),

 the normalized eigenvectors ( )n xφ  of  K with eigenvalues nλ , i.e.,

1

( , ) ( ) ( )n n n
n

K s t s tλ φ φ
∞

=
= ∑ ,

and the Bernoulli process X={ tX ,t∈ [a,b]}, where tX  is the indicator of [X>t].
The process X describes the random variable X, namely, if a is finite, then

X=a+
b

t

a

X dt∫ .

Let us define

( )nh x = ( ) .
x

n

a

t dtφ∫
Then ( ),  1,n nX h X n= ≥  are the principal components in the Karhumen-Loève

expansion of X . Thus ( )nX  is a set of uncorrelated variables with var( )n nX λ=  such

that 
1

( ) .
n n

tr K λ∞

=
= ∑

The r.v. X  can be expanded as

0 0
1

( )( ( ))n n n
n

X x h b X h x
∞

=
= + −∑  and    2

1

( ) ,n n
n

X X X X
∞

=

′− = −∑
where ,X X ′ are iid. These expansions were found for the uniform, exponential,
logistic and Pareto distributions (Cuadras and Fortiana, 1995; Cuadras and Lahlou,
2000a,b).

2. Continuous Scaling Expansions

The functions h are solutions of the ordinary differential equation

 ( ) ( ( ) ) ( ) 0,   ( ) ( ) 0,h x h x f x h a h aλ µ′′ ′+ − = = =

with ( ( )),  var( ( )).E h X h Xµ λ= =
Alternatively, these principal components can also be obtained by continuous

scaling on the distance function  ( , ') | 'x x x xδ = − .  Let ( , ')G x x  be the centralized

(inner product) function for ( , ')x xδ , i.e.,

2 2 2 2
'

1
( , ') [ ( , ') ( , ) ( ', ) ( , ) ]

2 X X XXG x x x x E x X E x X E X Xδ δ δ δ′′ ′= − − − + ,
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where ,X X ′  are iid. Let us consider the eigendecomposition

1/ 2 1/ 2

1

( ) ( , ') ( ') ( ) ( ')n n n
n

f x G x x f x u x u xλ
∞

=
= ∑ ,

and define
1/ 2( ) ( )  ( )n n nc x f x u xλ−= .

Then

1

( , ') ( ) ( ')n n
n

G x x c x c x
∞

=
= ∑ ,

it can be proved that

( ( )) 0,  var( ( )) ,  n n nE c X c X λ= =

 cov( ( ), ( )) 0,  ,m nc X c X m n= ≠ ( ( , )) ( )XE G X X tr K= ,

and

( ) ( ) ( )n n nh x c x c a= − .

Thus the functions nh  can be obtained from nc .

3. Normal Distribution

Let ( ), ( )f x xΦ  be the density and cdf for the r.v. X  with N(0,1) distribution,
res-pectively. For this distribution, we could not find in closed form, the functions h
solutions of the above ordinary differential equation.

The centralized (inner product) function is given by

{ }( , ') min , ' ( ) ( ') ( ( ) 1) '( ( ') 1) 1/G x x x x f x f x x x x x π= + + + Φ − + Φ − − .

The eigendecomposition of ( , ')G x x  is obtained by using numerical methods,

allows us to find the functions h and therefore the principal components ( )nh X of  X.
These principal components can be used in distinguishing the normal from the

logistic distribution, in goodness-of-fit tests, in studying the asymptotic distribution of
Rao’s quadratic entropy (Liu and Rao, 1995).
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1. Introduction

It is Sklar (1959) who coined the term copula for a distribution whose margins
are uniform on I = [0,1]. An important property of a distribution is unimodality. It is
then  natural to ask whether copulas are unimodal. Multivariate unimodality takes
different forms so we choose here central convex, block, and star ones and examine
copulas with respect to them.

We refer to Nelsen (1999) for copula concepts and to Dharmadhikari and Joag-
dev (1988) and Bertin, Cuculescu, and Theodorescu (1997) for unimodality ones.

We examine the case of dimension r = 2 and comment about the case r > 2.

2. Unimodality

Let W (u,v) = max(u + v – 1,0) and M (u,v) = min(u,v) be the lower and the
upper Fréchet-Hoeffding bounds; W and M are copulas. Further set Π (u,v) = uv for
the independence copula.  Fréchet's family of copulas consists of all convex
combinations of W, M, and Π .

We have the following result concerning central convex unimodality:

Proposition 2.1 A copula may be central convex unimodal only about (0.5,0.5).
It is so if and only if it belongs to Fréchet's family.

The next result concerns block unimodality:

Proposition 2.2 A copula block unimodal about an interior point (a,b) ∈  I2 has
the probability density function

f  = q1(0,a) ×  (0,b) + (1 – aq)(1 – a) –11(a,1) ×  (0,b) + (1 – bq)(1 – b)–11(0,a) ×  (b,1)

   + (1 – a – b + abq)(1 – b) –1 (1 – a) –11(a,1) ×  (b,1),

where 1A stands for the indicator function of  A and max((1/a) + (1/b) – (1/ab),0) � q
� min(1/a,1/b). If (a,b) is not an interior point then the only block unimodal copula is
Π .

Next we examine copulas in the class of star unimodal distributions, broader
than that of block unimodal distributions. We also indicate examples of star unimodal
copulas, absolutely continuous, with a nonull singular part, and even singular.



2º  QU A D R IM E S TR E  D E  2001

R E V I S T A  D E
E S T A T Í S T I C A

3. Diagonals

We now characterize diagonals of copulas star unimodal about (0,0):

Proposition 3.1 Let δ  be a diagonal and c ∈  [0,0.5]. There exists a copula C
star unimodal about (0,0) such that δ  = δ C and

(2) '
uC (1,v) = (1 – c)v,           '

vC (u,1) = (1 – c)u,      u, v < 1,

if and only if  δ '(u)/u is absolutely continuous nonincreasing and

δ '(1) = 2(1 – c),    (δ '(u)/u)' � – 4c/u2, δ (u) – uδ '(u)/2 � cu.

If c = 0 then C = Π  and δ (u) = δ C(u) = u2.
We construct copulas C star unimodal about (0,0) satisfying (2) and indicate

their diagonal sections δ C.

4. Unimodality of Archimedean Copulas

Let us now examine Archimedean copulas.

Proposition 4.1 An Archimedean absolutely continuous star unimodal copula C
(particularly block unimodal) coincides with Π .

Proposition 4.2 An Archimedean star unimodal copula C having a nonnull
singular part coincides with W.

As a by-product we obtain

Corollary 4.3 With the exception of Π  and W, Fréchet's copulas are not
Archimedean.

5. About the Case of Higher Dimension

For higher dimension r > 2 Proposition 2.2 is valid with selfexplanatory
modifications: Ir splits generally into 2r parallelipipeds, the probability density
function is constant on each of them, the constants depending on a parameter
analogous to q. A similar remark holds for star. The extension to higher dimension of
Proposition 3.1  has to start with a study of the corresponding diagonal sections. As far
as Section 4 is concerned, it appears that the methods used may also work for r > 2.
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In practical applications, it is not uncommon for the hazard functions obtained
for two groups to converge with time. One of the approaches to allow for converging
hazard functions is the proportional odds model. We develop a procedure for testing
the proportional odds assumption when the available data consists of two independent
random samples of randomly right censored lifetimes. Asymptotic normality of the
test statistic is proved and the testing procedure illustrated through application to two
well-known survival data sets.
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In two recent papers, del Barrio, Cuesta-Albertos, Matran and Rodriguez (1999)
and del Barrio, Cuesta-Albertos and Matran (2000) considered a new class of
goodness-of-fit statistics based on L2-Wasserstein distance. They derived the limiting
distribution of these statistics as quadratic functionals of the Brownian bridge process
(which can be reduced to an infinite weighted sum of chi-one squared random
variables) and showed that the normal distribution is the only location-scale family for
which this limiting distribution has the “loss of degrees of freedom” property (ie the
loss of terms in the infinite sum), due to the estimation of the unknown parameters.

In this talk we consider a weighted L2-Wasserstein distance and show that these
statistics retain the loss of degrees of freedom property for general classes of
distributions, if applied separately to the location family and to the scale family and if
the “right” weight function is used. These weight functions are such that the
corresponding minimum distance estimators for the location parameter and for the
scale parameter are asymptotically efficient. To get a loss of degrees of freedom, the
weight function has to be chosen so that a function of it is an eigenfunction of a
certain covariance kernel. Solving the integral equation defined in terms of this
covariance kernel, gives an explicit expression for the weight function in terms of the
underlying distribution.

For the location case, the normal and logistic cases are discussed as examples
and for the scale case, the normal and exponential cases are discussed as examples.
For these examples, the weight functions are obtained explicitly.
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We consider kernel estimation of a density from an iid sample that is
contaminated by random noise. More precisely we observe an iid sample Y1,...,Yn,
where for all i, Yi=Xi+Zi, with Xi~fX the density of interest, and where Zi~fZ represents
the random noise on the ith observation, independent of Xi. We also assume that the
error distribution fZ is known.

In this context Carroll and Hall (1988) and Stefanski and Carroll (1990)
introduced a consistent estimator of the density fX, the deconvolving kernel density
estimator. See for example Stefanski and Carroll (1990), Fan (1991a,b,c,1992) or
Wand and Jones (1995) for a theoretical study of the estimator. This estimation
procedure requires the choice of a smoothing parameter depending on the sample size
and called the bandwidth. The performance of the deconvolving kernel density
estimator depends crucially on the choice of the bandwidth, but however very few
papers focus attention on how to choose this parameter in practice.

Stefanski and Carroll (1990) and Hesse (1999) study a method of selection of
the bandwidth, based on cross-validation techniques. Their procedure works in
practice, but it suffers from a few drawbacks such as a large variability, multiplicity or
non-existence of the solution. We propose two other practical methods of bandwidth
selection that possess good theoretical properties and illustrate their performance in
finite sample size via simulations.

The first method is based on an asymptotic approximation of the Mean
Integrated Squared Error (MISE), derived by Stefanski and Carroll (1990) and Wand
and Jones (1995). The bandwidth is then selected through minimization of the
asymptotic MISE. This approximation still involves an unknown quantity that we
estimate either by simply referring to a normal density or by a kernel method
developed by Delaigle and Gijbels (2001c). The consistency of the method is provided
and it is shown that this method can bring considerable improvement on the density
estimation.

The second method uses a bootstrap approximation of the MISE as described in
Delaigle and Gijbels (2001a). This estimation procedure requires the choice of a
second bandwidth, and we show how to choose it properly. We establish the
consistency of the bootstrap method. We also explain why we do not need to resample
from the data in practice and thus unlike many other bootstrap procedures our method
does not require extensive computations.

Finally we study the performance of our two practical methods and compare
them with the cross-validation method, by presenting results of a simulation study
conducted by Delaigle and Gijbels (2001b).

                                                          
* This is joint work with Irène Gijbels, Université catholique de Louvain, Belgium
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The statistics n:n n-1:n
1n

2:n 1:n

X X
Q

X X

−=
−

 and n:n 2:n
2n

n-1:n 1:n

X X
Q

X X

−=
−

 have been extensively

studied by Mendonça (2000), for the investigation of tail weight, kurtosis and
skewness of several models (see also Diamantino & Pestana, 1996).

We focus our interest in quotients of generalized spacings

* n:n k:n
1

i:n 1:n

X X
Q

X X

−=
−

  and  k:n j:n*
2

i:n l:n

X X
Q

X X

−
=

−
.

When the underlying model is a generalized Pareto, if i<k  we get simplified

formulas. Moments are, in this case, easy to compute, but 
i:n l:n

1
E

X X

 
 − 

 may be

infinite.
The special case of Uniform parent distribution is dealt with in detail. And the

results therein are used to present and investigate several multivariate Beta models,
and to put forward simulation algorithms.
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To estimate the root 0x  of an unknown regression function :f R R→ , whose

function values ( )f x  at points x  can be observed with some random error V  only,

Robbins and Monro (1951) suggested to run the recursion

1n n n

a
X X Y

n+ = −

with observation ( )n n nY f X V= +  of ( )nf X  at step n . Under regularity assumptions,

the normalized Robbins-Monro process ( )nZ , given by 0: ( ) / ( )n n nZ X x Var X= −  ,

is asymptotically normal.

In this talk we present Edgeworth expansions which provide approximations of

the distribution function of nZ  up to an error of order (1/ )o n  and (1/ )o n , for
instance

0
1 2

1 1 1
( ) ( ) ( ) ( ) ( )

( )
n

n

X x
P x x p x x p x x o

n nVar X n
φ φ

 −  ≤ = Φ + + +       

where Φ  and φ  denote the distribution function and the density of the (0,1)N -

distribution, respectively, and 1p  and 2p  are known polynomials.

As corollaries we obtain asymptotic confidence intervals for the unknown
parameter 0x  whose coverage probability errors are of order (1/ )O n . Further results

concern Cornish-Fisher expansions of the quantile function of nZ , an Edgeworth

correction of the distribution function of nZ , and a stochastic expansion of nZ in terms

of powers of both 1/ n  and a standard normal random variable Z .

The proofs use ideas of Helmers, Callaert, Janssen, Veraverbeke, Bickel,
Goetze and van Zwet who investigated Edgeworth expansions for L- and U-statistics.
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1. Introduction

In many areas of inference interest lies in comparisons between groups.
Classical and Bayesian approaches developed to date usually involve comparison
between parameters, such as mean values.  However, the predictive paradigm suggests
that comparisons should be made in terms of future observables, rather than
parameters.

Our interest lies, within the Bayesian framework, in developing alternative
approaches that will use the concept of predictive probability for a number of models
that may arise in practice.  Attention will be dedicated to the applications of this
predictive probability to Medical Statistics, namely Clinical Trials, but the application
of predictive probabilities is by no means restricted to this area.

If a clinical trial is conducted with the purpose of comparing the effects of two
treatments T1 and T2, by considering the responses obtained Y1 and Y2, interest will be
in determining which of these treatments has a better response for a future patient.
Assuming samples from Y1 and Y2 are available, we can use the data and any prior
information to estimate the effectiveness of the treatments in a future experiment, i.e.
when given to a patient that has not entered the original trial, through a predictive
probability.

Considering Y1 and Y2 as two random variables with distributions of known
form but unknown parameters, and letting è  represent the vector of all unknown
parameters, we will write Pr(Y1 < Y2 |è ) for the probability that Y1 is less than Y2 given
these parameters.  Classical parametric procedures attempt to estimate Pr(Y1 < Y2) by
finding “best” estimators of the parameter è  and ‘plugging-in’ the results in Pr(Y1 <
Y2 |è ).  This relies on parameter (point or interval) estimates whose adequacy can
never be checked in practice since parameters are not observable.  A predictive
approach however will give a measure that is expressed in terms of observable
quantities and is therefore easier to interpret by non-statisticians.  In particular, in the
case of comparing two treatments using a Bayesian predictive methodology, we will
be interested in estimating the probability that a future patient will have a better
response on T2 than on T1. This can be written as Pr(Y1 < Y2 | Data), assuming a large
response is a good response. This predictive probability will be an actual probability:
the probability of the event {Y1<Y2}, which patients and clinicians can easily relate to.

Assigning a prior distribution to è , the informative experiment is used to obtain
the posterior distribution of è , π( è | Data). The predictive probability is then given by

(1) 1 2 1 2Pr( | Data)  Pr( | ) ( | Data) dY Y Y Y π< = <∫è è è è .

The expression in (1) involves a multidimensional integral in è , whose
posterior distribution might be complicated, or even unattainable in closed form.  Not
only that, the form of Pr(Y1 < Y2 | è ) may be an additional complicating factor.  This
integral will often be impossible to solve analytically and other methods such as
numeric or Monte Carlo integration need to be considered.
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2. Predicting Pr(Y1 < Y2)

Letting Y1
f and Y2

f represent the responses obtained by a future patient, we will
present methods of predicting the probability that Y1

f < Y2
f for the Normal, Normal

Regression and the Ordinal Logistic Models.
Looking at (1) it is easily seen that it can be written as

1 2 post 1 2Pr( | Data)  E Pr( | )[ ]f fY Y Y Y< = < è

which is the mean of Pr(Y1
f < Y2

 f | è ) with respect to the posterior distribution of è ,
termed the posterior mean (Enis and Geisser, 1971).  If we can simulate a large
enough sample of vectors { ( )kè , k=1,...,M} from the posterior, we can approximate
Pr(Y1 < Y2 | Data) as

M
( )

1 2 1 2
1

1
Pr( | Data)  Pr( | )

M
f f k

k

Y Y Y Y
=

< ≈ <∑ è .

In the Normal model, comparing future responses with equal variances based on
(1) is straightforward but when the variances differ this is no longer the case. We will
outline a method of approximating Pr(Y1 < Y2 | Data) for this latter case, comment on
the implications of comparing responses with different predictive variability and
suggest possible alternatives to Pr(Y1 < Y2 | Data).  The case of correlated future
observations when the informative experiments are independent is also of interest,
since it may be more reasonable for predicting a future patient’s response to different
treatments.

If covariates are measured in the informative experiment, this information
should be incorporated in predictions.  When attempting to predict the outcome for a
future patient, it is not unrealistic to assume that a preliminary observation of that
patient has been carried out, providing the necessary information on the covariates.  It
will therefore be assumed that predictions will be obtained for cases where the values
of the future covariates are known and that the covariates measured for patients on T1

and patients on T2 are the same.  Letting xf represent the vector of covariates for the
future patient, we will present methodologies for predicting Pr(Y1 < Y2 | x

f, Data), for
the Normal and Ordinal Logistic Regressions.  Some comments on the predictive
influence of covariates will also be made.
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Extreme value theory is useful mainly because it is the only realistic framework
for extending the empirical distribution function or the empirical quantile function
beyond the range of the available data. Since the extreme value context is unavoidable
in this extension, not much attention has been paid to the problem of testing extreme
value conditions, that is, checking whether the extreme value conditions are
reasonable for a data set without specifying the shape parameter of the limit extreme
value distribution. The present paper aims at providing such a check. Our approach is
loosely related to the Cramér-von Mises test statistic

(1) ( ) ( )( ) ( )2

nn F x F x dF x
∞

−∞
−∫

in the following sense. Here F and nF  denote the distribution function and the

empirical distribution function of a sample of size n, respectively. Two modifications
will be made.

First, we consider the related statistic comparing inverse distribution functions
rather than distribution functions:

(2) ( ) ( )( ) ( )( )1 2 2

0 nn Q y Q y Q y dy′−∫
with Q the inverse distribution function and nQ , the empirical quantile function. The

criteria (1) and (2) have the same limiting distribution albeit under stronger conditions
for the latter (see e.g. Csörgö and Revesz (1981), Cor. 5.4.1 and Cor. 5.5.2).

Secondly,a tail version is needed. For distribution tails criterion (2) seems
slightly more natural. We present a tail version of it, with estimated parameters. An
asymptotic expansion for the tail inverse empirical distribution function due to Drees
(1998) will prove useful. As suggested by this expansion we consider the tail statistic,

( )
2ˆ

1 , , 2
, 0

log log 1
ˆ: 1

ˆ ˆ
n kt n n k n

k n

X X t
E t dt

γ

γ
γ γ

−−
− −

−
+ −

− −= − − 
 

∫

for k n" , where γ̂+  is an estimator for ( ) ˆmax 0, ,γ γ γ+ −=  is an estimator for

( )min 0,γ γ− = , and γ  is the extreme value index. The factor 2t  has been introduced

to ensure finiteness of all the integrals involved.
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Another closely related interpretation of our test statistic is via the Pareto
approximation: the observations exceeding a high threshold follow approximately one
of the Pareto distributions

( ) 1
1 1 ,1 0,x xγγ γ γ−− + + > ∈ "

under proper normalisation (Balkema and de Haan (1974), Pickands (1975)), with the
convention that for 0γ =  the distribution is equal to the exponential one: ( )1 exp x− − .

Now

( )1 1s
γ

γ

−− −

(similar to the function appearing to the right in the definiton of ,k nE ) is the quantile

function of the Pareto distribution which approximates high values of the log of the
observations. For 0γ = , this is set to ( )log 1 s− − .

We prove that , 0k nE →  i.p. under the domain of attraction condition if

( ) , 0k k n k n= → ∞ →  as n → ∞ . Moreover, ,k nkE , has a specified limit distribution

under an extra condition on the distribution function for sequences ( )k k n= → ∞  that

do not increase too fast.
In a situation where only nonnegative values of γ  play a role (for example for

distributions which are unbounded in the right) a simplified version can be used:

2
1 , , 2

, 0

log log
: log .

ˆ
n kt n n k n

k n

X X
T t t dt

γ
− −

+

− 
= + 

 
∫

Its properties are similar.
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1. Introduction

A problem arising in many time series applications is the question of whether a
series should be differenced. This is equivalent to asking if the time series has a unit
root.

Dickey and Fuller (1979, 1981) proposed some test statistics for the unit root
hypothesis for a time series. They derive the finite and limiting distributions of test
statistics for a unit root when the estimated model is a random walk, a random with
shift in mean, and a random walk with shift in mean and a linear time trend. The
distribution of Dickey and Fuller (DF) tests relied on the innovation process being
white noise. In 1981 they extend the DF test to an AR(p) process which is called
‘augmented’ Dickey-Fuller (ADF) test.

On the other hand, Nankervis and Savin (1985, 1987) show that the statistics
proposed by Dickey and Fuller yield non-similar tests of the unit root hypothesis.
Non-similarity implies that the distribution of a test statistic is affected by the value,
under the null, of a nuisance parameter. So, if the nuisance parameter is unknown, we
can reject or not reject the null hypothesis wrongly and the consequences are low
powers and size distortions. Due to low power and these size distortions an acceptance
of the random walk hypothesis should be treated with caution.

A testing strategy which takes into account the non-similarity of Dickey-Fuller
tests has been proposed by Roldan (2000) and Roldan and Dios (2000) to test the unit
root hypothesis in the context of a first-order autoregressive process with unknown
intercept and a linear trend.

In order to demonstrate the relevance of non-similarity and its consequences,
we use Monte Carlo simulations to compare the performance of the strategy and the
DF test in the context of the model mentioned above

2. Results and Conclusions

We compare the powers of the two-sided test of the random walk with drift
hypothesis considered by Dickey and Fuller with the powers of the strategy in a Monte
Carlo study using the model

1t t tY t Y eµ β ρ −= + + + 1,2, ,t T= !

where µ, β and ρ are unknown real numbers and t is a linear trend. We assume that 0Y

is a known constant and equal to zero and the { te } is a sequence of independent

normal random variables with mean zero and variance 2
eσ .

Ten thousand samples of size T = 50, 100, 250 and 500 were generated
for ρ = 0.8, 0.9, 1.00, 1.1, 1.2; µ = 0, 1, 10; and β = 0, 0.1, 0.5, 1. All simulations

were carried out using routines developed in Eviews 3.1 with the random number
generator contained therein.
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Table 1 reports Monte Carlo powers of 0.05 two-sided size tests (Dickey-Fuller
test and strategy) for ρ = 1. These values are the highest estimated rejection

probability for each T when the null hypothesis ( ρ = 1) is true, that is, they represent
the empircal size for each T considered in the experiment.

There are two conclusions to be drawn from results presented in Table 1. DF
test presents important size distorsions since the empirical size is always greater than
0.71, increasing with T. However, the strategy only presents size distorsion at T = 50
and 100, since the empirical size tends to nominal size (0.05) as T increases.
We conclude the paper by comparing the powers of the strategy and the DF test at
explosive and estable alterantives. For ρ >1 the powers of the strategy and the DF test
are much the same and equal to 1 for all β, µ and T.

At stables alternatives (ρ <1) the strategy is uniformly more powerful than the
DF test for all β, µ and T. The powers of both tests are strongly influenced by the
values of T and β and are low when T≤100 and β is very close to zero. However, the
powers converge to 1 as the sample size and the value of β increase. The results show
much more rapid convergence in the strategy case.

T
Two-sided

Dickey-Fuller test
Strategy

50 0.7145 0.6357

100 0.7314 0.6991

250 0.7428 0.0606

500 0.7457 0.0608

Table 1. Empirical size

Hence we recommend the strategy proposed by Roldán (2000) and Roldan and
Dios (2000) since compared to the DF test the strategy has superior power at stable
alternatives and its size distorsions dissapear when the sample size increases.
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1. Introduction

Estimation of parameters in diffusion models is usually based on observations of
the process at discrete time points. Here we investigate estimation when a sample of
discrete observations is not available but instead, observations of a running integral of the
process with respect to some weight function. This type of observations could, for
example, be obtained when a realization of the process is observed after passage through
an electronic filter. The integrated process is no longer a Markov-process. A generalization
of martingale estimating functions, namely prediction-based estimating functions (PBEF),
is applied to estimate parameters in the underlying process. The estimators can be shown
to be consistent and asymptotically normal.

2. Prediction-Based Estimating Functions Applied to Integrated Diffusions

Consider the one-dimensional diffusion 0 0( ; ) ( ; ) , ~t t t tdX b X dt X dW Xθ σ θ µ= + ,

where θ is an unknown p-dimensional parameter belonging to the parameter space Θ ⊆  Rp

and W is a one-dimensional standard Wiener process. We assume that X is an ergodic,
stationary diffusion with invariant measure 0µ , and that 0X  is independent of W. We
assume that the stochastic differential equation has a unique weak solution. Suppose that a
sample of observations at discrete time points is not available but instead, a running
integral of the process with respect to some weight function. Suppose the interval of
observation [0,T] is subdivided into n smaller intervals of length ∆=T/n, and let ν be a
probability measure on the interval [0, ∆]. Our observations will then be

(1) ( 1)

0

( ) ; 1, , .i i sY X d s i nν
∆

− ∆+= =∫ !

If our observations are obtained by integrating uniformly over the time axis, ν is
simply the uniform distribution on [0,∆] with density ϕ= 1/∆, and we get the more simple
observations

( 1)

1
; 1, , .

i

i s

i

Y X ds i n
∆

− ∆

= =
∆ ∫ !

Note that since tX  is stationary also iY  is stationary. The problem is to estimate the

parameter θ in the underlying process X. We solve it by applying the method of PBEF,
introduced in Sørensen (2000). In the following we will briefly outline this method.
Assume that , 1, ,jf j N= ! , are one-dimensional functions such that 2( ( ) )j iE f Yθ < ∞

for all θ ∈Θ . We denote the expectation when θ is the true parameter value by ( )Eθ ⋅ . Let
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P i-1,j
θ , 1, ,j N= ! , be finite-dimensional, closed linear subspaces of the L 2 -space of

square integrable F 1i− -measurable one-dimensional variables when θ is the true parameter

value. Here F 1i−  is the σ-algebra generated by 1 1, , iY Y −! . The space P i-1,j
θ  can be

interpreted as a set of predictors of ( )j if Y  based on 1 1, , iY Y −! . Let P i-1,j
θ be spanned by

( 1) ( 1)
1(1, , , )

j

i i
j jqZ Z− −! . We assume that for 1, , jk q= ! , ( 1)

1( , , )i
jk jk i i rZ h Y Y−

− −= ! are linearly

independent. Here jkh  is a function, independent of i and θ, from R r  into R, and r ∈  N.

Note that ( 1)i
jkZ −  is well-defined only when i ≥ r+1. We write the elements in P i-1,j

θ as
( 1)

0
T i

ja a Z −+ , where 1( , , )
j

T
qa a a= !  and ( 1) ( 1) ( 1)

1( , , )
j

i i i T
j j jqZ Z Z− − −= !  are jq -dimensional

vectors. We denote transposition by T . We will study the following estimating function

( 1) ( 1)

1 1

( ) ( )( ( ) ( ))
n N

i i
n j j i j

i r i

G f Yθ θ π θ− −

= + =
= Π −∑ ∑

where iY  is of the form (1), ( 1) ( )i
j θ−Π  is a p-dimensional stochastic vector, the coordinates

of which belong to P i-1,j
θ , and ( 1) ( )i

jπ θ−  is the minimum mean square error predictor of

( )j if Y  in P i-1,j
θ . If, for instance, we take ( )jf y y= , ( 1)i

jk i kZ Y−
−=  and ϕ= 1/∆, we need to

calculate the moments 1( )E Yθ  and 1( )kE Y Yθ  for 1, ,k r= ! . We have 1 0( ) ( )E Y E Xθ θ=

and 1 2 0 ( 1)

1
( ) ( )

k

k s uk
E Y Y E X X du dsθ θ

∆ ∆

− ∆
=

∆ ∫ ∫ . Note that since tX  is stationary,

( )s uE X Xθ  is simply a function of the distance |s-u|.

3. The Optimal PBEF for Integrated Diffusions

Natural choices for ( )jf y  and ( 1)i
jkZ − would be ( ) j

jf y y
α= and ( 1) jk

k

i
jk i lZ Y

α−
−= ,

where jα  and jkα  are such that 
2

( )j jkE Y α α
θ  exists. For simplicity we assume jα  and jkα

are integers. To derive the optimal PBEF, we need higher order moments of the form
31 2 4

1 2 31( )kk k k
t t tE Y Y Y Yθ , where 1 2 31 t t t≤ ≤ ≤ , as functions of the moments of tX , moments

we assume known or possible to simulate. Assume that 1 1 2 3t t t< < < , and that ϕ(t)=1/∆,

and let 1 2 3 4( ) 2 j jkk k k k α α+ + + ≤ . Arguments of symmetry yield that
3 3 3

31 2 4

1 2 3 1 1 41 2 3 4 4

1 ( 1) 3 1 ( 1)1 4

1 2 3 4
1 1 2 1 2( )

0 ( 1)

! ! ! !
( ) ( )

k

k k

t t t
kk k k

t t t k v r kk k k k
v v t r r

k k k k
E Y Y Y Y dv dv dv dr dr E X X drθ θ

− −

∆ ∆ ∆∆ ∆ ∆

+ + +
− ∆

=
∆ ∫ ∫ ∫ ∫ ∫ ∫% %% % %

where 
4 3 2 11 1 1 1k k k kr r s s u u v v≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥% % % % . Thus an explicit PBEF

can be found if we know explicit expressions of the moments of tX . It can be shown that

the estimators are consistent and asymptotically normal, given conditions on tX .
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1. Recurrence Relationship

Many useful discrete distributions have a complicated pmf involving various
forms of series expansion, as in the cases of the Hermite, or Poisson-generalized
inverse Gaussian distribution. Classical methods for estimating the parameters of the
distribution, such as the likelihood method, which are based on the pmf can be
difficult to implement. For these pmf's, the recursive relationship between successive
probabilities can be used for estimating the parameters.

Let us consider parametric families where the recursive relationship between
successive probatilities of the pmf can be written as an homogeneous difference
equation of order r ,

(1) ( ) ( )1 1, ,   , 1, ,i i r i rp i p i p i a r a r mφ θ φ θ− −= + + = + + +! !

where

a) 1, , pθ θ θ =  !  is the vector of parameters, pθ ∈Θ ⊆ "

b) [ ] ,   , ,ip P X i i a r m= = = + !

c) 1, , rφ φ!  are fumtions determined by the parametric family, functions
assumed to be differentiable.

With a relationship of order 2 or less, we will be able to represent most
parametric families found in Johnson et al. (1992); the Poisson, negative binomial,
binomial, logarithmic, zeta and ETNB distributions, the Generalized Yule, Good,
Generalized Poisson and Exponential family can all be represented by (1) with 1r = .
The Hermite, Polya-Aeppli and Sichel distribution satisfy the recurrence formula of
order 2, as well as the Poisson-Pareto and Poisson-inverse gamma distributions.
Certain mixed Poisson distributions, such as the Poisson-Weibull and the
Poissontransformed gamma will yield a recurrence relationship of order r greater than
2 (see Willmot (1993)).

2. Asymptotic Properties of QDE

Let in  represent the number of observations which take the value i  in the

sample 1, , nX X! , let ˆ ip  represent the relative frequency ˆ i ip n n=  and let us define

( ) ( )1 1, , .i i r i rf i p i pφ θ φ θ− −= + +!

Using relation (1) and fixing a value for k  with k m≤ , we then have the

representation ( )i i ip f θ ε= + . In practice, the choice of k  is made so that , ,a kn n!

are all positive.
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Using matrix notation, let [ ] ( ) ( ) ( )ˆ ˆ ˆ, , ,  , ,a r r a r rp p p f f fθ θ θ+ +
′′= =   ! !  and

[ ], ,a r kε ε ε+
′= ! . We then have ( )p̂ f θ ε= + . The mean and the variance-covariance

matrix of ε  are given by ( ) 0E ε =  and ( )θΣ . Let ( )0θΣ = Σ , where 0θ  is the true

vector value of the parameter. ( )θΣ  can be obtained using the variance-covariance

matrix of a multinomial distribution. Also, let us define ( ) ( )* nθ θΣ = Σ  and

( )* *
0θΣ = Σ . *Σ  differs from Σ  only by a known constant multiple n .

The quadratic distance estimator (QDE) θ  is defined by the vector value which
minimizes

(2) ( ) ( ) ( ) ( ) ( )* 1 * 1ˆ ˆQ p f p f u uθ θ θ θ θ− −′ ′= − Σ − = Σ      

where we define ( ) ( )ˆi i iu p fθ θ= −  and ( )u θ  is the vector ( ) ( ), ,a r ku uθ θ+
′  ! .

The estimator θ̂  obtained by replacing * 1−Σ  by a consistent estimate * 1ˆ −Σ  in (2)

is a consistent estimator of θ , (i.e. 0
ˆ pθ θ → ); it can be shown, with a Taylor series'

expansion and the multivariate central limit theorem, that it has an aymptotically
normal distribution

(3) ( ) ( )ˆ0
ˆ ,Ln N o θθ θ−  → Σ , with ( ) 1* 1

ˆ ,S Sθ

−−′Σ = Σ

where the matrix ( )ijS s=  has elements

( )
1

,
ˆ

i r
i li

ij l
lj j

if
s E p

φ θ
θ θ

−
−

=

  ∂∂= =  ∂ ∂ 
∑ , evaluated at 0θ θ= .

Thus, the asymptotic variance-covariance matrix of θ̂  is ( ) ˆ1 n θΣ .

Admittedly, there is some arbitrariness for fixing a value for k . The QDE
remains consistent for all choices of values for k . For efficiency sake, we should fix
k  at a large value or let k → ∞ , as the sample size n → ∞ . For robustness sake, we
might fix 0k k= , discarding, possible outlier observations at the tail, or values

exceeding 0k .
A variation of the above general QD method which can lead to simplifications

in computations exists for parametric families which allow a recursive relationship of
order 1 (see Doray and Luong (1997)).
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Suppose ( ),i iX Y  is a sequence of i.i.d. random vectors with d.f. F . In this

paper we are interested in probabilities of the type

(1) { }rP X u and Y v> > ,

where u  and v  are large threshold values. The probability that both thresholds are
exceeded is of interest, e.g., if the levels of two different air pollutants, the losses
suffered in two different investments or different variables relevant for the probability
of a flooding are observed. Since only large values of X  and Y  are involved, one
would expect the multivariate extreme value theory to provide the appropriate
framework for systematic estimation of the probability (1). Namely, the assumption
that there exist normalising constants , 0n na c >  and ,n nb d real values such that

(2)

( )
{ } { } ( )

lim ,

max , , max , ,
lim , ,

n
n n n n

n

i n n i n n
r

n
n n

F a x b c y d

X X b Y Y d
P x y G x y

a c

→∞

→∞

+ + =

 − − 
≤ ≤ = 

 

% %

for all but denumerable many vectors ( ),x y . Here G  is a distribution function with

non-degenerate marginals (Resnick, 1987 - cf. Chapter 5).
Unfortunately, if the marginals of the limit distribution are independent, in

which case we say that the maxima of the iX  and those of the iY  are asymptotically

independent, the previous limit assumption is of little help. Indeed, this is a rather
common situation; for instance, it holds for nondegenerate bivariate normal
distributions.

mailto:draisma@few.eur.nl
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In order to overcome this problem, Ledford and Tawn (1996,1997,1998)
introduced a quite general sub-model, where the tail dependence is characterised by a
coefficient ] ]0,1η ∈ . More precisely, in the setting with uniform marginals, they

assumed that the function { }1 1rt P X t and Y t− < − <&  is regularly varying at 0

with index 1/η . Then 1η =  in case of asymptotic dependence, whereas 1η <  implies
asymptotic independence. This sub-model can also be used to device a test for
asymptotic independence in the basic relation (2).

Let ( ),X Y  have continuous marginal distribution functions 1F  and 2F . Our

basic assumption is that

(3)

( ) ( ){ } ( )

( ) ( )
1 2

1
0

1

1 1
,

( )
lim ,

r

t

P F X tx and F Y ty
c x y

q t
c x y

q t↓

− < − <
−

=

exists, for , 0x y ≥  (but 0x y+ > ), with q  positive, 1 0q →  as 0t →  and 1c  non-

constant and not a multiple of c . Moreover we assume that convergence is uniform on

( ) [ [{ }2 2 2, 0, : 1 .x y x y∈ ∞ + =

We propose a new estimator of the parameter η , introduced by Ledford and
Tawn (1996). We prove asymptotic normality of this estimator and two other
estimators proposed in the quoted paper. Our estimator for η  is inspired by the work
of Peng (1998).

Also a procedure is set up to estimate the probability of a failure set that works
under asymptotic dependence as well as under asymptotic independence. Under our
model, we prove consistency of this estimator.
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A key issue in the consolidation process of the nuclear fuel cycle is the safe
disposal of radioactive waste. Deep geological disposal based on a multibarrier
concept is at present the most actively investigated option (visualize a deep
underground facility within which radioactive materials such as spent fuel rods or
reprocessed waste, previously encapsulated, are placed, surrounded by other man-
made barriers). While the safety of this concept ultimately relies on the safety of the
mechanical, chemical and physical barriers offered by the geological formation itself,
the physico-chemical behavior of such a disposal system over geological time scales
(hundreds or thousands of years) is far from known with certainty.

From 1996 to 1999, with partners in Italy, Spain, and Sweden, we were
involved in a project for the European Commission, GESAMAC, which aimed in part
to capture all relevant sources of uncertainty in predicting what would happen if the
disposal barriers were compromised in the future by processes such as geological
faulting, human intrusion, and/or climatic change. One major goal of the project was
the development of a methodology to predict the radiologic dose for people in the
biosphere as a function of time, how far the disposal facility and the other components
of the multibarrier system are underground, and other factors likely to be related to
dose. For this purpose we developed a complex computer simulation environment
called GTMCHEM which "deterministically" models the one-dimensional migration
of radionuclides through the geosphere up to the biosphere. We describe the
application of methods of functional data analysis (FDA) to explore the dependence of
predicted radiologic dose curves as a function of time on inputs to the computer
simulations.

FDA includes extensions of traditional statistical methods such as principal
components analysis and the analysis of variance (ANOVA) to the case where the
outcome, instead of a single real number, is a curve, in our case the logarithm of
radiologic dose as a function of the logarithm of time. Previous work in this field was
limited to methods such as ANOVA applied to the maximum of such curves; FDA
thus permits a much more complete investigation of the relationship between dose and
time, and how this relationship depends on the computer simulation inputs.
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The safe disposal of radioactive waste from nuclear power plants is an
important problem in energy policy. The most actively investigated option at present
is deep geological disposal based on a multibarrier concept (visualize a facility far
underground within which radioactive materials such as spent fuel rods or reprocessed
waste, previously encapsulated, are placed, surrounded by other man-made barriers).
If such a facility is compromised in the future, for instance through geological
faulting, the most likely means of transport for the escaping radionuclides is
groundwater passing through the rock between the disposal facility and the surface.
Thus geochemistry, which studies the behavior of such radionuclides in solution, is
central to this energy policy problem.

The basic chemical problem faced in this work is how ions interact in a medium
of high ionic concentration. Considerations from physical chemistry have led to a
collection of competing mathematical models, without a clear consensus as to which
model is best. In the work presented here we use Bayesian hierarchical modeling to
capture and propagate the uncertainty across these models in predictions of
radionuclide activity coefficients.  We use two competing models for the calculation
of the activity coefficients of ions: the Specific Interaction Theory (SIT) and the Pitzer
equations. Working with experimental data in which groundwater samples are
contaminated with radionuclides, we use Markov chain Monte Carlo methods to
assess the posterior plausibility of the two competing theories and to produce well-
calibrated predictive distributions, for the concentration of radionuclide contaminant
in solution, that correctly account for model uncertainty.



ME II

IM E S TR E  DE  2001

On the Minimax Regret Estimation of a Restricted
Normal Mean, and Implications

Bernd Droge
Humboldt-Universität zu Berlin, Sonderforschungsbereich 373

Unter den Linden 6, 10099 Berlin, Germany
droge@mathematik.hu-berlin.de

We consider the problem of estimating the mean of a normal distribution with
known variance, when that mean is known to lie in a bounded interval. In a decision-
theoretic framework we study finite sample properties of a class of nonlinear
estimators. These estimators are based on thresholding techniques which have become
very popular in the context of wavelet estimation. Under squared error loss we show
that there exists a unique minimax regret solution for the problem of selecting the
threshold.

For comparison we investigate the properties of a variety of competitors such as
the maximum likelihood estimator, the minimax linear estimator and the minimax
regret linear estimator. It turns out that, for example, the latter estimator may dominate
even the optimal nonlinear threshold estimator in cases where the prior information is
strong compared to the noise level.  In most cases, however, the nonlinear estimation
approach is preferable.

By examples we illustrate the implications of our results for the problem of
estimating the regression function in a nonparametric situation. This is possible since,
as usual, a coordinatewise application of the scalar results leads immediately to results
for multivariate (sequence space) problems. Then it is well known that orthogonal
transformations can be employed to turn statements about estimation over coefficient
bodies in sequence space into statements about estimation over classes of smooth
functions in noisy data.
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A fractional Brownian motion with Hurst index different from ½ is neither a
Markov process nor a semimartingale. It is, however, a self-similar Gaussian process
of a simple covariance structure: the increments constitute a stationary process with a
power structure function (see e.g. Yaglom (1986), Example 3 on p. 406). This allows
one to carry out thorough time domain analysis by rather elementary means, see
Norros et al. (1999) and references therein. Basic results are a linear representation of
a fractional Brownian motion through a standard Brownian motion and vice versa, as
well as explicit formulae for prediction and likelihood inference.

In parallel, one can cover these and related problems in a frequency domain.
The spectral density of the stationary process of increments is again a simple power
function. In this paper we associate with this function Toeplitz forms in the spirit of
Grenander and Szego (1958) and derive their extremal properties. To this end we need
to extend basic notions of the existing theory to the present continuous time situation
and to define counterparts to Szego polynomials, their reciprocals and associated
reproducing kernel polynomials. It is shown that new notions retain useful properties,
for instance, we again have recurrence relationships and the Christoffel-Darboux
formula. Similarly to the theory of Toeplitz forms in discrete time, the results obtained
in the frequency domain can be translated in terms of random processes in question. In
this way new aspects of the linear theory of fractional Brownian motions are brought
forward and a new light is shed on known results.
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1. Core Function

The core function of continuous probability distribution has been recently intro-
duced by Fabián (2001). Density and core function represent equivalent description of
distributions which are regular in the usual sense. However, description by means of
the core function is usually simpler.

Definition The core function of a distribution Q with support SQ=R is

TQ(x) = 
´( )

( )

q x

q x
−

where q is the density of Q. The core function of P=Qϕ−1 with support SP ≠R is
(1) TP (x) = TQ (ϕ−1(x))
where ϕ: R→ SP is a ‘suitable’ smooth one-to-one mapping.

It has been shown by Fabián (2001) that for most currently used model
distributions the word ‘suitable’ means a generalization of Johnson´s
transformations (Johnson, 1949)

(2) ϕ:  R  →  (0,�) :     x = ϕ (y) = ey

ϕ:  R  →  (0,1) :     x = ϕ (y) = ey / (1+ey)
for arbitrary SP≠R. Moreover, it has been proved that (1) can be expressed indepen- dently
of Q by means of density p of distribution P and of Jacobian L(x) = ϕ´(ϕ−1(x)) of the
transformation ϕ: R→ SP as

(3) TP (x) = 
1

( )p x

d

dx
 [−σ L(x) p(x)] .

(3) is also valid for parametric distributions Pθ , θ ∈ Θ ⊂ Rm  with a general structure
Θ = SP × (0,�)× ∆ , ∆ ∈ Rm−2. Thus θ =( , ,τ σ λ ) where

(τ ϕ µ= )

is the transformed location parameter µ of distribution Q, which we call induced location,
σ  is the scale and λ ∈∆ other (shape) parameters.

The sense of the core function is stated by the following theorem (Fabián 2001).

Theorem If Pθ has the induced location �, its core function is the inner part of the
maximum likelihood score for �,  s� (x|θ )=(∂ /∂τ) log pθ (x).

Examples The core function of the standard normal distribution with density
q(x)=exp(−x2/2)/√ 2π is TQ (x)=x, the core of the standard lognormal P=Q�–1 is TP(x)=
TQ(log x)=log x. � is the induced location of the exponential distribution with density
p(x)=1/� exp(−x/�) and core TP(x)=x/�−1. The Weibull distribution with density
p(x)=�x−1(x/�)� exp(−(x/�)�) has likelihood score for � in the form s�(x)=��–1((x/�)�

−1) and the core TP(x) = (x/�)� –1 is its inner part. The core of the beta distribution with
density p(x)=B(�,�)−1xα−1(1−x)β−1 where B is the beta function is TP(x)=(�+�)x−�, the
function which was yet unknown.
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2. Core Distances in the Sample and Probability Spaces

Denote by F the distribution function of P. Taking into consideration the existence
(Fabián, 1997) of moments of core functions,

Mk  = 
Ps∫ TP (x)k dF(x) ,

we examined the distance of points x1, x2 ∈ SP  in the sample space,

(4) dT (x1,x2)  = 
2

1

M
 | TP (x2) − TP (x1) | ,

and the mean square distance of core functions of distributions P1, P2 ,

(5) DT (P1|P2) = 
2

1

M Ps∫ [TP 2
(x) − TP 1

(x)]2 dF1 (x) .

Let us present some results.
(i) Consider a distribution Pθ  with density pθ (x). It holds that

dT (x1,x2) = 
1

( )I θ
 | s� (x2|θ) −  s� (x1|θ) |

where I(θ ) is the Fisher information for τ. Thus, in cases of distributions with induced
location dT represents the distance introduced at SP by the maximum likelihood estimator
of this parameter.

(ii) The zero of the core function, x*: TP (x*)=0, minimizes the mean square
distan-ce (4) between x* and any other possible sample from P.  x* (in a parametric case
x*=τ) can thus be considered as an alternative ‘centre of mass’ of the distribution P.

(iii) The distance (5) has properties typical for ‘good’ distances of distributions,
namely it is invariant to sufficient data transformations. It can be taken as a new distance
of distributions P1, P2.

(iv) Distances (5) within the members of parametric families are often simpler than
other distances. Using the mean square difference of core functions instead of functionals
of the ratio of densities we avoid in distance formulas the terms originating due to the
norming constants. As an example, the core distance between two normal distributions,
N(µj,σj), j=1,2, is

(6) DT (Pµ 1
,σ 1

|Pµ 2
,σ 2

) = 
1

2

( ) 22

1 2 1
2
2 2

1
µ µ σ

σ σ

 −  
+ −  

   
  .

If σ1 = σ2, (6) reduces to the Kullback-Leibler and Rényi distance. The distance of
two members of the exponential family is simply DT (P1|P2)=(τ1/τ2−1)2. Moreover,
distances (5), not influenced by somewhat arbitrary functions (f-divergences), exhibit
consistent behaviour: they are finite in cases when core functions (which are proportional
to the influence functions for the induced location parameter) of the family are bounded
and vice versa. We hope that they can be used in testing hypotheses about estimated
parameters.
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This paper studies rainfall model that are based on point processes. First, it
considers models applicable to a single site, in which storms arrive randomly
according to a Poisson process, each storm consisting of a random number of cells that
deposit a random amount of rain for a random period. The arrivals of cells form a
stochastic series of points subject to clustering. Two models have been used in the
literature to represent such a clustered point process : the Neyman-Scott process and
the Bartlett-Lewis process.

The paper proposes a new method of parameter estimation for the Neyman-
Scott Rectangular Pulses Model (NSRPM). It also derives the statistical properties of
this new estimator, which permits the construction of confidence intervals.

To take into account the spatial variability of precipitation, a multi-site model
(MS-NSRPM), reflecting the underlying spatial-temporal structure of rainfall directly
through between-sites interactions, has been developed. The new model consists of a
two-dimensional rainfall process, which marginally is a Neyman-Scott process in each
dimension. The association between the two processes is handled through the
generation of correlated random variables and the thinning of a Poisson process
representing storms at a base (fictitious) location. Figure 1 shows a simplified
representation of the multi-site model.

Figure 1. Schematic depiction of the multi-site Neyman-Scott rectangular pulses
model: master process and bivariate correlated generation.
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Two of the biggest advantages of this model are its simplicity and flexibility.
An extensive analysis of 23 rainfall stations situated on the Swiss Plateau has provided
guidance for the development of the model. The model has been validated by its
capacity of reproducing the cross-correlation function at various time lags and the
probability that two sites are simultaneously dry during an arbitrary time interval of
given length. The theoretical values of the cross-correlation has also been derived.
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The talk will describe some recently published work (Brown, Fearn and
Vannucci, 2001) in which a spectroscopic calibration problem is tackled by regression
on selected wavelet coefficients.  The problem is to predict the composition of biscuit
doughs from measurements of their near-infrared spectra, a regression problem where
the predictor variables correspond to a continuous curve measured at hundreds of
discrete points.  This is tackled by applying a wavelet transform to the curve (the
spectrum) and then selecting, using Bayesian methodology, a modest number of
wavelet coefficients as predictor variables.
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Let ( )
1,...,

,t t t T
x y = . be an i.i.d. sample of vector valued r.v. satisfying the

regression model ( ), ,t t ty g x θ ε=  for each t. The disturbance ε  follows a known

distribution, g is known and θ  belongs to a compact subset of q" . The associated

loglikelihood is ( ) ( )1
1
ln

T

T tT t
L lθ θ

=
= ∑ , denoting ( )tl θ  the law of ty  knowing

( ),tx θ . Instead of maximizing the loglikelihood, it can be sometimes easier to
maximize an approximation of this quantity. Nonetheless, the criterion functions have
sometimes no analytical expressions. This is often due to the presence of integrals of
large dimensions. This theoretical and numerical difficulty has been circumvented by
simulation techniques. The main idea is to use a random function whose expectation
provides the criterion. This function is called a simulator. This related expectation is
approximated drawing independent realizations of some underlying random variables.

The application of this general principle has lead to the following methods of
estimation: Simulated Nonlinear Feast Squares (SNLS), Simulated Maximum and
Pseudo-Maximum Likelihood (SML and SPML), Method of Simulated Moments
(MSM)...

In this paper, we propose to approximate each term ( )tl θ  by a kernel estimator

based on some i.i.d. simulated sample ( )
1,...,

s
t s S

ε
=

 drawn from the law of ε . Denoting

( ), ,s s
t t ty g x θ ε= , the likelihood ( )tl θ  is estimated by the kernel method viz

( ) ( )
1

1
| , .

sS
S S t t

t t t m
s

y y
l y x l K

Sh h
θ θ

=

 −≡ ≡  
 

∑
Here, h it denotes a bandwidth sequence which tends to 0 when S tends to the infinity.

For technical reasons, it is necessary to trim the too small values of S
tl . It can be

done by considering the nonparametric simulated loglikeIihood

( ) ( )( ) ( )
1

1
ln ,

T
S S S
T S t t

t

L l l
T

θ τ θ θ
=

= ∑#

where Sτ  is a sufficiently regular function such that ( ) 0S xτ =  if x hδ<  and

( ) 1S xτ =  if 2 ,  >0x hδ δ< . Thus, our estimator is defined by

( )ˆ arg max .S S
T TL

θ
θ θ

∈Θ
= #

Under some regularity conditions, it is shown that ˆS
Tθ  is strongly consistent,

asymptotically normal and asymptotically efficient, when S and T grow to the infinity
simultaneously at some convenient rates. Moreover, the same methodology can be
applied to nonlinear dynamic models.
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1. Introduction and Modelling

Statistical methods for survival data and other time-to-event data are widely
used in many fields. When managing this kind of data, some lifetimes of individuals
may be censored. By censored data we mean that, in a potential sample of size n, a
known number of observations may be missing at either end (single censoring) or at
both ends (double censoring). This type of censoring is often called Type II- or
failure-censoring. In this paper the important exponential lifetime model is considered
and studied from a Bayesian perspective based on a doubly failure-censored sample.
Consider then a random sample of size n from an exponential lifetime distribution
with unknown mean µ, and let r sx ,...,x  be the ordered observations remaining when

the ( 1)r −  smallest and the ( )n s−  largest observations have been censored. The

likelihood function for µ given ( ,..., )r sx x=x  is proportional to:

(1) ( ) ( ){ } ( ){ } 1
exp 1 exp

rm
rL xµ µ ξ µ µ

−−| ∝ − − −x x ,

where 1m s r= − +  and ( ) ( )s

i si r
x n s xξ

=
= + −∑x .

In the case of censored data, ML estimators may be of limited value, so it is
important in our situation to asses a prior distribution for µ. In this paper we consider
prior densities of the form

(2) ( ) ( ) ( )1exp  ,  0bg aµ µ µ µ− +∝ − > ,

where to be a proper (inverted gamma) density, we must have 0a >  and 0b > . The
moment- and percentile-matching methods may be used to fit (2). With prior
ignorance about µ, Jeffreys' prior, ( 0, 0)a b= =  can reasonably be accepted.

By combining (1) with (2), the posterior density of µ is obtained to be

(3) ( )
( ){ } ( ){ } ( ){ }

( ) ( )

1

1

exp 1 exp
,   0

,

b m r

r

b m
r

a a x
g

b m F a b m

ξ ξ µ µ
µ µ

µ ξ

+ −

+ +

 + − + − − | = >
Γ + + +  

x x
x

x
,

where [ ] ( ) ( )( ) ( )1

10

1, 1 1 0  1
r j v

r rj

r

j
F u v j x u , u,v F

− −

=
−= − + > ≡∑ .
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2. Point and Interval Estimation

Under squared-error loss function, the Bayes estimator of µ is given by

[ ] ( )
( )

( ) ( ), 1
,   1

1,
r

r

F a b m a
E b m

b mF a b m

ξ ξ
µ µ

ξ
+ + +  +  = | = + > + −+ +    

x x
x

x
# .

Similarly, the Bayes estimators of the hazard rate, 1λ µ= , and the survival

function at 0t > , ( ) ( )PrtR R t X tµ µ= | = > | , are [ ]  Eλ λ= | x#  and [ ]t tR E R= |x# .

If the absolute-error loss function is deemed suitable, the posterior medians represent
the appropriate Bayes estimators. If there is no compelling reason to accept some
specific loss function, the highest posterior density (HPD) estimator will be used.

Another common Bayesian approach to inference is to present credible sets or
intervals for µ. For unimodal posterior density (3), the ( )100 1 %α−  HPD credible

interval [ ]1 2,c c  for µ must simultaneously satisfy ( ) ( )1 2 1S c S c α| − | = −x x  and

( ) ( )1 2g c g c| = |x x .

3. Hypothesis Testing

In Bayesian analysis, the problem of deciding whether µ lies in 0Ω  or in 1Ω ,

where 0Ω  and 1Ω  are two disjoint subsets of the parameter space ( )0,Ω = ∞  is

solved by just calculating the posterior probabilities ( ) ( )0 0Prp µ= ∈Ω |x x  and

( ) ( )1 1Prp µ= ∈Ω |x x  and deciding between 0H  and 1H  accordingly. When

considering a " 0 ik− " loss (i.e., ( ), 0iL aµ =  if iµ ∈Ω  and ( ), i iL a kµ =  if 1iµ −∈Ω ,

where ia  represents the action of accepting iH , 0,1i = ), action a1 will be taken if and

only if (iff) ( ) ( ) ( )10 1 0 0 1B k q k q>x , where ( )0 1q q  denotes the positive prior

probability of ( )0 1Ω Ω , ( ) ( ) ( ){ } ( )10 1 0 1 0/B p p q q=x x x  is the Bayes factor in favour

of 1Ω .

An appropriate approach to conduct a Bayesian test of the form 0 0:H µ µ=
against 1 0:H µ µ≠  is to give 0µ  a probability 0 0q > , while giving { }1 0µ µ∈Ω = Ω −

the density ( )1 1q g µ , where 1 01q q= −  and 1g  is a proper density.

Another method states that the null hypothesis 0 0:H µ µ=  can reasonably be

accepted iff the ( )100 1 %α−  HPD credible set for µ, ( )Cα x , contains 0µ . It is

limited to cases where the prior information on µ is vague; in particular, where 0 0q = .

In order to test 0 0:H µ µ≤  against 1 0:H µ µ> , a reasonable loss function is

“ ( )0 iK µ− ” loss, i. e., ( ) ( ) ( )1, i i iL a K Iµ µ µ −= ∈Ω , where ( )0K µ  and ( )1K µ  are

non-decreasing positive functions of ( )0µ µ−  and ( )0µ µ− , respectively. The Bayes

test rejects 0H  iff ( ) ( ) ( ) ( )
1 0

0 1K g d K g dµ µ µ µ µ µ
Ω Ω

| > |∫ ∫x x , where ( ]0 00,µΩ =

and ( )1 0 ,µΩ = ∞ . In particular, under “ 0 ik− ” loss and prior (3), the Bayes test rejects

0 0:H µ µ≤  iff ( ) ( )0 1 0 1S k k kµ | > +x .
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Random field signal processing problems arise in different applied areas such as
engineering (Ekstrom, 1982), medicine and biology (Christakos, 1998; Louis, 1992;
Lubbig, 1995), geophysics (Campi, 1980; Santosa and Symes, 1988; Trampert,
Leveque and Cara, 1992), hydrology (Dietrich and Newsam, 1989; Kitanidis and
Vomvoris, 1983; Sun, 1994), metereology (Huang and Cressie, 1996; Wikle and
Cressie, 1997), etc. In the case where the random model of interest represents the
input of the system, and the random output model is known, with some prior
information about the random input model being available, the problem can be
formulated as an inverse reconstruction problem. When the available information
comes from the observation of the output random field in a subregion of its domain,
the problem can be formulated as an inverse extrapolation problem. Under suitable
conditions, the Orthogonal Projection Theorem provides, in both cases, a least-squares
linear pointwise approximation of the random input. In this paper, however, we are
interested in a functional linear approximation of the input random field, which leads
to considering a weak-sense formulation of these problems. That is, we study the
problems of functional linear inverse reconstruction and extrapolation of an input
random field in a system defined by an  integral equation. These problems are solved
using the theory of reproducing kernel Hilbert spaces and of distributions on fractional
Sobolev spaces. More specifically, we consider a class of generalised ordinary random
fields with associated reproducing kernel Hilbert space (RKHS) isomorphic to a
fractional Sobolev space. For this class, the mentioned problems can be solved in the
second-order weak-sense. Furthermore, a discretization of the information available in
both cases is obtained by considering a wavelet-based orthogonal expansion of the
type derived in Angulo and Ruiz-Medina (1998, 1999) for the random fields involved.
Truncation of these orthogonal expansions leads to a finite-dimensional approximation
of the inverse reconstruction and extrapolation problems considered.

An important example of random field linear systems within the class studied in
this paper is given by fractional integration of fractional Brownian motion with
different orders of regularity. Systems of this type often arise in the study of processes
that display long-range dependence, for example, in turbulence theory (Anh et al.,
1998, 1999). For these systems, both the input and output random fields admit second-
order weak-sense linear representations, in terms of generalised random functions with
associated RKHSs isomorphic to appropriate fractional Sobolev spaces. Hence, the
wavelet-based approach presented in this paper can be applied to solving the
corresponding inverse reconstruction and extrapolation problems. Simulation studies
using different values of the parameters defining the system considered in this
example have been developed to illustrate this approach.
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1. Introduction

Infectious diseases dynamics is usually expressed in terms of the Susceptible-
Infective-Removed states of members in the community under study. Models based on
this framework are denoted with the acronym SIR (see Becker and Britton(1999)).

For discrete time data the chain binomial epidemic model offers two parameters
of easy interpretation: the number of susceptible individuals ts   at time t, and the

probability of any of these susceptible individuals being infected tπ . The number of

new infected individuals  appearing at time t+1, 1ty + is considered a Binomial( ts , tπ )

variable and,  accordingly, the number of susceptible individuals decreases to

1ts + = ts - ty .  The probability tπ  should depend on the number of infective individuals

at time t, and it seems reasonable to take this probability increasing with this number
of  infective individuals.

Although this models has been conceived for household outbreaks, we can
borrow its main structure to cope with aggregated data in a larger temporal and
geographical scale. It offers a simple and natural explanation of the bell-shaped form
of epidemics waves and can explain the non-linear structure of infectious diseases.
However in this case, the number of susceptible  and infective individuals are usually
unknown. The extension of such models to  the stochastic time series approach is
consider by Finkestadt and Grenfell (2000) for the study of chilhood diseases as
measles (TSIR models).

By the other hand, Geographical studies of epidemiological data over time
require space-time regression models in order to capture the influence of covariates
and spatial interactions along the studied period. When considering infectious
diseases, a direct influence of mortality/morbidity values between neighbouring
regions is expected. Spatial auto-regressive models, such as Besag's auto-models (see
Besag (1974)) and  Cressie(1993)), seem a  natural and intuitive approach.

In this paper we consider a dynamic auto-Poisson model which embodies the
SIR structure as in Finkestadt and Grenfell  (2000) but taking into  account  the spatial
dependences of infectious diseases. We apply this model to the study of meningitis
mortality data in Spain from 1960-1990.

2. Dynamic Auto-Poisson Model
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We consider data collected in a given geographical region (provinces in a
country) in a large temporal scale (such as years).  Dealing with meningitis data, we
face an important infra-declaration in such reported cases due to the large proportion
of asymptomatic infective individuals who are not detected as sick. They are active
transmitters of the disease and become immune eventually decreasing the number of
susceptible individuals.These limitations impede a detailed assignment of ts as before

and we will resort to an indirect estimate as in Finkestadt and Grenfell (2000). Let be

jty , jtr , jts and jtπ the number of cases, reported cases, number of  susceptibles and

probability of infection at time t and location j, for j=1,…,L and t=1,…,T. (with jts

being the number of susceptible at the end of the aggregated period). If jtρ  denotes

the reported rate, we have jt jt jty rρ= . Moreover, if  the probability of infection is

small with respect to the number of susceptible population, we can consider :

1~ ( ) log( ) log( ) log( )jt jt jt jt jtY Po sλ λ π −= +

For every region j, log( jtπ ) depends on infective individuals in past at this site

and neighbouring regions ( ( )jδ ):

1 , 1 2 , 1
( )

log( )jt j t ij i t
i j

y y
δ

π β β ω− −
∈

= + ∑
with ijω  fixed  weights. As in  Finkestadt and Grenfell (2000) we approach log( jts ) in

a   first step, using the SIR mechanism and locally linear regressions (see Fan and
Gijbels (1996)). jtρ  are also estimated at this stage. Taking ˆjt jt jty rρ=  we can apply

GLM procedures in order to obtain parameter estimations for 1 2( , )β β  (see Fahrmeir
and Tutz (94)). The study of meningitis mortality data in Spain from 1960-1990 is
performed with this model in order to undertake the mechanism of the disease and
perform one-step-ahead predictions.
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Assuming that the distribution function F is heavy tailed satisfying

(1)
log (1 ( ))

lim 1
logx

F x

m x→∞
− − =

we propose a new type of inference on the parameter m, namely an estimate of m
and a test of the hypothesis

0
:mH F  satisfies (1) and

(2) 0lim inf (1 ( )) 1m
x x F x→∞ − ≥ .

The inference is based on the tail behavior of the sample mean nX  under
(1), which is shown to distinguish sharply the type of tails. The estimate and test

are based on the empirical distribution function of nX  taken from the k
independent samples of fixed size n and the inference is asymptotic as k to
infinity. The asymptotic (normal) distribution of the estimate and of the test
criterion under 

0mH  is derived. Numerical results demonstrate good properties of

both estimate and the test of m.
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1. Introduction

Suppose the data represent a sample of p normalized variables for a given set of n
individuals. The selection of those variables from a population of variables had new
contributions in the context of a Bingham population (see Gomes, 1987 and Figueiredo,
2000). These authors admitted that the sample of variables comes from a Bingham
population and then it is important to verify if there are any outliers in the sample.

In this paper to test the null hypothesis that all variables of the sample come
from a Bingham distribution, we generalize to the n-sphere a test of discordancy
proposed by Best (1986) for the sphere. We analyze the performance of the test in the
case of an alternative hypothesis that admits one variable from a Bingham distribution
with another concentration parameter or with another directional parameter and the
remain variables of the sample from the same distribution of the null hypothesis.

2. Test of Discordancy

Let 1 2| | ... | pX  =  x x x  be a sample of p variables from a Bingham

distribution. We consider a case particular of the Bingham distribution Bn(u,ξ) with
density probability function given by

(1) ( )( )2
( ) exp , , , 0n nf K S Sξ ξ= < > ∈ ∈ >x u x x u

where K is a normalizing constant, Sn represents the surface of the n-sphere; u is a
directional parameter and ξ a concentration parameter.

Let w be the largest eigenvalue of  X  tX and w(j) the largest eigenvalue of
X  tX-xj  

txj , where xj is the variable that we remove from the sample. The statistic of
the test is defined by

(2)
( )

( ) ( )
0(1)

0

2 1 ( 1)
max

2 1 ( 2) 1p j

w(j) w n
H

p w(j) p n

ξ
ξ

+ − −
=

− − − −

3. Simulation Study

To evaluate the performance of the test we use the power that is the probability
of the test reject the most discordant variable.

We determine the estimate of the power of the test for some sizes of the sphere,
some sizes of the sample and some values of the parameters. We consider n=10,
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p=10,30,50, ξ0=15,20,50 and n=20, p=10,30,50, ξ0=20,25,50. We use two models A
and B. For both models the null hypothesis H0 is that all variables of the sample come
from the Bingham distribution Bn(en, ξ0). In model A the alternative hypothesis H1 is
that one of the p variables comes from Bn(u,ξ0), where the angle between u and en is
θ, and the others p-1 variables come from Bn(en, ξ0). In model B the alternative
hypothesis H1 is that one variable of the sample comes from Bn(en , ξ1), where ξ1<ξ0

and the others p-1 variables from Bn(en  , ξ0). We determine the 0.95-empiric
percentiles of the statistic, using 10000 replicates of that statistic, under the null
hypothesis. Then, we use 3000 replicates of the statistic, under the alternative
hypothesis to estimate the power of test in both models.

4. Conclusion

Firstly, in model A the estimated powers of the test increase with the angle θ
since if ξo is not very small. Additionally, for an angle θ fixed, the estimated power
increases with ξo and for ξo not very small the estimated power decreases with n if θ is
not very small.

Secondly, in model B the estimated powers decrease with ξ1, since the parameter ξo

is not very small. Additionally, for ξ1 fixed, the estimated power of the test increases with
ξo and increases with n if ξo sufficiently large for each n considered.

Finally, the estimated power of the test decreases with the sample size, which is
valid for every discordancy test. This is due to the fact: as the size of the sample
becomes larger, more variables are in alternative with the same distribution of the null
hypothesis and consequently smaller is the effect of the contaminant variable.
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Control charts are tools widely used in industry to detect abnormal behaviour in
manufacturing processes. In general we assume that the process observations are from
a normal population with mean µ  and standard deviation σ . However, even if in
potential normal situations there is some possibility of having disturbances in the data,
and we have then the need of finding an efficient and robust estimator to monitor the
process parameters. Simulation studies for some symmetric and asymmetric
distributions related to the normal allow us to suggest the total median as a robust
location estimator, and we here analyse the robustness of the total median chart
comparatively to the sample mean chart.

Let ),,( 1 nXX …  be a random sample of size n taken from a population F(.).
The total median is given by

nji
xx

MdBP
XX

MdT
jin

i

n

ij
ji

ji

ji ≤≤≤




 +
=∑ ∑ =

+
=

= =
1,,

2 2

)()(

1

)()( αα ,

where MdB denotes the median of the bootstrap sample ),,( **
1 nXX …  associated to

the n observations ),,( 1 nxx … , through a resampling with replacement. The total
median can also be expressed as a linear combination of the sample order statistics,

∑=
=

n

i
ii XaMdT

1
)( , where the coefficients ia  are related with the previous coefficients

ijα . The notation  niX i ≤≤1,)( , is used for the ascending order statistics associated to

the sample niX i ≤≤1, . Simulation studies have been used to evaluate the

performance of the estimators X  and MdT in terms of the resulting mean square error.
We have concluded that the sample mean is an efficient estimator for the mean value
of a symmetric distribution with moderate tails or with moderate skewness, although it
is not robust. For heavy-tailed and/or high-skewed distributions we suggest the total
median as a robust and efficient location estimator for small-to-moderate samples.
Details may be found in Figueiredo and Gomes (2000). More details about robust
estimators and their properties can be found in Hoaglin et al. (1983).

To investigate the robustness of  the X  and the  MdT control charts to monitor
the parameters of a process we have computed the false alarm rate of these charts, in
order to evaluate deviations from normality. A similar study of robustness of the
EWMA control chart to non-normality was done by Borror et al. (1999). In our study
we have considered, without loss of generality, known µ  and σ , and we have
computed the 3-sigma control limits for samples of size n = 3, 4, 5, 10, 20. Tables 1
and 2 present those control limits and the rate of false alarms whenever we consider
standardized data from some distributions with different skewness and tail-weight,
γ  and τ , respectively. Both charts X  and MdT cannot be considered robust to
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deviations from the normality assumption because the false alarm rates are quite
variable. This behaviour may be due to the skewness of the sampling distribution of
the control statistics and to the consideration of 3-sigma control limits. Nevertheless,
for small samples, the differences to the normal-case are smaller when considering the
MdT chart.

Distribution γ τ n =3 n=4 n=5 n=10 n=20

Normal 0.000 1.000 0.00266 0.00267 0.00280 0.00277 0.00275

χ 2
(20) 0.632 1.001 0.00428 0.00385 0.00365 0.00318 0.00327

χ 2
(10) 0.894 1.004 0.00550 0.00486 0.00442 0.00356 0.00330

Exponential 2.000 1.062 0.01175 0.01053 0.00931 0.00665 0.00489

T(20) 0.000 1.067 0.00343 0.00319 0.00315 0.00299 0.00280

Lognormal 1.750 1.143 0.01706 0.01679 0.01611 0.00635 0.00481

T(10) 0.000 1.145 0.00458 0.00428 0.00387 0.00335 0.00309

Logistic 0.000 1.212 0.00509 0.00459 0.00413 0.00356 0.00310

χ 2
(1) 2.828 1.218 0.01557 0.01412 0.01280 0.00934 0.00669

T(3) 0.000 1.721 0.01167 0.01117 0.01070 0.00910 0.00791

Control Limits ±1.73205 ±1.50000 ±1.34164 ±0.94868 ±0.67082

Table 1. False alarm rate of 3-sigma control limits X  chart

Distribution γ τ n=3 n=4 n=5 n=10 n=20

Normal 0.000 1.000 0.00270 0.00262 0.00276 0.00283 0.00277

χ 2
(20) 0.632 1.001 0.00405 0.00346 0.00295 0.00227 0.00237

χ 2
(10) 0.894 1.004 0.00511 0.00415 0.00316 0.00193 0.00268

Exponential 2.000 1.062 0.00950 0.00704 0.00433 0.00101 0.00064

T(20) 0.000 1.067 0.00325 0.00288 0.00268 0.00236 0.00206

Lognormal 1.750 1.143 0.01201 0.00805 0.00302 0.00097 0.00087

T(10) 0.000 1.145 0.00397 0.00340 0.00264 0.00181 0.00141

Logistic 0.000 1.212 0.00449 0.00356 0.00273 0.00161 0.00108

χ 2
(1) 2.828 1.218 0.01150 0.00797 0.00431 0.00057 0.00003

T(3) 0.000 1.721 0.00814 0.00550 0.00197 0.00020 0.00003

Control Limits ±1.74689 ±1.52029 ±1.39027 ±1.02141 ±0.75144

Table 2. False alarm rate of 3-sigma control limits MdT chart

Overall conclusion: although the MdT is an efficient and robust location
estimator for small-to-moderate samples, the use of control charts based on this
statistic must be carefully planned. In some situations of non-normality the false alarm
rate of this chart can be much smaller than expected, particularly as n increases.
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1. Background

Skeletal muscle constitutes the largest single organ of the body as it makes up
40-45% of the total body mass in humans and other mammals. Muscle fibres are
elongated cells arranged in parallel bundles that make up around 75-90% of the total
muscle volume. They can be classified into at least 3 groups according to their
biochemical (glycolytic/oxidative) and contractile (fast/slow) properties: (i) slow
twitch oxidative (SO); (ii) fast twitch oxidative glycolytic (FOG) and (iii) fast twitch
glycolytic (FG).

Their arrangement varies between species and is particularly unusual in pigs,
which present SO fibres organised in clusters. This pattern can be seen in cross-
sections taken from mature animals. This unique fibre arrangement is the final result
of the whole process of development, termed myogenesis. As the number of SO fibres
is relevant to meat quality, there are important commercial implications. The
improvement of meat quality therefore relies on the understanding of muscle
development and in particular of cluster formation.

2. Spatial Tesselations

Voronoi Tessellations are being used to model characteristics of individual
fibres and models are being developed to understand:  (1) the distribution of the
cluster positions, (2) interactions between clusters and (3) the number and
arrangement of fibres within clusters. The aim of this project is to develop stochastic



2º  QU A D R IM E S TR E  D E  2001

R E V I S T A  D E
E S T A T Í S T I C A

models of the processes creating observed fibre distributions, and to enable
interpretation of variations in these patterns in terms of variations in the model
parameters.

3. The Model

A two stage Simple Sequential Inhibition Processes (SSI) is used to simulate the
clustered patterns as follows:

Let SS1={a1, …, an} be the set of points obtained in the first stage (ai = (xi,yi))
and ϑ1={V(a1),…, V(an)} the Voronoi diagram generated by SSI1. This “Voronoi
grid” is the framework for the remainder of the simulation. In the second stage SSI2={
b1, …, bn} is a SSI process generated from SSI1 (SS2 ⊂  SS1) and it allocates cluster
seeds.  Each cluster is formed in another two “stages”: i) the number of fibres per
cluster is chosen randomly (U(a,b)) ii) the nearest neighbour of an existing cell is
chosen to be a member of the cluster until the number in i) is achieved.

4. Results

Fibre clusters appear not to be distributed at random. Moreover, it was found
that there was a minimum interpoint distance between cluster centers, which indicates
some cluster repulsion. Muscle fibre samples show a generally good agreement with
the suggested model.

fig.1: muscle fibre sample fig2: simulated pattern of clusters
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1. Introduction
A non-negative random variable or its distribution is frequently designed as a

risk. At a first approach any distribution in the positive axis can be used as the
associated model of severity for individual claims. However, we instinctively
distinguish between “well behaved” and “dangerous” distributions – heavy tails.  For
these, the large claims have great influence for the total claim amount. In fact, when in
practice actuaries try to estimate the mean (or variance!) of the claim amount, they use
resampling techniques in order to obtain an estimate; however, sometimes the
successive values do not stabilize for any limit value. One possible reason is that some
moments of the underlying distribution do not exist, as is the case of heavy tail
distributions.

One parameter that is used to have some insight of the weight of the tail is the
well-known tail index. Hill estimator (Hill, 1975) has been largely used in the extreme
value theory in order to estimate the tail index associated to a distribution function
with a positive index. One possible criticism to its use is the possible associated bias,
much depending on the top portion of the original sample used, and also the fact that it
is not location invariant which produces a big bias too.

Location invariance is specially important for insurance data. Here a new Hill-
type estimator is studied, based on the original Hill estimator, but made location
invariant by a random shift.

2. The Fire Insurance Data
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Figure 1. Sample paths of tail index for the 1256 portuguese data fire insurance
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Figure 2. Sample paths of tail index only for the top 47 portuguese data fire insurance
(excesses over 5 000 000 PTE)

Figure 3. Sample paths of tail index only for the top 27 portuguese data fire insurance
(excesses over 10 000 000 PTE)

In Figures 1-3 it is evident the different pattern behaviour for the tail index,
much depending on the high level considered for the retained excess values, if the
estimators are not location invariant.

The estimators here plotted are the new proposed Hill-invariant (Fraga Alves,
2000), the traditional Hill (Hill, 1975), the Moment (Dekkers et al., 1989), the
Pickands (Pickands,1975), which is also location invariant, JIM1 and JIM2 denoting
some recent estimators considered in Gomes et al. (2001).

Notice the flat pattern of the new estimator, adapted in such way that
beforehand it is possible to estimate the weight tail index, independent of the high
level considered, once its distribution is independent of whatever location considered.
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Let 1 2, ,...X X  be i.i.d. random variables with distribution function F . The

distribution is in the domain of attraction of an extreme value distribution if and only

if 
1

:
1

U
F

←
 =  − 

 satisfies an extended regular variation property:

( ) ( ) 1
lim

( )t

U tx U t x

a t

γ

γ→∞

− −
= ,

for all 0x >  with γ a real-valued parameter and  a  a suitable positive function. The

limit function should be interpreted as  log x  for 0γ = . The speed of convergence of
the partial maxima towards the limit distribution and also the asymptotic normality of
estimators of the parameter γ  (and other quantities) are controlled by a second order

extended regular variation property:
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A t
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ρ γ ρ γ

+

→∞

− −
−

− −
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+
 
 
 

,

for all 0x > with ρ  the non-positive second order parameter and A  a suitable positive

or negative function. As before the limit function is defined by continuity for 0γ =
and/or 0ρ = . The function A , which is regularly varying of order ρ  and tends to

zero, represents the speed of convergence. Hence large values of ρ  corresponds to

rapid convergence, whereas for example 0ρ =  means vary slow convergence
(logarithmic or even worse).

Estimators of e.g. γ  are generally functions of a number, say k , of top order

statistics. In order to get asymptotic normality (or even consistency) for those
estimators one needs  as ( ) / 0k n n → , as the sample size n  tends to infinity, but this

still leaves much freedom. Adaptive optimal choices for k  are known. For those
choices one needs to estimate  ρ , the second order parameter. Up to now only
estimators are known with rather bad behaviour.

We present an estimator for ρ , under the assumption that 0ρ < , which

converges at a polynomial rate. The idea behind the estimator (or in fact a class of
estimators) is as follows.
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Most estimators  of γ  have the following type of expansion:

( )ˆ ˆ( ) ( , ) ( / ) ( / )n
p

P
k B A n k o A n k

k
γ γ γ γ ρ≡ = + + +

( n → ∞ ) where nP  is asymptotically normal, the letter B indicates bias and the
function A   is as before.

Now take three estimators 1̂γ , 2γ̂ , 3γ̂ , depending on the same number k  of top

order statistics. Then

( )
(1) (2)

(1) (2)

1 2 ( , ) ( , )
ˆ ˆ ( / ) ( ( / ))n n

p

P P
B B A n k o A n k

k
γ ρ γ ργ γ

−
− = + − +

Hence, if k  is chosen such that ( / )k A n k → ∞  (which one can achieve in
practice), then

(1) (2)1 2
( , ) ( , )

ˆ ˆ

( / )
p B B

A n k γ ρ γ ρ
γ γ−  → −

and in fact

(1) (2)
( , ) ( , )1 2
(2) (3)

2 3 ( , ) ( , )

ˆ ˆ

ˆ ˆ
p B B

B B
γ ρ γ ρ

γ ρ γ ρ

γ γ
γ γ

−−  →
− −

( n → ∞ ), thus identifying ρ  asymptotically.

We have carried out this program and have obtained asymptotic normality for
the resulting estimator at a polynomial rate.

For this we need third order extended regular variation which has been
developed for the purpose. Simulations will be presented.
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1. Introduction and Main Results

It is well known that the concept of positive aging describes the adverse effects
of age on the lifetimes of units and it has been found very useful to classify life
distributions by stochastic orderings, as one can observe in the recent literature. For
definitions of several classes of life distributions, e.g. IFR, DMRL, NBU, NBUE and
their duals, see Bryson and Siddiqui (1969) and Barlow and Proschan (1975). Further,
there are many results in the literature about the preservation of these classes under the
formation of different types of coherent systems such as k-out-of-n, series and parallel
systems; see Esary, Marshall and Proschan (1970), Sabnis and Nair (1997),
Abouammoh and El-Neweihi (1986) and Sengupta and Nanda (1999) among others.

Recall that a k-out-of-n system functions if and only if at least k of its n
components work. In particular, a series system is an n-out-of-n system and a parallel
system is a 1-out-of-n system.

Deshpande, Kochar and Singh (1986) introduce some new aging criteria based
on the stochastic dominance of first and higher orders. In fact, second order stochastic
dominance (1) and (2) defined in their paper coincides with the increasing concave
( ICV≤ ) and increasing convex ( ICX≤ ) orderings. Using the increasing concave
ordering, Deshpande, Kochar and Singh (1986) propose the following aging classes.

Definition Let X be the lifetime of a unit with distribution function F. It is said
that:

(i) F is an increasing (decreasing) failure rate of second order distribution,
(2)X IFR∈ (DFR(2)), if 

1 2
( )t ICV ICV tX X≥ ≤   for all 1 20 t t≤ ≤ .

(ii) F is a new better (worse) than used of second order distribution,
(2)X NBU∈ (NWU(2), if ( )ICV ICV tX X≥ ≤   for all 0t ≥ ,

where ( / )tX X t X t= − >  is the residual life of the unit of age t.
Analogously, Cao and Wang (1991) introduce a new class of life distributions:

F is new better than used in the convex ordering, X NBUC∈ (NWUC), if
( )ICX ICX tX X≥ ≤   for all 0.t ≥

The closure of the NBUC class under the formation of parallel systems has been
proved by Hendy, Mashhour and Montasser (1993) in the case of independent
identically distributed (i.i.d.) components, and recently by Li, Li and Jing (2000) and
Pellerey and Petakos (2000) for independent components.

The objective of this work is to study the preservation of these aging classes
under the formation of different types of coherent systems. In particular, we obtain the
closure of the IFR(2) and NBU(2) classes and their dual classes under formation of
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series systems with independent and not necessarily identically distributed
components. Likewise, we get a shorter proof of the closure of the NBUC class under
parallel systems mentioned above.

On the other hand, note that DFR(2) and NWU(2) classes are not preserved
under the formation of parallel systems with i.i.d. components, and so does for k-out-
of-n and coherent systems. For example, if two i.i.d. components have exponential
distribution, then they are DFR(2) and NWU(2), but its parallel system does not
belong to these classes.

Likewise, a parallel system of two independent and exponentially distributed
components with different means is not IFR(2), but its components have this property.

Thus, IFR(2) class is not closed under the formation of parallel systems with
independent components. However, we prove its closure under parallel systems with
i.i.d. components.

The following relationships among classes may be obtained using the well
known properties of stochastic dominances:

IFR ⇒ IFR(2) ⇒ DMRL

⇓ ⇓ ⇓
NBU ⇒ NBU(2) ⇒ NBUE

and in this context, we give some examples which check that some of the above
relations are only one-way implications.
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1. Introduction and Main Results

In the literature, several papers have been devoted to compare two coherent
systems in the usual stochastic, hazard rate, reversed hazard rate and likelihood ratio
orders, which play an important role in reliability theory. In particular, Boland et al.
(1994) and (1998), Block et al. (1998), Khaledi and Kochar (1999) and (2000) and
Belzunce et al. (2001), among others, have studied stochastic comparisons, most of
them based on the preservation under the formation of k-out-of-n systems.

A of k-out-of-n system is a system with n components which works if and only
if at least k of the components function. In particular, the parallel and series systems
are 1-out-of-n and n-out-of-n systems, respectively. In this context, the survival
function of a k-out-of-n system coincides with the (n-k+1)th order statistic of the
component lifetimes, so the study of order statistics is also of interest to compare the
aging of these systems.

Likewise, some shifted orders have been introduced and studied by
Shanthikumar and Yao (1986), Brown and Shanthikumar (1998), Lillo et al. (2000)
and (2001) and Hu and Zhu (2001), and such orders are useful tools for establishing
interesting stochastic inequalities. In general, the shifted and proportional versions are
stronger orderings and easy to verify in many situations, so they are helpful to check
which components are more reliable, and consequently systems formed from them.

In this paper, we first study the preservation of the shifted and proportional
versions of the well known hazard rate, reversed hazard rate and likelihood ratio
orderings under the formation of coherent systems with different structure and
independent and identically distributed components.
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Then, we consider a set of independent but not necessarily identically
distributed components, and we establish comparisons in the above orderings between
two coherent systems with different structures formed from this set of components.

Finally, we show sufficient conditions to preserve the shifted and proportional
versions under the formation of two coherent systems with different structures and
formed from two sets of independent but not necessarily identically distributed
components.

All the results mentioned above allow us to establish new comparisons between
k-out-of-n systems with different number of components and supported failures, and
to get several known results on closure of the IFR, DRF and ILR classes given by
Esary and Proschan (1963), Nanda et al. (1998) and Franco et al. (2001), respectively.

Moreover, as consequences of our results, we obtain some recent results of Lillo
et al. (2001) on comparisons in the shifted likelihood ratio ordering of order statistics
formed from one and two different samples.

References

Belzunce, F., Franco, M., Ruiz, J.M. and Ruiz, M.C. (2001). On partial orderings between
coherent systems with different structure. Probab. Engrg. Inform. Sci., 15, 273-293.

Block, H.W., Savits, T.H. and Singh, H. (1998). The reversed hazard rate function. Probab.
Engrg. Inform. Sci. 12, 69--90.

Boland, P.J., El-Neweihi, E. and Proschan, F. (1994). Applications of the hazard rate ordering
in reliability and order statistics. J. Appl. Probab. 31, 180-192.

Boland, P.J., Shaked, M. and Shanthikumar, J.G. (1998). Stochastic ordering of order statistics.
In: Balakrishnan, N., Rao, C.R. (eds.), Handbook of Statistics: Order Statistics and
Their Applications, vol. 16. Elsevier, Amsterdam, pp. 89-103.

Brown, M. and Shanthikumar, J.G. (1998). Comparing the variability of random variables and
point processes. Probab. Engrg. Inform. Sci. 12, 425-444.

Esary, J.D. and Proschan, F. (1963). Relationship between system failure rate and component
failure rates. Technometrics 5, 183-189.

Franco, M., Ruiz, M.C. and Ruiz, J.M. (2001). A note on closure of the ILR and DLR classes
under formation of coherent systems. Technical Report, Dpto. Estadística e I.O.,
Universidad de Murcia, Spain.

Hu, T. and Zhu, Z. (2001). An analytic proof of the preservation of the up shifted likelihood
ratio order under convolutions. Technical Report, Department of Statistics and Finance,
University of Science and Technology of China, Hefei, Anhui, China.

Khaledi, B.E. and Kochar, S. (1999). Stochastic orderings between distributions and their
sample spacings-II. Statist. Probab. Lett. 44, 161-166.

Khaledi, B.E. and Kochar, S. (2000). On dispersive ordering between order statistics in one-
sample and two-sample problems. Statist. Probab. Lett. 46, 257-261.

Lillo, R., Nanda, A.K. and Shaked, M. (2000). Some shifted stochastic orders. In: Limnios, N.,
Nikulin, M. (eds.), Recent Advances in Reliability Theory. Birkhäuser, Boston, pp. 85-
103.

Lillo, R., Nanda, A.K. and Shaked, M. (2001). Preservation of some likelihood ratio stochastic
orders by order statistics. Statist. Probab. Lett. 51, 111-119.

Nanda, A.K., Jain, K. and Singh, H. (1998). Preservation of some partial orderings under the
formation of coherent systems. Statist. Probab. Lett. 39, 123-131.

Shanthikumar, J.G. and Yao, D.D. (1986). The preservation of the likelihood ratio ordering
under convolutions. Stochastic Process. Appl. 23, 259-267.



ME II

IM E S TR E  DE  2001

On the trends of Gini Coefficient in the Greek
Economic Environment during the years 1960 to 1996

Chris Frangos
Technological Educational Institution of Athens

Aghiou Spyridonos Str.,P.C. 122 10, Aigaleo, Athens, Greece
cfrangos@teiath.gr

In this paper we compute the values of Gini Coefficient(Gini(1912), Gini and
Galvani(1929), Kendall and Stuart(1969)), based on actual data of the annual income
declaration for all the Greek taxpayers  as from 1960 to 1996.

We calculate by  exponential smoothing the trend of  Gini Coefficient and we
show that it has an upward direction from 1980 to 1996.

Specifically, we show that the gap between rich and poor people had a constant
width between the years 1980 to 1992, whereas the same gap has been widened
between the years 1993 to 1996.

Treating the data as a Time Series, we compute the Residual Standard Error
(RSE) based on the methods of Quennouille (1949)  Jackknife and Bootstrap. For an
extensive bibliography and detailed presentation of the Bootstrap and Jackknife
resampling methods of nonparametric estimation,the interested reader can consult
Efron(1979a, 1979b, 1981a, 1987), Frangos(1980a, 1980b, 1983, 1984, 1987, 1991,
1994) and Miller(1974).

 Moreover, we forecast values of Gini coefficient for 1997, 1998,1999.
The importance of Gini Coefficient as a characteristic measure of the

distribution of income is obvious for the Economy of a country. High values of  Gini
Coefficient, (values approaching 1), show an asymmetric distribution of income and
they  are  a signal to the ministry of Economic Affairs of the government concerned
that it must provide the lower income groups of taxpayers with more jobs, relaxation
of  tax regulations and more social benefits.

 The policy, also, of the concerned government must be to increase the
investment leading to the construction of factories and  the improvement of the
infrastructure of the country in order to create  more   jobs and to bring to all the
population groups the benefits of economic development.

Recently, Greece has experienced a good degree of economic development. The
interest rates have been lowered, many public projects (highways, etc) are under
construction, inflation is 2.5% and the Economy is booming. On the other hand, we
have a high rate of unemployment (12%) ,particularly between the young people and
the women, and some population groups, like the farmers and the pensioners are
experiencing “the big stick” of the measures of economic austerity.

The Greek government is aspiring to bring the country  into the  EUROZONE
by 1-1-2002 and Greece is already a full member of the European Monetary Union.

In this climate of high expectations and sings of poverty, it is instructive and   it
could be beneficial to examine the values and the trend of Gini Coefficient for the
Greek Economy during the years 1960 to 1996.

In section 2 ,Gini  coefficient is defined.
In section 3,  treating the values of  Gini Coefficient for Greece as  a Time

Series,we find  the trend and  we forecast its value for 1997.
In sections 4 and 5 we use exponential smoothing and 5 year  moving averages

in order to  forecast the values of Gini coefficient  for 1997.
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In section 6 we propose some nonparametric methods for finding the Residual
Standard Error of Gini Coefficient, like the Bootstrap and the Jackknife method for
nonparametric interval estimation.

A possible factor for the recent high values of Gini Coefficient is the huge
problem of unemployment  in Greece  . A possible solution could be the adoption of a
more definite social policy for the creation of more jobs through investments and
business incentives with money coming from the Third Package of Economic
Assistance  which is going to be provided to Greece  by the European Union in 2000.
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1. Introduction

In intensive care, intelligent alarm systems are needed which detect critical
situations and intervention effects quickly and reliably. Clinical information systems
acquire the vital signs of the critically ill patients online at least every minute.
Statistical methods have already shown to be useful for online detection of patterns of
change in univariate physiological time series (Gather, Fried and Imhoff, 2000).

For modelling multivariate time series of vital signs we have to estimate a huge
number of parameters. Moreover, patterns in high dimensions are difficult to interpret.
Physicians typically select the most important variables according to their experience
and base their decisions on the patterns found in these variables.

Instead of selecting a subjective subset we apply statistical methods for
dimension reduction to compress the data into a few relevant variables. Dynamic
factor analysis (Peña and Box, 1987) allows to find latent variables which capture the
major part of the variability in the data. We use graphical models as a preliminary step
to impose a structure on the loading matrices since we want to ensure that the latent
factors can be interpreted by the physician. In the following, we apply this approach to
a 10-dimensional time series of vital signs with about 3800 observation times.

2. Dynamical Dimension Reduction

Graphical correlation models for multivariate time series allow to identify
linear, possibly time-lagged partial associations between the variables (Dahlhaus,
2000). An analysis of the data considered in this case-study identifies four groups of
variables which are strongly associated. These are the arterial pressures, the
pulmonary artery pressures including the central venous pressure, the pulse and the
heart rate, and the blood temperature, which does not have strong associations to any
of the other variables.

For the reason of interpretability we neglect the weak partial correlations
between these groups and search common factors for each group individually. Using
the approach suggested by Peña and Box (1987) we calculate the eigenvalues and the
eigenvectors of the sample autocovariance matrices. We find one factor to be
sufficient for every group and the correlations between the factors to be weak.
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3. Online Monitoring of the Factor Series

An experienced senior physician judged the factors as well as the original
variables and classified the patterns found into interesting and clinically relevant.
Almost every pattern detected in the original variables is also visible in the factors
with just two exceptions.

Bauer, Gather and Imhoff (2000) suggest a procedure for online detection of
(patchy) outliers and level changes, which is based on the Mahalanobis distance
between a vector containing the most recent observations and the centre of a
multivariate control ellipsoid. In Fried (2001) an additional tool for online detection of
slow monotone trends is suggested, which applies a weighted sum of the observations
with weights chosen according to a minimax-criterion (Abelson and Tukey, 1953). We
apply a combined chart consisting of these two tools to the factors and compare the
results to the classifications of the physician.

Almost every pattern judged to be clinically relevant by the physician is also
detected by the combined procedure, and most of the interesting patterns are detected,
too. The percentage of false alarms is found to be lower for the factors than for the
individual variables. This might be due to some smoothing effects since combining
closely related variables helps to reduce the noise.

4. Conclusion

Statistical methods for dimension reduction may be applied successfully to
compress the information contained in a multivariate time series into a few important
variables. Graphical models can be used to derive a partitioning of the variables into
strongly associated groups. Possibly there is common movement within such a group,
so that a factor model is useful to identify a few latent variables which actually drive
the multivariate time series. In our case-study, the factors obtained capture almost
every important pattern detected in any of the variables in the corresponding group.
This ‘coverage’ of patterns is better than for any of the observed variables. Hence the
factors found in the analysis can be considered to be a suitable lower dimensional
summary of the multivariate time series.
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We propose a discrete-time Bayesian hierarchical model for the plague-rodent-
flea ecological system which captures many of its essential features.   The model
accounts for the sampling variability arising from multiple independent sources of
data. The prior for the unknown population counts incorporates specific biological
hypotheses regarding the interacting dynamics of the two species, and the transmission
of Plague.

The population dynamics of the rodents are characterised by a discrete time
stochastic model, with density-dependent effects mediating the survival rate. Posterior
estimates of the lag-coefficients suggest the presence of a specialised non-migratory
predator, together with a huddling effect which causes an increase in winter survival
with increased autumn abundance.  We also deduce a relationship between the
summer growth rate of the fleas and the number of fleas-per-rodent in the previous
spring.

We propose an infection process which acknowledges the different roles played
by the fleas and rodents, and reflects a belief that epizootics arise when the
populations of the two species reach certain (relative) levels.  Although the data do
provide some support for this hypothesis, weak prediction of the plague-periods
suggest that external forces may also be important in determining the spread of the
disease.

This is joint work with E. Clare Marshall, Department of Epidemiology and
Public Health, Imperial College of Science and Medicine, London; Nils-Christian
Stenseth, Department of Biology, University of Oslo; Marit Holden, Norwegian
Computing Centre, Oslo; Vladimir Ageyev and Nikolay Klassovskiy, Anti-Plague
Research Institute, Almaty, Republic of Kazakhstan.
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Timely detection of a change in a process from one state to another is of
importance in many different areas. The optimality of likelihood ratio based methods
is discussed by e.g., Shiryaev (1963) and Frisén and de Maré (1991). Likelihood ratio
based methods are evaluated with respect to several measures of performance, such as
expected delay and predictive value Frisén (1992) in a frequentistic framework by
Frisén and Wessman (1999).

When more than two states are of interest, or when it is relevant to follow the
process when it wanders between the states, hidden Markov models are useful. Those
models are usually analysed in a Bayesian setting. Surveillance methods based on the
posterior probability are suggested by e.g., Smith and West (1983) and Hamilton
(1989).

It will be demonstrated that the decision problem for many applications can be
expressed using either of the two approaches described above. Requirements for
identical results are determined. Differences in performance when the two approaches
give different results are described. The different ways to control false alarms in the
two subcultures are of special concern and the consequences are demonstrated.

The two approaches are used for detection of turning points in business cycles
Andersson et al. (2001) and for natural family planning Andersson (2000). Maximum
likelihood estimators under different order restrictions Frisén (1986) are used in the
alarm statistics.
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In the traditional statistics it is assumed that the decisions taken up are based on
precise (crisp) data. If the data are imprecise or when a hypothesis, even if based on
crisp data, provides parameters that are not exactly determined then such a situation
leads the procedure to ideas of the  fuzzy sets theory and to application of its concepts
and methods.

Fuzzy random variables were first introduced by Kwakernaak (1978) and
analysed by Puri and Ralescu (1986), by Kruse and Meyer (1987) in their text-book,
by T. Gerstenkorn and E. Rakus (1990) and others. Testing of hypotheses with fuzzy
data was analysed by Casals et al. (1986), Kruse and Meyer (1987), and Saade and
Schwarzlander (1990). Decision making in statistics based on fuzzy information  was
examined by Tanaka, Okuda and Asai (1979), and by Buckley (1985). As it is
impossible to omit the notion of probability in fuzzy statistics, we find many papers
with quite different ideas proposed. A survey of these concepts is given in T.
Gerstenkorn and J. Ma�ko (1996).

Not long ago, in 1996, B.F.Arnold became engaged in fuzzy hypotheses with
crisp data. His idea was taken up and evolved by Taheri and Behboodian (1999) who
have proposed a new definition of the fuzzy hypothesis and the probability of the 1st
and 2nd type. On this ground they presented their version of the Neyman-Pearson
Lemma.

In the paper presented some interesting examples are given to compare
numerically and graphically the classical and fuzzy methods in the sens of Taheri and
Behboodian. In that manner the advantage of the proposed fuzzy testing method has
been enhanced.
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In 1911 Prof. Corrado Gini published a very vast statistical study initiating
consideration on the mean called later in the literature Gini's mean difference
(m.d.).The period of World War I undoubtedly disturbed the extension of Gini's ideas.
We have failed to ascertain whether someone was dealing with the m.d. in the
twenties. It did not gain popularity among theoreticians of statistics. However it is
worthy of notice since, unlike other quantities designed for measuring the dispersion
of a random variable, the m.d. is independent of any central measure of localization,
which can be seen from its definition

( ) ( ).x y dF x dF y
∞ ∞

−∞ −∞

∆ = −∫ ∫
The analytic investigation of the discussed characteristic is made difficult

because of the absolute value occuring in the formula. However, it facilitates the
computations on numerical data, which also concerns, as is well known, the mean
deviation (m.dv.). Hence, we sometimes encounter the investigations concerning the
m.d. connected with the m.dv. This is the case in Ramasubban (1958). For the normal
distribution, the exact standard error of the m.d. was given by Nair (1936). In 1952
Lomnicki obtained the very result by using a simpler method. In 1953, Kamat
calculated the third moment of the m.d. Following Kamat, Ramasubban (1956)
obtained an approximation of values for the fourth moment. Interesting properties of
the m.d. we can find in Yule and Kendall (1953) and also in Kendall and Stuart
(1963). An extensive bibliography of papers based on Gini's ideas is presented in
Giorgi (1990). In the paper we show an application of the m.d. to inflated distribution
(composing of any discrete distribution with the degenerate, i.e. one-point
distribution) introduced by S.N. Singh (1963) and M.P. Singh (1965/66 and 1966).

Definition We say that a discrete random variable Y is subject to the
generalized inflated distribution (i.e. the one with a deformation at any point i=l) if

its probability function is expressed by the formula

( )     if   
( )    

( )      if   0,1,2,..., 1, 1,...

h l i l
P Y i

h i i l l

β α
α

+ =
= =  = − +

where (0,1]  and  1-α β α∈ =  and h(i) is probability function of uninflated
distribution.

Making use of a result of Ramasubban (1958) we show the following
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Theorem Gini's m.d. for the generalized inflated distribution is expressed by
the formula

1 12 {2 ( 1) 1] 2 ( 1)}lF l m m lαβ∆ = + − − + +

1 11
2

1 0 1 0

2 [ ( ) ( ) ( ) ( ) ( ) ( )],
j jl

j i j i

j i h i h j j i h i h jα
− −−

= = = =

+ − − −∑∑ ∑∑

where:
m1 -  the expected value of an uninflated distribution h(i),
m1(l+1) - the right-hand incomplete moment (i.e.the one with the truncation of

the value of the variable to x=l inclusive) of the uninflated distribution,
F(l+1) - the distribution function of the uninflated distribution at a point

x=l+1.
In a few Corollaries we show an application of this formula to some discrete

inflated distributions.
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Based on n independent samples from a density f, the aim is to estimate f
nonparametrically by means of a kernel density estimation method. Usually the kernel
function K is taken to be a probability density with at least a couple of finite moments;
this ensures that the estimator itself becomes a density function, and methods based on
Taylor expansions make it possible to analyse its behaviour to a satisfactory degree.

The present paper deals however with a non-standard choice for K, the so-called
sinc kernel

K(u) = sin (u) / πu.

It is symmetric with (Riemann-)integral 1, but K and hence the estimator of f
take also negative values. We argue that this kernel is interesting and should be
considered despite this problem. In fact, it is known that the sinc kernel  estimator has
good asymptotic properties in terms of mean squared and  integrated mean squared
errors (MSE and MISE), see Davis (1975, 1977). We go further and find the exact
finite sample MISE of the sinc estimator, which turns out to be an appealingly simple
expression compared to most other kernels. The exact MISE formula allows to derive
expressions for the bandwidth minimising the MISE, which for example in the normal
density case f = Ν ( µ, σ2 ) simply reads h* = σ (log(n+1))-½.

Comparing the minimum finite sample MISE of the sinc kernel estimator with
the corresponding minimum MISE for the normal kernel (Marron and Wand (1992)
has expressions for this case), we find for example that the sinc kernel performs better
than the normal one for n ≥ 42, when the density f to be estimated is itself standard
normal. When n grows large, the minimum MISE goes to zero like (log(n))½ /n, faster
than the usual n-4/5 rate achieved by the traditional kernels.

Similarly we compare the sinc estimator with the normal kernel estimator for f
belonging to the classes of normal mixtures and skewed, normal densities (see
Azzalini (1985)). We also look to the sinc kernel estimator in higher dimensions.
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The problem of negativity of the estimator can easily be solved by a simple
modification described in Glad, Hjort and Ushakov (1999). Any density estimator
which is not a density, that is, is negative in regions or does not integrate to one, can
be corrected in a way that the outcome is a density and still guarantees that the MISE
is not increased. Hence, a corrected sinc estimator maintains the often superior
precision properties, and does not exhibit negativity problems.
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We consider estimating the value of a linear functional of infinitely
differentiable functions from noisy observations. Some classes of infinitely
differentiable functions with additional restrictions on smoothness in the frequency
domain are introduced. Such classes describe functions with a good localization in
both the time and frequency domains. We develop asymptotically minimax estimators
for such families and compute corresponding asymptotics of the minimax risk.

These results have two interesting features. First, the resulting optimal rate of
convergence depends, in general, on the smoothness of the signal in both the time and
frequency domains. Depending on how these two relate to each other, the optimal rate
can go all the way up to the parametric rate. Second, the corresponding asymptotically
minimax estimators are not coordinatewise. That is, they are not described by the
classical Wiener filter.
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The typical approach in change-point theory is to perform the statistical analysis
based on a sample of fixed size. Alternatively, one observes some random
phenomenon sequentially and takes action as soon as one observes some statistically
significant deviation from the “normal” behaviour.

Based on the, perhaps, more realistic situation that not every observation is
actually observed, we consider the counting process related to the original process,
and assume that this process is observed at equidistant time points, after which action
is taken or not depending on the number of observations between those time points. In
order for the procedure to stop also when everything is in order, we introduce a fixed
time horizon  n  at which we stop declaring “no change” if the observed data did not
suggest any action until then.

We propose some stopping rules and consider their asymptotics under the null
hypothesis as well as under alternatives. We also discuss possible (sequential)
estimators for the case when parameters in the model are unknown. The main basis for
the proofs are strong invariance principles for renewal processes and extreme value
asymptotics for Gaussian processes.
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Gomes et al. (1998, 1999) have worked with  estimators of the tail index 0γ > , of

an underlying heavy tail model F , based on the Generalized Jackknife methodology
(Gray and Schucany, 1972). Those estimators had the peculiarity of reducing the dominant
component of the asymptotic bias, through a linear combination of an adequate pair of
semi-parametric estimators of γ , being competitors to the well-known Hill estimator for

the tail index γ  (Hill, 1975), given by

(1.1) ( )(1)
1: :

1

1
( ) : ln /

k

n n i n n k n
i

k X X
k

γ − + −
=

= ∑ ,

where, as usual, :i nX  denotes the i-th ascending order statistic (o.s.) associated to the

sample ( )1 2, , ..., nX X X . The discrepancy we have got there between the behaviour of

one of the Generalized Jackknife estimators investigated, here denoted by ˆ ( )G
n kγ :=

(1) (1)ˆ ˆ2 ( / 2) ( )n nk kγ γ− , and the theoretical developments, lead us to turn back to the
Generalized Jackknife random variables based on an affine combination of the Hill
estimator at two different levels, and to consider the Generalized Jackknife estimators

(1.2)
(1) (1)ˆ ˆ( ) ( / ) ( / 2)

ˆ ( ) : , 1,2
1 ( / )

jG n j n
n

j

k p k n k
k j

p k n

γ γ
γ

−
= =

−
,

with 1( ) ln(1 ) / ln(1 / 2)p t t t= − − , and 2 ( ) 2p t t= + . The first estimator is specially
devised for Fréchet parents, the second one has a much wider scope, but they are both
going to be considered in a general semi-parametric set-up. They are both related to
different approximations of the quotient of asymptotic bias of (1)ˆ ( )n kγ  and of (1)ˆ ( / 2)n kγ ,

and they are, together with ˆ ( )G
n kγ , asymptotically undistinguishable. Despite of that, they

have quite distinct exact properties. While ˆ ( )G
n kγ  has always some bias, 1ˆ ( )G

n kγ  is almost

unbiased for an underlying Fréchet parent, and has a MSE at the optimal level
1 1

0 ˆ: arg min [ ( )]G G
n

k
k MSE kγ=  much lower than that of 0 0ˆ ˆ ( )G G G

n n kγ γ≡ , which is on its turn

lower than that of (1) (1) (1)
0 0ˆ ˆ ( )n n kγ γ≡ , the original Hill estimator at its optimal level.

We shall here present a robustness study of the estimators in (1.2), on the basis of a
multi-sample simulation of size 5000 10× , through the computation of the Relative

Efficiencies ( )•Re  of the two estimators, Re
jG  = (1)

0 0ˆ ˆ( ) / ( )jG

s n s nMSE MSEγ γ ,  j = 1, 2,
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where sMSE  denotes the simulated MSE of the estimator at its simulated optimal level,

for the following set of models in Hall's class (Hall and Welsh, 1985): the Fréchet model,
1/( ) exp( ) , 0F x x xγ−= − ≥ , with 1γ = , for which the second order parameter is 1ρ = − ,

the Burr model, ( )1//( ) 1 1F x x
ρρ γ−= − + , 0, 0, 0x γ ρ≥ > < , with 1γ =  and for

.25, .5, 1, 2ρ = − − − − , the Student-t model with 8, 4, 2,1υ =  degrees  of freedom,

for which .125, .25, .5,1γ =  and .25, .5, 1, 2ρ = − − − − , respectively, and, as a

curiosity, for a model outside Hall's class, the Out-Hall model, with a quantile function
1 2 (ln 1)(1 ) , 0 1t tF t t e t← − − −− = < ≤ , for which 1ρ = − , 1γ = .

n 100 500 1000 5000 10000 20000

1 2
Re / Re | ( 2)G G Burr − 0.77/ 0.71 0.73/ 0.72 0.71/ 0.72 0.68/ 0.72 0.67/ 0.71 0.66/ 0.70

1 2
Re / Re | ( 2)G G Stu − 1.09/ 0.75 1.74/ 0.86 1.36/ 0.79 0.68/ 0.71 0.66/ 0.70 0.66/ 0.69

1 2
Re / Re |G G Fréchet 1.19/ 0.92 1.48/ 1.09 1.62/ 1.18 2.02/ 1.45 2.25/ 1.59 2.51/ 1.75

1 2
Re / Re | ( 1)G G Burr − 1.02/ 0.94 1.15/ 1.13 1.22/ 1.22 1.38/ 1.49 1.45/ 1.63 1.53/ 1.79

1 2
Re / Re | ( 1)G G Stu − 1.17/ 0.86 1.01/ 1.02 1.18/ 1.10 1.20/ 1.32 1.26/ 1.43 1.33/ 1.55

1 2
Re / Re |G G Out Hall− 1.05/ 1.04 1.10/ 1.09 1.12/ 1.11 1.16/ 1.14 1.17/ 1.15 1.18/ 1.17

1 2
Re / Re | ( .5)G G Burr − 1.26/ 1.18 1.70/ 1.60 1.96/ 1.84 2.78/ 2.63 3.25/ 3.08 3.81/ 3.60

1 2
Re / Re | ( .5)G G Stu − 1.34/ 0.97 1.88/ 1.30 1.48/ 1.43 2.07/ 2.00 2.41/ 2.34 2.82/ 2.73

1 2
Re / Re | ( .25)G G Burr − 1.22/ 1.25 1.48/ 1.82 1.61/ 2.18 1.90/ 3.42 2.04/ 4.18 2.20/ 5.11

1 2
Re / Re | ( .25)G G Stu − 1.41/ 0.97 1.56/ 1.25 1.66/ 1.46 2.20/ 2.21 2.67/ 2.68 3.25/ 3.26

Two general comments:
1. For small values of the second order parameter ρ , here illustrated with 2ρ = − ,

the Generalized Jackknife estimators cannot overpass the performance of the
Hill estimator and have, for most of the models, simulated relative efficiencies
close to 70%. Anyway their sample paths are quite stable and close to the target
value.

2. For values 1ρ ≥ −  the Generalized Jackknife estimators perform quite well,

with stable sample paths and MSE’s often much smaller than the MSE of the
Hill estimator at its optimal level, even when we work with models outside
Hall’s class.
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Under a heavy tail framework, i.e., whenever we assume that the tail of the
model (.)F , underlying the data, is a regularly varying function with index 1/γ− ,

0γ > , the Pareto behaviour of the top scaled order statistics (o.s.),  1: :/n i n n k nX X− + − ,

1 i k≤ ≤ , leads us to a maximum likelihood estimator of γ  given by

(1.1) �� �

�

�
�

�

�� � �
�

γ − + −
=

 = − ∑ ,

which was introduced by Hill (1975), and is a consistent estimator of γ  whenever k is

intermediate, i.e., �� �= → ∞ , and � �� � �= , as � → ∞  (Mason, 1982). As usual,

�� ��  denotes the i-th ascending o.s., 1�i�n, associated to the sample

( )� �� � ���� �� � �  of independent random variables with common distribution function

(d.f.) ���� .

If  we instead consider the Fréchet behaviour of  �� � , and estimate jointly γ
and �  through maximum likelihood, under a type II censoring scheme, where we

have access to the top k+1 o.s., ( )� � � ����� � � � � � � � �� � � �− − += ≤ ≤ ≤ , we get an

estimator 	γ  which may be implicity written as

(1.2)
( ) ( )
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� � � �
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� �
� �
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In this paper, we have not worked with the estimator in (1.2), which is easy to
get iteratively for one sample, but leads to time-consuming simulations. We have
worked instead with an explicit estimator, denoted by � ��

� �γ , given by the expression

in the second member of (1.2), but with 	γ  replaced by the Hill estimator � �	

� �γ .Also,
since for intermediate sequences, the denominator of the last term in (1.2) may be
written as � � � � � , we suggest the explicit estimator

(1.3)

or alternatively,

(1.4) ,
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which also seem to be able to reduce the asymptotic bias of the Hill estimator for
intermediate, but reasonably large, values of  k.

We shall consider here the finite sample properties of the above mentioned
estimators of the tail index, for the Fréchet model,  , with

. The simulation results were based on a multi-sample simulation of size

 in order to guarantee small standard errors for the simulated characteristics,

the mean value , the Mean Squared Error , the optimal sample fraction,

, with , and the Relative EFFiciency , defined

as  =  = , with ,

and where  denotes the simulated  of the estimator at its simulated optimal

level. The simulator  of  for instance , denoted by , is  the average of 10

independent replicates of . In the following Table  we

show some finite sample properties of  (reproduction of results in Gomes and

Oliveira (1999)), , and , , for a Fréchet model.

n

100 1.108 0.952 1.058 1.040 0.045 0.013 0.022 0.019 1.855 1.440 1.544

500 1.063 0.980 1.032 1.027 0.014 0.003 0.006 0.005 2.114 1.555 1.607

1000 1.048 0.986 1.024 1.023 0.008 0.002 0.003 0.003 2.269 1.610 1.649

5000 1.030 0.995 1.013 1.012 0.003 0.000 0.001 0.001 2.726 1.755 1.776

10000 1.023 0.997 1.010 1.010 0.002 0.000 0.001 0.001 2.975 1.820 1.836

20000 1.018 0.998 1.008 1.008 0.001 0.000 0.000 0.000 3.313 1.903 1.916

A few general remarks:
1. The estimator  reduces excessively the bias of the Hill estimator, for

large values of k, but, at the optimal level, which is attained deep into the
tail, provides high efficiencies relatively to the Hill estimator.

2. The simplified estimators  and , although with a smaller

relative efficiency than , at their optimal levels, provide an interesting

bath-tube pattern for the , , flat for a wide range of k-

values, making thus less relevant the choice of the treshold.
3. The mean squared error of any of the censoring estimators is smaller than

that of the Hill estimator at its optimal level, for a wide region of k-values.
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1. Introduction

In this paper we consider the controlled Galton-Watson process (CGWP)
introduced by Sevast'yanov and Zubkov (1974) and defined in the recursive form:

where the empty sum is considered to be 0 and Xni are integer-valued i.i.d. random
variables with mean and variance denoted by m and  respectively. The variable Xni

is interpreted as the number of offsprings produced by the i-th individual in the n-th
generation and Zn represents the population size in the n-th generation. Each individual
generates new individuals, independently of all others, with indentical probability
distribution. The population size in the -th generation is controlled by the

function  with range and domain , assumed integer-valued for integer-valued

arguments and verifying that . It can be verified that the process

 is a Markov chain with stationary transition probabilities. In this work,

we derive some estimators for the offspring variance and investigate their asymptotic
properties.

2. Estimation of the Offspring Variance

Suppose the sample  for a CGWP is available. Then, taking into

account that:

 a.s.

and considering the moment method estimators for m studied in González et al.
(2000), we propose providing that , the following estimators for :
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3. Asymptotic Properties

In order to investigate asymptotic properties for the above estimators we

consider a CGWP with  and we assume the conditions given

in Bagley(1986) or Molina et al.(1998) which guarantee the almost sure convergence
of , suitably normed, to a non-negative, finite and nondegenerate in 0 random

variable W.

Proposition 1 On  it is verited, for every , that:

i)  converges in probability to 0 as 

ii)  converges in probability to 0 as 

where 

Proposition 2 On  and  are weakly consistent estimators for 

Proposition 3 It is verified for every real number  that:

i)  converges to  as 

ii)  converges to  as 

where  denotes the distribution function of the standard normal

probability distribution.
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1. Introduction

The Galton-Watson branching process with immigration (GWBPI) is a
wellknown modification of the standard Galton-Watson branching model in which the
immigration of individuals from an outer source is allowed.

We consider a GWBPI with the reproduction and immigration distributions
belonging to the power series family of distributions, i. e. a sequence 

defined recursively by

(1)

(with the empty sum defined to be 0) where  and

 are two independent sequences of i.i.d. non-negative integer valued

random variables with non-degenerate probability distributions  and ,

respectively, being , where  is a

function of k or constant, , with  and

; and , where 

is a function of k or constant, , with  and

. We also assume that Zo is a random variable with

distribution law .

Intuitively, Zn denotes the number of individuals (particles) and Yn the number
of immigrants, both in the nth generation. It is easy to verify that  is a Markov

chain with stationary transition probabilities.
Let  and , respectively, the

means and variances of the offspring and immigration distributions. It easily follows

that  ,  

 and .

There are some previous works on estimation for this branching model, either
using classical methods (e.g. see Wei and Winnicki (1990) or considering sequential
or bootstrap estimation (e.g. see Datta and Sriram (1995), Sririam et al (19919). The
purpose of this paper is to study the estimation problem from a Bayesian outlook,
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using the zero-one loss function. Thus, the maximum posterior density (MPD)
estimators for the main parameters are obtained.

2. Results

Suppose we observe , namely the number of individuals

and immigrants per generation until the nth generation. If we consider the following
conjugate class of prior distributions for :

(2)

where , we obtain the

posterior, distribution:

with , , ,

, and  (i.e. the -field generated by

Theorem 1 For a GWBPI (1) and considering the conjugate class (2), the MPD
estimator for the (i,j)-cumulant of the reproduction and immigration joint distribution
is

being  such that .

In Particular, the MPD estimators for the mean of tire reproduction and

immigration distributions are  and , respectively.
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1. Introduction    

For a long time, the main point of interest of the Classic Multivariate Analysis was
the study of the multivariate normal distribution. Nevertheless, from the middle of the 20th
century, it was necessary to extend the multivariate analysis to non-normal populations,
since there were many practical situations that might be better modelled by other
alternative probability laws.

An important class of these alternative distributions is the family of the multivariate
elliptically contoured distributions. This is a rich family which contains some of the better
known distributions, such as the normal law, the uniform one, and    t-Student, Cauchy and
Laplace distributions, among others. Moreover, the distributions of this family verify
many of the most important and useful properties that are certain under gaussian
hypotheses. So, for these distributions, the generalization of the normal distribution
properties drove to a new theory called Generalized Multivariate Analysis.

The problem of estimating the parameters of the multivariate elliptically contoured
distributions has been studied by several authors, for example, Fang and Zhang (1990),
Gupta and Varga (1992), etc. These authors investigated several properties of the point
estimators as unbiasedness, sufficiency, completeness and consistency, assuming that the
random vectors were identically distributed, but with a particular matrix-variate joint
distribution. They concluded that, under this assumption, many of the known results about
the normal multivariate law (collected by Anderson (1971) or Muirhead (1982)) still held
true for the elliptically contoured distributions.

Our aim in this paper is to study the efficiency property of a particular elliptically
contoured distribution: the bivariate Pearson type VII. More specifically, we consider the
class of unbiased linear estimators of the parameters, concluding that, although there are
not efficient linear estimators, the sample mean and the sample covariance matrix are, in
this class, those that minimize the determinant of the covariance matrix.

2. Efficiency Property of the Linear Estimators of the Parameters

We consider a sample of random vectors identically distributed as a bivariate
Pearson type VII distribution and with a joint distribution that belongs to the family of
matrix-variate Pearson type VII distributions. This choice is justified by the fact that the
bivariate marginal distributions of this family are also Pearson type VII.
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Under this dependence hypothesis, we prove the Cramer-Rao regularity conditions,
by using the results established by Magnus and Neudecker (1988), and we also obtain the
Fisher information matrix. A very important and useful property of this matrix is the
similarity to that of the normal law under independence hypothesis: the submatrices
situated in the diagonal are the Fisher information matrices of the individual parameters
and the rest are zero matrices.

In order to study the efficiency property, it is firstly necessary to find unbiased
estimators of the parameters. From the analogy with the normal distribution, it seems
reasonable to think that the sample mean and the sample covariance matrix, weighted by
an unbiasedness constant, might be efficient estimators of µµµµ  and Σ , respectively.
However, we show, on the one hand, that the sample mean is unbiased but the determinant
of its covariance matrix does not reach the Cramer-Rao lower bound; and, on the other, we
obtain an efficiency equation (as a function of the parameter q and the sample size, n)
which allows us to get particular conditions about q and n, under which the sample
covariance matrix, weighted by a constant, is an efficient estimator. Nevertheless, this
observation is not useful in practice because the parameter q must be fixed as a function of
the sample size, n, in the bivariate Pearson type VII distribution.

In order to look for efficient estimators of µµµµ  and less restrictive conditions on the
efficiency property of the sample covariance matrix, we have focused our study on wider
classes of unbiased estimators: the families of unbiased linear estimators of µµµµ  and Σ ,

respectively. Firstly, we prove that, in general, there are not efficient estimators of the
individual parameters inside these families, applying the results about moments collected
in Díaz and Gutiérrez (1996). Secondly, we establish some conditions about the weights of
the linear forms, under which the minimum of the distance between the determinant of the
covariance matrix and the Cramer-Rao lower bound is reached. And finally, we
demonstrate that the sample mean and the sample covariance matrix, weighted by an
unbiased constant, verify these conditions. So, we conclude that these estimators are the
linear unbiased estimators of µµµµ  and Σ , respectively, which minimize the determinants of
their covariance matrices. Finally, bearing in mind the structure of the Fisher information
matrix, we also show that the best unbiased linear estimator of the joint parameter, in the
sense of minimizing the determinant of its covariance matrix, is precisely the joint
estimator.
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1. Preliminaries

Let 
�� �� ����� �� � � , 

�� �� ����� �
 
 
  be i.i.d. random variables with continuous

distributions F and G respectively. Without any additional assumption assumption
about F and G, we consider the contrast

(1) 


�

� � � � �

� � � � �

	 � � � �

	 � � � �

=
 = − ∆

There is an extensive literature about these contrasts using nonparametric
techniques, in particular, the linear rank statistics

(2)
�

�

� �
�

 � � �
=

= ∑

where ��  are fixed constants, � is real valued function, ��  are the ranks of ��  among

�� 
 . The null hypothesis is rejected for small or large values of  .The Wilcoxon’s

test is a particular case of (2) taking �� � ��� � � �= = . Various results concerning

asymptotic laws, efficiency, etc. have been discovered for a broad subclass of these
tests. Here we present a new type of rank statistics with an election of �  that does not
fit in the cases studied before.

2. Definition and Main Results.

Given �
���� ∈ , we denote �β as the j-th digit in the dyadic expansion of � ,

i.e., � expressed in base 2 is of the form � �
� ���β β
In this paper we present a rank statistic of the form (1) given by the expression

�

�

� �

�
�

�

�
−

=

= ∑

We will call dyadic test to test based on the statistic � .Note that �  takes
values on the subset of (0,1)

� �

� �� � � �

�

� �
��� � 
 �
� �

� � � �

�

� � � � � �β β
+

=
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The null distribution of this statistic, unlike Wilcoxon’s Statistic, is easily
computed using combinatorial reasonings.
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The asymptotic distribution of �  for a wide class of  distributions �� �  is
given in the following theorem.  Here BMF(p) denotes the Binomial Multifractal
Distribution with parameter p, which is a continous singular distribution on (0,1).

Theorem  Suppose that ��� �
�

� � �
→∞

=   and  ��� �
�

� � �
→∞

= , and the limit

� �
�

� �
��

� �� �

� �

� �
λ

−→
=  exists, finite or not. Then  �

� �
� �

λ
λ

  →  + 
.

From the previous theorem, it follows that the asymptotic law of � only
depends on the left tails of �� � , which indicates a significative loss of information
about the distributions. However, this is not always the case. As established in the
following theorem, the dyadic test can have infinite efficiency with regard to
Wilcoxon's test.  Let �� ��� �  denote in this case the first and second derivatives of
� to the right.

Theorem Let �� ��  be the assymptotic relative efficiency of the dyadic test with

regard to Wilcoxon’s test in the contrast (1), and suppose that exists the right
derivative of F at ��
��ϑ −=  . Then

1. If ϑ = −∞  then �� �� = ∞ .

2. If ϑ > −∞  and
a. �� � 
� ϑ >  then � .

b.  then . In this case, the

efficiency depends on the level � .
c.  then 

�
� .
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Avant d'appliquer un modèle, quel qu'il soit, a des données réelles, une phase de
simulations est indispensable dans le but d'étudier la qualité des méthodes
d'estimations utilisées et partant, les propriétés asymptotiques des estimateurs.

Dans cet article, nous présentons une étude par simulation de la vraisemblance
partielle modifiée utilisée pour estimer les paramètres du modèle de Cox généralisée
tel que défini dans Bagdonaviçisus and Nikulin (1999).

Soit T���� une variable aléatoire qui exprime l'instant de décès d'un individu
soumis à la covariable x(.)=(x�(.),...,x�(.)); notons sa fonction de survie S����(t) = P(
T���� >t ) et soit

le taux de décès sous x(.). On note 
� � � �

� ��	 le taux de hasard cumulée sous x(.) :

� � � �
� ��	 est aussi appelée la ressource exponentielle utilisée jusqu'à l'instant t.

Les modèles de survie interviennent lorsque l'on veut exprimer la liaison entre
le taux de décès et le stress auquel sont soumis les individus. A cet effet, différents
modèles ont été proposées par plusieurs auteurs. Citons en particulier le modèle
suivant de hasard proportionnel, (PH) introduit par Cox (1972), et qui a connu une
grande célébrité et un grand champ d'application:

� � � � 

� � � � � � � � � � � ��� �� ,

où α
 est le taux de hasard de base (taux de hasard associée à x ≡ 0) et r est une
fonction positive. Une généralisation du modèle de Cox qui tient compte de la
dépendance, à un instant t, entre le taux de décès et la ressource utilisée (

� � � �
� ��	 ) est

proposée dans Bagdonaviçisus and Nikulin (1999).  Le modèle proposée  est désignée
par Generalized Proportional Hazard model (GPH). Il suppose que le taux de décès à
un instant t ne dépend pas seulement des stress mais aussi de leur passée exprimée par
la ressource utilisée jusqu'à cet instant, i.e.:

� � � � � � � � 

� � � � � � � � � � � � � � � � � ��� �� 	

où r et q sont deux fonctions positives.
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Différentes paramétrisations de r et q permettent de déduire différents modèles.
Dans cet article on se restreint à la paramétrisation suivante:

et  .

Le modèle de Cox linéaire généralisée GLPH qui en résulte est alors défini par:

Dans ce travail, nous donnons une formulation du problème d'estimation du
modèle GLPH, puis nous présentons les étapes des simulations réalisées et puis nous
commentons les résultats obtenus. Une application sur des données réelles est aussi
proposée.
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The problem of computing magnitudes of the form

where  is a stochastic variable and  is a parameter (which we will think of as
onedimensional), is frequently attacked by a simulation study: A natural estimator is

where  are independent variables with the same distribution as the original

. Sensitivity analysis in this problem amounts to the calculation of . If

differentiation and integration can be interchanged, so that

(1)

a natural estimator based on simulation is

(2)

However, (1) may fail blatantly, for instance in PERTs where  is not even
continuous. If (1) fails, better results may be obtained by an estimate based on finite
differences,

(3)

We will analyze the bias and variance of (3) in the presence of discontinuities of
. The approach is differential geometric, and the main results are based on the

coarea formula.
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We discuss some stochastic versions of the classical deterministic Ricker model

of the time evolution of the density of a population. Here   models the intrinsic
growth rate and  is an inhibitive environmental factor. The introduction of
demographic stochasticity leads us to a size-dependent branching process whose
quasi-stationary distribution (for some values of and small values of ) tends to

concentrate around the attracting period cycle of the deterministic system. When we
allow the environment to vary, modelled by an i.i.d. sequence of parameters , the

branching process may exhibit growth-catastrophe behaviour. The effects of
introducing a further independent source of randomness in the growth rate are also
analyzed.

The results are connected to modern chaos theory as our stochastic models are
non-local perturbations of a deterministic dynamical system.
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In multivariate regression problems we study the structural relationship between
the response variable Y and the d-dimensional vector of covariates X via the regression
curve F(x) = E (Y|X=x) with x being the realizations. Purely nonparametric models do
not make any assumption about the form of F(x) . The problem is then to fit a d-
dimensional surface to the observed data. A serious problem arising here is the amount
of data in higher dimensions needed in order to have enough data in a local
neighborhood of each point. A promising approach for dimension reduction to deal
with this so-called curse of dimensionality is additive modeling, an in economics
favorite structure anyway, see e.g. Deaton and Müllbauer (1980). Such a
nonparametric additive regression model has the form  F(x) = f1 (x1) + … + fd (xd),
where the fm, m=1,…d  are a set of unknown component functions. In the statistical
literature the nonparametric additive regression has been promoted by Buja, Hastie
and Tibshirani (1989), introducing the so called backfitting algorithm. An further
advantage in additive models is that they allow component-wise inferences. Important
problems of component analysis in economics are the question of significance as well
as of linearity, since nonlinearities can raise serious problems, e.g. of identification in
equation systems. In our article we focus on the general problem of testing for f1 the
null hypothesis of being of polynomial form. Here certainly, the cases of being linear
or constant, i.e. having no impact at all, are the most interesting one. For the ease of
presentation we give details only for the case of linearity, the constant case is the more
trivial one.

Ingster (1982, 1993) has shown that a test could be uniformly consistent against
a smooth alternative only if this alternative deviates from the null with the distance of
order n to the -2s/(4s+1) with s being the degree of smoothness. The structure of the
proposed rate-optimal tests essentially relies on the smoothness properties of the
underlying function though such kind of prior information is typically lacking in
practice. Spokoiny (1996) offered an adaptive data-driven testing procedure which
does not require this knowledge and allow for a near optimal testing rate up to a log
log(n) factor. The latter can be viewed as the price for adaptation. However, his
procedure is essentially a theoretical device rather than a practically applicable method
since it is developed for the idealized signal + white noise model, simple null, known
noise variance, no explicit determination of the critical value, etc.
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Practically relevant procedures should address numerous issues arising in
applications. This is where we account for in detail in this article. In the context of
multidimensional additive modeling, an additional challenge comes from the fact that
the considered component f1 even being completely specified, does not specify the
whole model since nothing is assumed about the other components which can be
viewed as an infinite-dimensional nuisance parameter. This particularly creates a
serious problem with evaluating the critical value of the proposed test statistic.
Therefore, the task is to develop a procedure which, independent of the functional
form of the nuisance components leads to the given type I error  if  f1  is (e.g.) linear,
and is sensitive against a smooth alternative with unknown degree of smoothness. In
view of practical applications we proceed with a deterministic non-regular design
allowing for discrete components and unknown noise variance.

We apply a Haar decomposition which is a particular and non-regular case of
the wavelet transform. For the hypothesis testing the application of this basis leads not
only to the desired optimal testing rate but also provides a test which is more stable
w.r.t. possible design non regularity. This again is important for practical applications,
and we finally reach a reduction of the computational burden. Our approach is based
on the simultaneous approximation of all components by Haar sums: we first estimate
the Haar coefficients for all components and then analyze the coefficients
corresponding to the first one. After this, the test is made independent of the chosen
resolution level (the smoothing parameter) what is meant when speaking of adaptive.
Unfortunately, this makes the distribution of the resulting statistic infeasible to
calculate. Therefore we have to introduce additionally a Monte Carlo- (or bootstrap-
like) method, as is oftens recommended in small samples anyway.

The results demonstrate that each component of the model can indeed be tested
with the rate corresponding to the case when all the remaining components are known.
The proposed procedure is feasible in practice and computationally straightforward.
We discuss modifications and extensions e.g. to test additivity or to detect local
deviations from the null hypothesis like jumps. An intensive simulation study and a
real data example about female labor supply demonstrate the good performance of the
proposed test procedure.
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The following is the general definition of a compound or mixed Poisson.

 and  is the mixing

(compounding, weighting) distribution.
Different mixing distributions  have been studied for various applications.

One of the more flexible choices is the one recommended by Sichel (1973) below.
The mathematics appear a little complex; however, the end result is straightforward to
apply.

where  are the three parameters.   is a modified

Bessel function of the second kind of order .  Using this mixing distribution ,

the resulting family of discrete distributions is given below.  Parameter 
characterizes the tail length of with a short tail as  and a long tail as

.

This encompasses many discrete distributions as special cases (e.g., Poisson,
negative binomial).  In particular, Sichel recommends the use of -½ which results

in the mixing distribution below with the corresponding which we call Sichel’s
compound Poisson.

may be reparameterized for easier estimation by setting 

giving below.
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There are two parameters to be estimated from the observed data.  It can be
 and  or and .  For the distribution becomes a

Poisson distribution.  The parameter  characterizes the frequencies at the start of the

distribution.  For  the distribution is a reverse J-shaped curve whereas for

 a unimodal distribution results.  Using the first of the two methods in Sichel

(1973), the observed proportion for the barren observations (i.e., r = 0), , and the

sample average (includes barren observations), , are used to solve for estimates of 
and  and from these  may also be estimated.

This leads to .  One can calculate any desired probabilities by

substituting the above estimates for the corresponding parameter into the following
recursive formula and given the estimates for and below.

In the full paper examples are given comparing the above to more common
discrete statistical distributions. Sichel's Compound Poisson is found to fill a gap not
covered by standard distributions.
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1. Introduction

The most popular sequential methods are based on the sample mean. This
implies that these methods are nonrobust and that they can produce misleading results
if the real distribution is not Gaussian.

The behaviour of the “ordinary” fixed-width confidence intervals can be
improved if we consider procedures based on some robust estimators. This approach
was developed by Jure�ková and Sen (1981) who proposed robust version of the fully
sequential Chow-Robbins procedure. However, in some situation, it might be more
feasible to use three-stage procedures. Further improvement of the three-stage
sequential procedure based on sample mean can be achieved by considering bootstrap
approximation of the critical points (Aerts and Gijbels, 1993). The robust three-stage
procedure based on M-estimators and bootstrap critical points was proposed and its
basic asymptotic properties were established in Hlávka (2000).

In this paper, we will propose and discuss some modifications which improve
the small sample behaviour of the sequential procedure based on bootstrap critical
points.

2. Robust Three-Stage Procedure

Consider iid random variables with a common distribution

function  Denote by , , and  the M-estimate, an estimate of its

asymptotic variance, and the bootstrap approximation of the critical point of its
(studentized or standardized) asymptotic distribution based on the  observations,
respectively.

Let  denote the integer part of . The robust three-stage procedure goes as

follows. In the first stage we fix the parameter  and we draw

 observations, where  is the desired width of

the resulting confidence interval,  is  quantile of the standard Normal

distribution, and  is minimal starting sample size. In the intermediate stage of the

sequential procedure we draw 

observations, where  controls the sample size. The final sample size is then

given by .
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The interval  is an approximate confidence

interval for the unknown location parameter . Under general conditions, we show
that the square root of the final sample size has asymptotically Normal distribution
with variance depending on the parameter and on the score function generating the
M-estimator. Our results correspond to the earlier results for the distribution of the
final sample size for the Chow-Robbins procedure (Jure�ková 1978).

The drawback of the above procedure for small sample sizes is that the
calculation of the final sample size  is based on the critical points ,

i.e. only on the first  observations even though the (unknown) critical points

 would be more appropriate in this situation. The difference between the

bootstrap critical points  and  is negligible for large number of

observations (i.e. for small ). For smaller sample size, we propose some
modifications of the original procedure.

3. Simulation Study

In the simulation study, we compare various types of approximations of the
critical points: approximation by critical points of standard Normal distribution,
standardized bootstrap critical points, and studentized bootstrap critical points. The
bootstrap critical points can be “adjusted” to provide better results for smaller sample
sizes. The proposed methods are compared from the points of view of the coverage
probability, the mean, the median, and the standard deviation of the final sample size.
The simulations show that for small samples, the best results are obtained by the
procedure based on the “adjusted” studentized bootstrap critical points.
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1. Introduction

Any information can be displayed in many different ways. This is reflected in the
file formats which are mostly used to move the information around internet. For printing,
it is desirable to have the postscript file. For displaying the information interactively, we
prefer html or pdf formats. MD*Book is a set of tools which allows to create easily
various output formats from a single LaTEX source. It is also very simple to create links
from your files to other places in internet and thus to make the information even more
alive and accessible.

Moreover, the usual text can be integrated with programs in Java and the reader has
the chance to run the presented method directly from the browser without the necessity to
install the software used by the author of the paper or textbook.

2. Various Output Formats

The technical description of the MD*Book package can be found on www.md-
book.com. By running MD*Book, you can obtain postscript, pdf, html, or java output
formats. The translation is driven by the so-called .sk file. This file determines what will
be written to a temporary LaTEX files on which MD*Book runs latex, pdflatex, or
latex2html. The big advantage of MD*Book is that a definition of a certain LaTEX
command can depend on the desired output format.

The .sk file can be created automatically from any given LaTEX file. Thus, you can
take your old LaTEX files, transform it to the .sk file and you immediately obtain all
output formats supported by MD*Book.

The layout of the resulting html, pdf or ps files can be easily modified and the result
depends only on your fantasy.
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3. Teaching Statistics

MD*Book has been designed for professional presentation of statistical methods.
The description of a method can be directly linked to an executable and editable computer
code.

MM*Stat, the interactive tool for teaching statistics and a set of class transparencies
prepared with MD*Book can be found at www.md-stat.com. The lecture notes, also
prepared with MD*Book, can be found on the www page www.xplore-stat.de. These
books and transparencies are integrated with the Java version of the XploRe computing
environment (XQC). However, any other Java based computing environment could be
used.

MD*Book is currently running only on Linux systems. Anyway, this doesn’t limit
its use since the files can be transferred to and translated on our Linux machine via the
html forms on the internet page www.md-book.com.
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1. Spheroidal Parameter of the Planar Section

We shall consider oblate spheroidal particles in our presentation. The particle
has two equal major semiaxes and one minor semiaxis and hence the particle is fully
characterized by the size and shape considering its orientation being isotropic uniform
random.

The size of the particle is the length of its major semiaxis . Denoting  the
length of the particle’s minor semiaxis, the shape factor is . It is clear,

that both  and  are nonnegative random variables, and we shall denote their upper
bounds (possibly infinite) by  and  respectively.

In what follows we consider random spheroidal particles in given volume. The
random planar section of the volume is the only available observation, hence we will
observe size and shape factor of the section of particle. The section form ellipses and
the ellipses are again fully characterized by the size  and the shape factor  defined
by analogy to the three dimensional particles. Cruz-Orive (1976) gives joint density of

(1)

where  is a population mean size of particles (half of the mean caliper diameter),
and  is the joint density of .

2. Extremes of the Shape Factors

In the paper we study the extremes both of  and of . We will prove the
stability of the domain of attraction, and in a particular case we shall provide the
normalizing constants. Therefore we will need one-dimensional distributions of 
and .  The problem can be divided into three subcases:

Problem with known particle’s size. We will study the conditional distribution
of  given , which is

(2) ,

where  is the conditional density of  given .
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Problem with unknown particle’s size. We will study the conditional
distribution of  given , which can be derived from (1) easily.

Marginal distribution of the shape factor. We will study the marginal
distribution rather than the conditional. However it seems to us that the extremes of
shape factor should be related to the size in practical applications. This part is then
complementary only.

3. Domain of Attraction

Recall that a distribution function belongs to the domain of attraction of c.d.f.
, if the normalized sample extremes converge in distribution to . There are three

limiting distributions only:

Frechet

Weibull

Gumbel

The main results of the paper are:

Theorem 1 Suppose that for any fixed size  the density is in the

domain of attraction of . Then the distribution  is in the domain of attraction of

, where  for  and  for .

Theorem 2 Assume that the density is in the domain of attraction of 

uniformly in size . Then the distribution  is in the domain of attraction of ,

where  for  and  for .

Theorem 3 Assume that the density is in the domain of attraction of 

uniformly in size . Then the marginal distribution  is in the domain of attraction of
, where  for  and  for .
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1. Goal

The paper proposes two sets of statistical measures: one to assess the degree of
compatibility between study results, the other to assess the extent to which an observed
difference in the results of trials or groups of a single trial is relevant. A pre-requisite is
that outcome is measured by parameters for which confidence intervals are available.

2. Result in one Trial Arm Regarded as a Fuzzy Set

The information obtained about a parameter under investigation (e.g. the mean
reduction of systolic blood pressure after the intake of a beta inhibitor within the
framework of a clinical trial) can be condensed as exemplified in the following situation.

Example A clinical trial demonstrates that among the participants systolic blood
pressure could be lowered by an average of . As a point estimate of the unknown µ, we
may attribute to  a “relative degree of acceptance” equal to 1. The smaller the observed
standard deviation s of the outcome is, and the larger the number of participants n in the
trial, the more we can be sure that further good guesses for µ are close to . The concept
of (1-α)%-confidence intervals (CI) with  in their center supports this idea. Having to
assign to a certain value t other than  a degree of acceptance less than 1 but larger or
equal to 0, the error probabilities α of two-sided (1-α)%-intervals with the respective value
as lower ( ) or upper boundary ( ), would serve this purpose.

This procedure yields a positive “function of acceptance” , t∈ �, which

could also be called a normal fuzzy set (Zadeh, 1965). In the example given, asymptotic
(1-α)%-CIs are

(1) ,

 being the -quantile of the standard normal distribution Φ. This leads to

(2)

3. Compatibility of Two Trial Arms

Let us assume now that the results of certain treatments (not necessarily different)
have to be compared between two groups of patients. Assume that outcome is quantified
by the same statistical measure and that CIs can be derived. Then for each of the two
treatments A and B, corresponding fuzzy sets  and  can be determined.
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To bring these functions in relation to each other, the following measures can be
considered, if the integrals exist, denoting by S a common support:

(3)

indicates the degree to which the two results are compatible or not contradictory.

(4)

assesses the degree to which the precision of the estimates observed in two groups is
similar. Of course, both measures (3) and (4) have values between 0 and 1; the larger they
are the better. To prevent the assignment of a high compatibility by measure (3) in case of
trials with very different precision in the treatment arms, (4) could be used as a penalty for
(3). Multiplication of (3) and (4) yields

(5) ,

and (5) is always less or equal to (3).

4. Relevance of Difference Between Estimates

Let us assume that the smallest difference between the outcome of two therapies
which is clinically relevant, is given by . We can assess the relevance of the magnitude

the outcome is different between two groups of patients using

(6) ,

the starred quantities above being the point estimates of the outcome under therapies A and
B.
(6) ranges from 0 to ∞,. Weighting (6) by a coefficient of uncertainty to prevent the
assignment of large values to (6) as a consequence of imprecise studies yields

(7)

as a measure of relevance adjusted for precision ranging from 0 to ∞.

5. Conclusion

Two sets of measures have been introduced: one assessing the degree of
compatibility between two estimates, the other one to quantify the degree of relevance of
an observed difference. Both sets have been constructed in an analogous way. They could
prove to be useful, e.g. in comparing the results of different clinical trials in meta-analyses.
No statistical testing is required, and the measures can be derived from the “ingredients” of
confidence intervals the former being published in most articles.
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1. Introduction

The implementation of the Clean Air Act (CAA), from its passage in 1970 to the
1990 amendments, has always required an assessment of the effects of atmospherically-
transported pollutants on the environment. The 1990 amendments included new
requirements that appreciably reduced sulfur dioxide (SO�) emissions in two phases
occurring around 1995 and 2000. The estimation of emission-related trends in airborne
concentrations has been the subject of many investigations since the implementation of
national monitoring networks in the late 1970’s. Most of these studies focused on
developing models either for site-specific trends or models for trend in a summary statistic
that represents a network-typical value. In recent years, the focus of environmental policy
has shifted toward regional-scale strategies that require regional estimates of trend for both
their development and subsequent evaluation.

In an effort to provide meaningful regional trend information, this paper describes a
two-stage modeling approach to estimate trends in rural airborne concentrations of SO� for
1990-1998 that have been adjusted for the effects of meteorology and season. After the
large decrease in large electric utility SO� emissions in 1994-1995, SO� emission levels
increased through 1998. This analysis is intended to provide accurate and precise trend
information for most of the 1990’s with particular interest given to the recent period of
emission increases. The first stage uses a linear additive model to estimate site-specific
trend, and the second stage uses an extension of classical Kriging methodology to estimate
regional trends and standard errors. Finally, Bayesian techniques are used to estimate
standard errors to quantify the effect of ignoring the uncertainty of the spatial covariance
parameters.

2. Data

This analysis is applied to airborne SO� concentration (µg/m�) data measured at 32
rural long-term monitoring sites in the eastern U.S. that are part of the Clean Air Status
and Trends Monitoring Network (CASTNet) (U.S. Environmental Protection Agency,
1998a). Continuous measurements of temperature (degrees Celsius), wind speed (m s��),
and wind direction (degrees clockwise from north) were summarized hourly at each site,
and weekly measurements of SO� concentrations were obtained from filter pack
measurements. The east-west wind component (u) is calculated as –windspeed ×
sine(wind direction) and the north-south wind component (v) is calculated as –windspeed
× cosine(wind direction). It was necessary to summarize hourly meteorological data on the
same scale as the SO� measurements, i.e., weekly. These meteorological summaries were
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calculated by averaging all hourly meteorological variables between 10 a.m. and 5 p.m.
across the week to characterize conditions during periods of atmospheric mixing. All sites
in this analysis were required to have 80 percent of all weeks with concurrent SO� and
meteorological data. This analysis was applied to data observed between 1990 and June,
1999.

3. Regional Trend Estimation

The first stage uses a linear additive model to relate the logarithm of weekly SO�

concentrations to prevailing meteorological conditions, season, and time. The model is of
the form,

(1)

where SO������� refers to the measured pollutant concentration in the i�� week of the j�� month
of the k�� year at the l�� site, ε ~ N(0,σ�

�), 1 is an indicator function for the year and month
variables. B is a cubic spline function, and R is a thin-plate spline function. The variable
year is defined in years starting in 1990. For each site location l, the estimated effect due to

time  is assumed to have a normal distribution with parameters and . Then
site-specific trend expressed as total percent change between 1990 and 1998 can be

defined as . For this analysis, the variances were assumed

to be equal. The delta method based on retaining the first term of a Taylor series expansion
of  is used to approximate the variance of trend at locations l and the

covariance of trend for different locations l and l′. Estimates of site-specific trend for SO�

were all negative and the majority of trends were in the –20% to –40% range. For 21 of
the 32 sites, R� values exceeded 0.6, providing good de facto evidence that the site-specific
trend model in (1) is accounting for the seasonal and meteorological influences affecting
SO� concentrations.

The second stage of the analysis uses an extension of standard Kriging methodology
to predict smoothed surfaces of trend based on the site-specific estimates obtained in the
first stage (see Holland et al., 2000). For this, trends are assumed to vary over the eastern
U.S. as a realization of a Gaussian random field and maximum likelihood is used to fit the
model. Kriging estimators are used to calculate averages of trend (defined as regional
trend) and standard errors for three geographic areas: Midwest, Mid-Atlantic, and the
South. A Bayesian analysis with Markov Chain Monte Carlo methods was used to account
for the extra variability induced when parameters of the spatial covariance function are
estimated. In all regions, the Kriging and Bayesian regional trend estimates were quite
similar: -41% in the Midwest, -33% in the Mid-Atlantic, and –30% in the South.  The
Kriging standard errors were approximately 0.3% in each region. After accounting for the
uncertainty of the spatial covariance parameters, the standard errors increased to
approximately 2% in each region. Future work will apply a fully Bayesian approach to
model the errors associated with estimating trend in the first stage.
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Climatological variables such as sea level pressure, sea surface temperature and
precipitation are affected by a large variety of physical processes. Records of
climatological variables, sampled in space and time, have multi-temporal and multi-spatial
scale variations (Chelton, 1994). Therefore in climatological data analysis it is of interest
to extract dominant patterns of various spatial and temporal scale variations that are
supposed to represent the dynamics of the field under study. A key statistical tool used in
this context has been empirical orthogonal function (EOF) or the principal component
analysis (e.g., Kutzbacu1967, Von Storch and Navarra 1995). In standard EOF analysis
one commonly compute the spatial patterns as the eigenvectors of the estimated marginal
spatial covariance (kernel). Then the associated temporal variation patterns are obtained by
the least squares regression. In climatology studies it is common that the spatial
dimensionality is large, hence the statistical reliability of the eigenvectors of the estimated
marginal covariance cannot be guaranteed. Here we describe a constrained EOF
methodology that focus on the estimation of temporally defined features whose spatial
intensity varies throughout the domain.  By incorporating seasonal constraint into the
definition of temporal features the method can be applied to data with large temporal and
spatial dimensionality and interpretation of the temporal features becomes easier.

Suppose y(x,t), x=1,…,N, t =1,…T is a space-time data set. The standard EOF
analysis constructs a unique expression of form .

Now we consider introducing some constraints on the temporal variation pattern

    m=1,…M, s=1,…S and t =m+(s-1)*M,

where b represents annual or sub-annual variation pattern and c is the inter-annual
modulation of b. (x),  and  are sequentially computed by minimizing

,

where  is residual from removing the previous patterns and w(x,t) represent the

relative accuracy of the measurement recorded at spatial location x and time t-a weight of
zero is assigned to the missing measurement. The optimization is carried out using the E-
M algorithm.

The constrained EOF analysis has been applied to global monthly sea surface
temperature records over a 47 years period. The first EOF (Figure 1), explained 5.38%
variability in the anomaly, seems to show structures associated with the familiar El-Nino
southern oscillation (for example, see Diazand Kiladis, 1992).  The second EOF
(Figure 2), explained 2.41% variability, seems to show structures associated with El-Nino
like event in tropical Atlantic.
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Figure 1. The First constrained EOF and the associated spatial pattern. Shades of
gray represent the SST anomaly.

Figure 2. The First constrained EOF and the associated spatial pattern. Shades of
gray represent the SST anomaly.
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We propose a generalised Akaike criterion for Gaussian model selection when
the variance is unknown. We consider the particular case of estimating the nonzero
coefficients in a Gaussian vector when the number of these coefficients is unknown.
We define the penalty term involved in our criterion in order to minimise the
Kullback-Leibler risk of the resulting estimator.

1. The Estimating Problem

We consider the following model

where m is an unknown vector of  and   is  a Gaussian vector  with i.i.d.

components . Some of the components of are nonzero,

say .  is unknown, and we aim at estimating m and .

We define a collection of subsets  of  k indices:  where

. By convention, . Let be some integer strictly smaller than

N. We denote by J the collection of all subsets of with cardinality less or

equal to  .

For any vector x of , we set , and for all  we denote

by  the vector of such that  equals  if  and 0 if .   is the

complement of  in . We say that m belongs to J if for all , ,

that is if .

If m  belongs to J the maximum likelihood estimator of  is .

We propose to estimate J via a  penalised maximum likelihood criterion.

2. The Modified Akaike Criterion

Let

(1)

be a penalised maximum likelihood criterion with penalty  and let  be

the subset in  that minimises , then the final estimator of  is

.
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The Akaike procedure consists in choosing . It is well known

that for small samples or when the dimension of the parameter space is large, then the
Akaike procedure leads to choose models of high dimension. Several authors have
already proposed modified Akaike criteria, by considering a larger penalty term, see
Hurvich and Tsai (1989), or McQuarrie and Tsai (1999). In the context of density
estimation based on histograms, G. Castellan (1999) proved that the Akaike procedure
does not work when the considered family of histograms is large.

Following the work of Birgé and Massart (2001), we calculate the penalty term
such that the risk of the final estimator is minimised in some sense. Considering the
Kullback-Leibler information as a loss function,

where  is the likelihood function,  we would like to estimate J by minimising the

risk of , that is . Unfortunately, this is impossible

because this function depends on . Nevertheless we show that we can build an

estimator , such that

where   is a set of probability close to 1, and  some constant greater than 1.
The penalty term involved in (1) is written in the following way:

for any constant , and where  the terms and are greater than 1.

 takes into account the complexity of the collection . This term  is similar
to the complexity term involved in the result of Birgé and Massart (2001). The term

 is the price to pay for estimating the unknown variance .
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How do we take millions of hourly ozone measurements and turn them into
environmental information to help decision-makers properly direct and focus the
National and State air pollution control programs in the United States? For the past 25
years, the United States Environmental Protection Agency (USEPA) has evaluated the
trends and status of the Nation’s air quality and has published the results in an annual
report. Both ambient measurements, collected across the United States, and emission
trends, based upon engineering estimates, will be presented focussing on the 20-year
trend between 1980 and 1999 and the 10-year period between 1990 and 1999.
Progress in measuring the effectiveness of the air pollution control program is based
upon examining the trends in both ambient air quality measurements and emission
inventory data.

1. Background

Ground level ozone has remained a pervasive pollution problem throughout the
United States. Ozone is not emitted directly into the air but is formed by the reaction
of volatile organic compounds (VOCs) and nitrogen oxides (NOx) in the presence of
heat and sunlight. VOCs are emitted from motor vehicles, chemical plants, refineries,
factories, consumer and commercial products, and other industrial sources. Nitrogen
oxides are emitted from motor vehicles, power plants, and other sources of
combustion. Ozone is effected by the weather – hotter summers produce more
exceedances of the ozone standard. Ozone and the precursor pollutants that cause
ozone can be transported into an area from pollution sources found hundreds of miles
upwind. Short-term (1-3 hours) and prolonged (6-8 hours) exposures to ambient ozone
have been linked to a number of health effects of concern. The daily maximum one-
hour ozone standard requires that the expected number of days per calendar year with
daily maximum hourly concentrations exceeding 0.12 parts per million (ppm) be less
than or equal to one. The new daily maximum 8-hour average standard for ozone is
defined as a 3-year average of the annual fourth highest daily maximum 8-hour
average ozone values and must be less than or equal to 0.08 ppm. The health and
welfare related NAAQS(s) apply to all of our 50 States and must be achieved. Each
State is required to submit a State Implementation Plan (SIP), which specifies a plan
as to how each State will reduce air pollution in order to achieve the NAAQS(s). The
Federal government implements a series of programs to help achieve the NAAQS(s),
including programs for mobile and stationary sources, etc. The question to ask is:
"How well does the air pollution control program work, given all these control
measures?"

2. Air Pollution Data

The ambient air quality concentrations are based upon actual measurements of
pollutant concentrations. These measurements are made at monitoring sites across the
United States. Emission estimates are calculated from the total tonnage of these
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pollutants, or their precursors, released into the air annually. Air monitoring in the
United States is largely conducted by state and local air pollution control agencies. In
1999, there were 705 ozone trend sites meeting 10-year trend criteria. Because only a
few sites have monitored continuously for two decades (1980-1999), the ozone trend
line is composed of two segments – 441 sites with complete data for the first ten years
(1980-1989) and 705 sites meeting the criteria in the most recent 10 year period.

3. Major Findings

The National 20 year ozone trend, between 1980 and 1999, showed ambient
ozone levels have decreased 20 percent based upon one-hour and 12 percent based
upon the 8-hour data. Because only a few sites have monitored continuously for two
decades, this trend line is composed of two segments – 441 sites with complete during
the first ten years (1980-89) and 705 sites meeting the data completeness criteria in the
most recent ten year period. Between 1980 and 1999, emissions of volatile organic
compounds (VOCs) have decreased 33 percent. During that same period, emissions of
nitrogen oxides (NOx) increased one percent. The gross domestic product increased
147 percent and the U. S. population increased 33 percent over the 1980-99 time
period. Over this 20-year period, the ozone air quality improvements are a result of the
effective implementation of the clean air laws and regulations, as well as
improvements in the efficiency of industrial technologies.

Across the nation, however, there has been little progress over the past ten years
– a 4 percent decrease in the 2nd highest daily maximum one-hour O3 value and “no
change” in the 4th highest daily maximum 8-hour average. The emissions of VOC(s)
decreased 15 percent, while the NOx emissions increased 2 percent. The U.S.
population increased 10 percent and the gross domestic product increased 60 percent.
The air quality improvement has not responded in the same way as the 20-year ozone
trend.

While there has not been deterioration in the national ambient ozone trend
between 1990 and 1999, there has been a lack of progress. For both the one- and 8-
hour ozone measurements, ozone air quality trends in the Mid-Atlantic, Southeast,
South Central, and Northwestern United States increased over the ten year period from
1989 to 1998. The highest increase of 17 percent occurred in the Southeast for the 4th
highest daily maximum 8-hour measurements.

Because of this lack of progress over the past ten years, the USEPA proposed
the NOx SIP Call Rule in September 1997, requiring a cap-and–trade program for
large sources of NOx emissions in the eastern half of the United States. It would
establish a NOx cap-and–trade program for sources in 22 eastern states. The NOx SIP
Call, once implemented, should have a significant impact on reducing ozone levels
and should reverse the “stalled” trend in ozone.
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One of the simpliest models considered in the change  point analysis   is the
model for abrupt  change the mean in  the local model. It can be described as follows:

where    are independent observations,   is the mean before the change and

+  (  0) is the mean after the change,  m  is the change point,   are iid random

variables with zero mean and  finite nonzero variance,  denotes the

indicator.

The primary interest is to test  the null hypothesis that  the observations are iid,,
i.e. the mean  does not change against the alternative that at some moment   the mean
changes. In case the  null hypothesis is rejected to get an estimator of the location of
the change point   is of  interest.

There are many variations of the above formulated problem. One can meet it
practice, e.g. changes in hydrological and meteorological time series, structural
changes in econometrics  models,  statistical quality control problems. There is  a long
list of books and papers devoted to this problem, e.g. Csorgo and Horvath (1997) that
reflects   development up to 1997.

Test procedures are usually constructed  by maximum likelihood or Bayesian
principle. The former  one leads to the so called max-type statistics and the latter one
to the   weighted-type statistics.  Having  a test statistic one needs the corresponding
critical  value  or at least  their approximation. Usually  the asymptotic distribution of
the considered test statistic  under the null hypothesis provides  such approximation.

It is known that  under the null hypothesis the limit  distributions of the max-
type test statistics   belong to  the  extreme value type  and the convergence to the limit
distribution is very slow and therefore the   approximation  to the critical values
through limit distribution  is not satisfactory. Usually the resulting tests is  are
conservative.

In the talk an alternative  approximation  based on permutation principle will be
proposed  and discussed, some theoretical  results will be presented for a number of
models. Results  of simulation study will be presented also.

Theoretical results  say   that the permutation principle  provides asymptotically
correct approximations for critical values. The proofs are based on asymptotic
behavior various functionals  of simple linear rank statistics.
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The  talk will be based on joint work with Antoch  (2001), Slabý  (2001) and
Steinebach  (2000).

The work was  partially  supported  by grants GA�R 201/00/0769 and MSM
113200008.
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An underlying distribution (x) in R  is assumed to have a density
proportional to with  satisfying some regularity conditions. The

following diffusion is used commonly to approximate (x).

(1)

To accelerate the convergence, an extra vector field  is added to the

gradient drift, where . Note that (x) is again the

equilibrium distribution of the following family of diffusions.

(2)

Let  be the corresponding infinitesimal generator and define

(3) = sup{ real part of :  is in the spectrum of  and is not zero}.

is used as a comparison criterion in our study. We proved that

 with a complete characterization of the equality. In other words the

extra-added drift does help in improving the convergence rate.
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Les besoins en formation n'existent pas en soi. Ils constituent des écarts qu'il est
nécessaire d'identifier et analyser par rapport à des référentiels existants tels que : un
projet, les activités propres à un emploi, une avancée technologique, etc.

L'approche par compétences utilisée dans ce travail permet d'analyser, à l'aide
d'outils statistiques, les besoins en formation du personnel d'une organisation afin
d'établir leur portefeuille de compétences, en regard de la performance attendue et de
planifier les séminaires permettant l'acquisition de ces compétences en tenant compte
des priorités d'apprentissage accordées aux compétences par chacune des personnes.

Cette approche a été mise en œuvre selon les trois phases de diagnostic, de
planification et de suivi qui seront succinctement présentés.

La première partie de ce travail présente un état de l'art dans le domaine de
l'ingénierie de formation en informatique utilisant l'approche par compétence et les
technologies de l'information, cf. Lesy-Leboyer (1993) et Flück (1992). Une
présentation du référentiel des compétences reliées aux différents métiers de
l'informatique au Maroc est aussi faite. Ce référentiel se trouve au cœur de l'approche
par compétence aussi bien dans la première phase de diagnostic qui permet le recueil
des objectifs organisationnels, que dans la phase d'auto positionnement des individus
lors de la planification de leurs parcours de perfectionnement.

La deuxième partie de ce travail décrit le processus de réalisation qui offre des
outils, des méthodes et des stratégies d'orientation requises lors d'une élaboration d'un
plan de formation.

Les outils qui ont été élaborés permettent essentiellement :
1.� d'automatiser les questionnaires conçus pour la collecte des données dans les

phases de diagnostic et d'analyse des besoins;
2.� de préparer les données à une analyse statistique avancée basée sur des

techniques de Scoring et de segmentation, cf. Kass (1980) et Magidson
(1993);

3.� de produire l'arbre décisionnel des compétences qui segmente les compétences
par rapport à trois critères à savoir, l'importance de la compétence pour le poste
(mesuré sur une échelle de mesure allant de 1 à 5), le degré de maîtrise de la
compétence (mesuré sur une échelle de 3 à 5) et la priorité d'apprentissage pour
chacune des compétences (mesurée sur une échelle de 1 à 3). Ainsi, chaque nœud
de l'arbre représente une population homogène par rapport aux compétences à
acquérir selon un niveau de maîtrise et dans un ordre de priorité ;

4.� de planifier la formation en tenant compte de l'arbre décisionnel obtenu et des
éventuels conflits entre les modules de formations pouvant répondre à
plusieurs compétences de niveaux différents.
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L'ensemble de ces outil seront illustrés à l'aide d'une application réelle relative à
l'élaboration du plan de formation des informaticiens du Ministère de l'économie et
des Finances Marocain.

Références

Kass, G. (1980) An explanatory technique for investigating large quantities of categorical data.
Applied Statistics, 29:2, 119-127.

Magidson, J., and  SPSS Inc. (1993) SPSS for Windows CHAID Release 6.0. Chicago: SPSS
Inc.

Flück, C. and Le Brunchoquet, C. (1992) Développer les emplois et les compétences. Insep-
Edition.

Lesy-Leboyer, C. (1993) Le bilan des compétences. Les éditions d'organisation.



ME II

IM E S TR E  DE  2001

A Comparison of Shewhart Control Charts Based on
Normality, Nonparametrics, and Extreme-Value

Theory

Roxana A. Ion
University of Amsterdam, Korteweg-de Vries Institute for Mathematics

Plantage Muidergracht 24, 1018 TV Amsterdam, Nederlands
roxana@science.uva.nl

Ronald J. M. M. Does
University of Amsterdam, Korteweg-de Vries Institute for Mathematics

Plantage Muidergracht 24, 1018 TV Amsterdam, Nederlands
rjmmdoes@science.uva.nl

Chris A. J. Klaassen
University of Amsterdam, Korteweg-de Vries Institute for Mathematics

Plantage Muidergracht 24, 1018 TV Amsterdam, Nederlands
chrisk@science.uva.nl

Since Shewhart in the early Twenties originated the concept of control chart, it
has become a powerful tool in Statistical Process Control (Shewhart, 1931).  In the
present paper,  several control charts for individual observations are compared.
Traditional ones are the well-known moving range Shewhart control charts with
control limits based on the average of the moving ranges of the individual
measurements.

The availability of modern computing power in statistical process control
enables one to consider nonparametric Shewhart control charts with control limits
estimated via such diverse computationally intensive techniques from mathematical
statistics as the bootstrap, empirical quantiles, kernel estimators, and extreme-value
theory.

The alternative control charts we will compare, are four charts based on
empirical quantiles, which are related to the bootstrap method , two control charts
based on  kernel estimators, and two based on  extreme-value theory. For these
nonparametric control charts the underlying distribution function, denoted by F, is
assumed to be unimodal, but otherwise unknown. This means that we include
distributions which have an increasing-decreasing density, such as the Normal,
Logistic, Laplace, Cauchy, Student, Uniform and Exponential distribution.

The estimation of the control limits is based on the observations obtained in the
so-called Phase 1, in which the data are collected from the production process and
parameters are estimated (cf. Woodall and Montgomery (1999)). It is important to
note that we consider the monitoring phase which is usually called Phase 2. Since  the
in-control parameters are unknown, we will study the statistical performance of the
classical and newly proposed control charts by the average and standard deviation of
the in-control run length.
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The use of all control charts is demonstrated by a real-life example from a
printers assembling company. Their performance is studied by Monte Carlo
simulation.

It turns out that even under normality, the alternatives behave quite well
especially when sufficiently many data are available. The performance of our
Alternative Empirical Quantile control chart is excellent for all distributions
considered.
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